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1. Introduction

This paper concerns the internal zero stabilization of the predator population of a
predator-prey system in a periodic environment. Our starting point is the system de-
scribing the evolution of a predator population and a prey population distributed over
the habitat Ω:

ht −d1Δh= r(t)h− k(t)h2− f1(t,h, p)hp, x ∈Ω, t > 0,

pt −d2Δp =−a(t)p+ f2(t,h, p)hp, x ∈Ω, t > 0,

∂h

∂ν
= ∂p

∂ν
= 0, x ∈ ∂Ω, t > 0,

h(x,0)= h0(x), p(x,0)= p0(x), x ∈Ω,

(1.1)

where Ω⊂RN (N ≥ 2) is a bounded domain with a smooth enough boundary ∂Ω. Here
h(x, t) is the density of preys at position x ∈Ω and time t ≥ 0 and p(x, t) is the density of
predators at position x ∈Ω and time t ≥ 0; h and p are both nonnegative functions. d1,
d2 > 0 are the diffusivity constants of the two populations. r(t) is the intrinsic growth rate
of preys in the absence of predators, at the moment t ≥ 0 (which can be positive, zero, or
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negative) and is T-periodic (T > 0). Usually, the period T is of one year. a(t) is the decay
rate of predators in the absence of preys, at the moment t, and is also T-periodic. k is
a T-periodic and positive function. k(t)h(x, t) represents an additional mortality rate of
the preys due to the overpopulation.

Homogeneous Neumann boundary conditions mean that there is no flux of species
through the boundary ∂Ω (this corresponds to isolated populations). h0 and p0 are the
initial densities of the two populations.

The following cases are well known in the literature.
When f1(t,h, p)= θ1 and f2(t,h, p)= θ2, where θ1, θ2 are positive constants, the stan-

dard Lotka-Volterra system is obtained.
For f1(t,h, p) = θ1/(1 + qh) and f2(t,h, p) = θ2/(1 + qh), for every h, p ≥ 0, where

θ1, θ2, q are positive constants, we obtain a Holling II functional response to predation.
Finally, in the case f1(t,h, p) = θ1/(1 + qh+ q̃p) and f2(t,h, p) = θ2/(1 + qh+ q̃p), for

every h, p ≥ 0, and θ1, θ2, q, q̃ positive constants, a Beddington-De Angelis functional
response for predation is obtained. For a complete study of the solutions to this model
we refer to [1]. For a description of the predator-prey systems and some basic results we
refer to [2, 3].

Throughout this paper, the following assumptions will be considered:
(H1) h0, p0 ∈ L∞(Ω), h0(x)≥ 0, p0(x)≥ 0, a.e. x ∈Ω,

∥

∥h0(x)
∥

∥

L∞(Ω),
∥

∥p0(x)
∥

∥

L∞(Ω) > 0; (1.2)

(H2) r,k,a∈ C([0,+∞)) satisfy

r(t)= r(t+T), k(t)= k(t+T), a(t)= a(t+T), ∀t ≥ 0,

k(t)≥ k0 > 0, ∀t ≥ 0 (where k0 is a constant),

∫ T

0
r(t) dt > 0,

a(t)≥ a0 > 0, ∀t ≥ 0 (where a0 is a constant);

(1.3)

(H3) f1, f2 : [0,∞)×R2→R are continuous functions and locally Lipschitz continuous
with respect to (h, p) and satisfy

f1(t,h, p)= f1(t+T ,h, p), f 2(t,h, p)= f2(t+T ,h, p), ∀t ≥ 0, h≥ 0, p ≥ 0,

∃C > 0 such that 0≤ f1(t,h, p), f2(t,h, p)≤ C, ∀t ≥ 0, h≥ 0, p ≥ 0;
(1.4)

(H4) the application h 
→ h f2(t,h, p) is nondecreasing on [0,+∞),∀t ≥ 0,∀p ≥ 0;
(H5) the application p 
→ f2(t,h, p) is nonincreasing on [0,+∞),∀t ≥ 0,∀h≥ 0.
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Condition
∫ T

0 r(t) dt > 0 is a persistence condition for the preys in the absence of preda-
tors. So, if p0 ≡ 0 and h0(x) > 0 a.e. in Ω, then the necessary and sufficient condition for
the persistence of preys is the above-mentioned one.

For basic results concerning the solutions of periodic predator-prey systems (without
diffusion) we refer to [4].

Letω⊂RN be a nonempty domain with a smooth-enough boundary ∂ω and satisfying
ω ⊂ ⊂Ω. We denote by m the characteristic function of ω.

The questions we want to investigate are the following.
(1) Is there any control u∈ L∞loc(ω× [0,∞)) such that the solution to the initial-bound-

ary value problem

ht −d1Δh= r(t)h− k(t)h2− f1(t,h, p)hp, x ∈Ω, t > 0,

pt −d2Δp =−a(t)p+ f2(t,h, p)hp+m(x)u(x, t), x ∈Ω, t > 0,

∂h

∂ν
= ∂p

∂ν
= 0, x ∈ ∂Ω, t > 0,

h(x,0)= h0(x), p(x,0)= p0(x), x ∈Ω,

(1.5)

satisfies

h(x, t)≥ 0, p(x, t)≥ 0 a.e. x ∈Ω, ∀t ≥ 0,

lim
t→∞p(t)= 0 in L∞(Ω)?

(1.6)

(2) Is there any control v ∈ L∞loc(ω× [0,∞)) such that the solution to the initial-bound-
ary value problem

ht −d1Δh= r(t)h− k(t)h2− f1(t,h, p)hp+m(x)v(x, t), x ∈Ω, t > 0,

pt −d2Δp =−a(t)p+ f2(t,h, p)hp, x ∈Ω, t > 0,

∂h

∂ν
= ∂p

∂ν
= 0, x ∈ ∂Ω, t > 0,

h(x,0)= h0(x), p(x,0)= p0(x), x ∈Ω,

(1.7)

satisfies (1.6)?

Definition 1.1. Say that the predator population is p-zero stabilizable if for any h0, p0

satisfying (H1), the answer to the first question is affirmative. p-zero stabilizable means
that the zero stabilizability holds for controls acting only on the predator population.

Definition 1.2. Say that the predator population is h-zero stabilizable if for any h0, p0

satisfying (H1), the answer to the second question is affirmative. h-zero stabilizable means
that the zero stabilizability holds for controls acting only on the prey population.

We are dealing here with some results of zero stabilizability with state constraints.
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First notice that, due to assumption (H3) and to the comparison principle for para-
bolic equations, the solution (h, p) to (1.1) satisfies

0≤ h(x, t)≤ h(x, t) a.e. x ∈Ω, ∀t ≥ 0, (1.8)

where h is the solution to

ht −d1Δh= r(t)h− k(t)h
2
, x ∈Ω, t > 0,

∂h

∂ν
= 0, x ∈Ω, t > 0,

h(x,0)= h0(x), x ∈Ω.

(1.9)

Lemma 1.3. The solution h to (1.9) satisfies

lim
t→∞

∥

∥h(t)− ˜h(t)
∥

∥

L∞(Ω) = 0, (1.10)

where ˜h is the unique nontrivial nonnegative solution to the following problem:

˜ht −d1Δ˜h= r(t)˜h− k(t)˜h2, x ∈Ω, t > 0,

∂˜h

∂ν
= 0, x ∈Ω, t > 0,

˜h(x, t)= ˜h(x, t+T), x ∈Ω, t > 0.

(1.11)

Remark 1.4. In fact, we will show that (1.11) has exactly two nonnegative solutions, the
trivial one and the unique nontrivial and nonnegative solution to

gt = r(t)g − k(t)g2, t > 0,

g(t)= g(t+T), t > 0.
(1.12)

If
∫ T

0 r(t)dt ≤ 0, then (1.12) has a unique nonnegative solution (the trivial one). This
follows by a simple calculation and taking into account that the first equation in (1.12) is
a Bernoulli equation.

Proof of Lemma 1.3. Since ‖h0‖L∞(Ω) > 0, it follows that there exists a positive constant
ρ1 > 0 such that

h(x,T)≥ ρ1 > 0 a.e. x ∈Ω (1.13)

(this is a consequence of a result in [5]). Therefore, we can assert that

h(x, t)≥ hρ1 (t), a.e. x ∈Ω, ∀t ≥ T , (1.14)
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where hρ1 (t) is the solution to

(

hρ
)

t −d1Δh
ρ = r(t)hρ− k(t)

(

hρ
)2

, x ∈Ω, t > T ,

∂hρ

∂ν
= 0, x ∈Ω, t > T ,

hρ(x,T)= ρ, x ∈Ω,

(1.15)

corresponding to ρ := ρ1 (hρ1 does not depend explicitly on x).

If we choose ρ1 > 0 sufficiently small and taking into account that
∫ T

0 r(t)dt > 0, it
follows that

hρ1 (T) < hρ1 (2T). (1.16)

By mathematical induction, we get that

hρ1 (t+T +nT)≤ hρ1
(

t+T + (n+ 1)T
)

, ∀t ∈ [0,T], ∀n∈N (1.17)

and consequently

h
ρ1
n (t)≤ h

ρ1
n+1(t), a.e. x ∈Ω, ∀t ∈ [0,T], (1.18)

for any n∈N, where h
ρ1
n (t)= hρ1 (t +T +nT), ∀t ∈ [0,T]. Obviously, h

ρ1
n is the solution

of

(

h
ρ1
n
)

t −d1Δh
ρ1
n = r(t)h

ρ1
n − k(t)(h

ρ1
n )2, x ∈Ω, t ∈ (0,T),

∂h
ρ1
n

∂ν
= 0, x ∈Ω, t ∈ (0,T),

h
ρ1
n (x,0)= h

ρ1
n−1(x,T)= hρ1 (x,T +nT), x ∈Ω,

(1.19)

for any n∈N∗.
In the same manner, taking ρ2 > 0 sufficiently large, we can obtain a nonincreasing

bounded sequence h
ρ2
n , where h

ρ2
n (t)= hρ2 (t +T +nT), for all t ∈ [0,T], for all n∈N and

hρ2 is the solution to (1.15) corresponding to ρ := ρ2.
Using the comparison result for parabolic equations, we have that

h
ρ1
n (t)≤ h

(

x, t+ (n+ 1)T
)≤ h

ρ2
n (t), a.e. x ∈Ω, ∀t ∈ [0,T], ∀n∈N. (1.20)

Taking into account (1.20), we may pass to the limit in (1.19) and get that

h
ρ1
n −→ ˜h1, (1.21)
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in C([0,T]), as n→+∞, where ˜h1 is a positive solution (has only positive values) of

˜ht −d1Δ˜h= r(t)˜h− k(t)˜h2, x ∈Ω, t ∈ (0,T),

∂˜h

∂ν
= 0, x ∈ ∂Ω, t ∈ (0,T),

˜h(x,0)= ˜h(x,T), x ∈Ω,

(1.22)

where ˜h1 does not depend explicitly on x (because h
ρ1
n does not). We may extend ˜h1 by T-

periodicity to [0,+∞) and we deduce that ˜h1 is a positive solution to (1.11) and to (1.12).
Since (1.12) has a unique nontrivial nonnegative solution, we may infer that this one is
˜h1. So,

lim
t→+∞

∣

∣hρ1 (t)− ˜h1(t)
∣

∣= 0. (1.23)

In the same manner, it follows that

lim
t→+∞

∣

∣hρ2 (t)− ˜h1(t)
∣

∣= 0. (1.24)

By (1.20) we conclude that

lim
t→∞

∥

∥h(t)− ˜h1(t)
∥

∥

L∞(Ω) = 0. (1.25)

Let us prove that there is only one nontrivial and nonnegative solution to (1.11).

Let ˜h2 be a nontrivial and nonnegative solution to (1.11). It follows immediately that

there exists ρ0 > 0 (see [5]) such that ˜h2(x,T) ≥ ρ0 a.e. x ∈ Ω. If we choose ρ1 and ρ2

such that 0 < ρ1 < ρ0 ≤ ˜h2(x,0) = ˜h2(x,T) ≤ ρ2 a.e. x ∈Ω with ρ1 small enough and ρ2

large enough, then it follows as before that ˜h2 ≡ ˜h1 (because h
ρ1
n (t)≤ ˜h2(x, t)≤ h

ρ2
n (t) a.e.

x ∈Ω, for all t ∈ [0,T], for all n∈N) and so we get the conclusion of the lemma. �

Let us consider now the corresponding equation in p for h := ˜h, that is,

pt −d2Δp =−a(t)p+ f2
(

t,˜h(t), p
)

˜h(t)p, x ∈Ω, t > 0,

∂p

∂ν
= 0, x ∈ ∂Ω, t > 0,

p(x,0)= p0(x), x ∈Ω.

(1.26)

Having in mind (H5), we obtain that

f2(t,h, p)≤ f2(t,h,0), ∀t,h, p ≥ 0, (1.27)

therefore, the solution p to (1.26) satisfies (using the comparison principle for parabolic
equations)

0≤ p(x, t)≤ p(x, t), a.e. x ∈Ω, ∀t ≥ 0, (1.28)
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where p is a solution to

pt −d2Δp =−a(t)p+ f2
(

t,˜h(t),0
)

˜h(t)p, x ∈Ω, t > 0,

∂p

∂ν
= 0, x ∈ ∂Ω, t > 0,

p(x,0)= p0(x), x ∈Ω.

(1.29)

This may be rewritten as

pt −d2Δp = l(t)p, x ∈Ω, t > 0,

∂p

∂ν
= 0, x ∈ ∂Ω, t > 0,

p(x,0)= p0(x), x ∈Ω,

(1.30)

where

l(t)= f2
(

t,˜h(t),0
)

˜h(t)− a(t), ∀t ≥ 0. (1.31)

Thus, the solution p can be written as

p(x, t)= exp
{∫ t

0
l(τ)dτ

}

f (x, t), x ∈Ω, t ≥ 0 (1.32)

with f solution to

ft −d2Δ f = 0, x ∈Ω, t > 0,

∂ f

∂ν
= 0, x ∈ ∂Ω, t > 0,

f (x,0)= p0(x), x ∈Ω.

(1.33)

Lemma 1.5. There exist a real constant α∗ and a T-periodic continuous function w : [0,
+∞)→R such that

exp
{∫ t

0
l(τ)dτ

}

= exp
{

α∗t
}

w(t), ∀t ≥ 0. (1.34)

Indeed, one can check directly that, due to the periodicity assumptions made on a and
f2, for α∗ = (1/T)

∫ T
0 l(τ)dτ, the function

w(t)= exp
{∫ t

0

(

l(s)−α∗
)

ds
}

, ∀t ≥ 0, (1.35)

is a T-periodic function.
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Let us denote by λ1 the principal eigenvalue of the following eigenvalue problem

−d2Δϕ= λϕ, x ∈Ω,

∂ϕ

∂ν
= 0, x ∈ ∂Ω.

(1.36)

Remark that λ−1 = 0. Now, we notice that if λ1 > α∗, then (1.32) and (1.34) imply that
the predator population goes to extinction without any control. Therefore, in the rest of
this paper we will assume

(H6) 0 < α∗.
For basic results concerning the solutions to predator-prey systems we refer to [1, 6].

Stabilization of predator-prey systems with r, k, a constants has been investigated in
[7, 8]. If in (1.1) the predator is an alien population, then our main goal is to eliminate
this population. This problem and its importance have been discussed in [9]. We will
investigate next what happens in the cases when we act with a control with support in ω.

Section 2 is devoted to the study of p-zero stabilization, while Section 3 concerns the
h-zero stabilization. Some remarks are given in Section 4.

2. The p-zero stabilization of the predator population

Denote by λ
ω,p
1 the principal eigenvalue of the next problem

−d2Δϕ= λϕ in Ω \ω,

ϕ= 0 on ∂ω,

∂ϕ

∂ν
= 0 on ∂Ω.

(2.1)

Then, according to Rayleigh’s principle (see [10]), λ
ω,p
1 satisfies

λ
ω,p
1 =min

{

d2

∫

Ω\ω
|∇ϕ|2dx; ϕ∈H1(Ω \ω), ϕ= 0 on ∂ω, ‖ϕ‖L2(Ω\ω) = 1

}

. (2.2)

Here is one of the main results of our paper.

Theorem 2.1. If the predator population is p-zero stabilizable, then λ
ω,p
1 ≥ α∗, where

α∗ = 1
T

∫ T

0
l(s) ds (2.3)

and l is defined by (1.31).
Conversely, if λ

ω,p
1 > α∗, then the predator population is p-zero stabilizable and, for γ > 0

large enough, the feedback control u := −γp realizes (1.6), where (h, p) is the nonnegative
solution to (1.5) corresponding to u :=−γp.
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In order to prove Theorem 2.1, we need first to establish two auxiliary results. For any
γ ≥ 0 we consider the following problem:

−d2Δϕ+m(x)γϕ= λϕ in Ω,

∂ϕ

∂ν
= 0 on ∂Ω

(2.4)

and denote by λ
p
1,γ its principal eigenvalue.

Lemma 2.2.

lim
γ→∞λ

p
1,γ = λ

ω,p
1 . (2.5)

Proof of Lemma 2.2. By Rayleigh’s principle, one gets

λ
p
1,γ =min

{

d2

∫

Ω

∣

∣∇ϕ∣∣2
dx+ γ

∫

ω
|ϕ|2dx; ϕ∈H1(Ω), ‖ϕ‖L2(Ω) = 1

}

. (2.6)

Hence, for every 0≤ γ1 ≤ γ2, we have

λ
p
1,γ1
≤ λ

p
1,γ2

. (2.7)

Now, denoting by ϕ1 the corresponding eigenfunction to λ
ω,p
1 satisfying ‖ϕ1‖L2(Ω) = 1,

ϕ1(x) ≥ 0 a.e. x ∈ Ω, we get that ϕ1 is the minimum point for the right-hand side of
(2.2).

We extend ϕ1 to Ω as follows:

ϕ̃(x)=
⎧

⎨

⎩

ϕ1(x), x ∈Ω \ω,

0, x ∈ ω.
(2.8)

Then

λ
ω,p
1 = d2

∫

Ω
|∇ϕ̃|2dx+ γ

∫

ω
|ϕ̃|2dx ≥ λ

p
1,γ, ∀γ ≥ 0. (2.9)

Thus one obtains

lim
γ→∞λ

p
1,γ ≤ λ

ω,p
1 . (2.10)

To prove the equality, let us consider ϕγ ∈H1(Ω) such that ‖ϕγ‖L2(Ω) = 1 and

λ
p
1,γ = d2

∫

Ω

∣

∣∇ϕγ

∣

∣

2
dx+ γ

∫

ω

∣

∣ϕγ

∣

∣

2
dx ≤ λ

ω,p
1 . (2.11)

It follows that there exists a constant M ≥ 0 such that
∫

Ω

∣

∣∇ϕγ

∣

∣

2
dx ≤M, γ

∫

ω

∣

∣ϕ2
γ

∣

∣dx ≤M, ∀γ ≥ 0. (2.12)
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Therefore, there exists a subsequence (also denoted by {ϕγ}), such that

ϕγ −→ ϕ∗ weakly in H1(Ω),

ϕγ −→ ϕ∗ in L2(Ω),

ϕγ −→ 0 in L2(ω).

(2.13)

Hence, ϕ∗ ∈H1(Ω \ω), ‖ϕ∗‖L2(Ω\ω) = 1, ϕ∗ ≡ 0 in ω, and one may infer that ϕ∗ = 0 on
∂ω. Thus by (2.11) we get that

lim
γ→∞λ

p
1,γ ≥ λ

ω,p
1 . (2.14)

By (2.10) and (2.14) we get the conclusion of Lemma 2.2. �

Lemma 2.3. Let (h, p) be a nonnegative solution to (1.5), corresponding to the control u∈
L∞loc(ω× [0,∞)). If

lim
t→∞p(t)= 0 in L∞(Ω), (2.15)

then

lim
t→∞

(

h(t)− ˜h(t)
)= 0 in L∞(Ω), (2.16)

where ˜h is the unique nontrivial nonnegative solution to (1.11).

Proof. Since

lim
t→∞p(t)= 0 in L∞(Ω), (2.17)

it follows that, for every small enough δ > 0, there exists tδ > 0 such that

0≤ p(t,x)≤ δ a.e. x ∈Ω, ∀t ≥ tδ . (2.18)

By (H3) we get that

0≤ f1
(

t,h(x, t), p(x, t)
)

p ≤ Cδ, a.e. x ∈Ω, ∀t ≥ tδ . (2.19)
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Let us denote now by h1 and h2 the solutions to the following problems, respectively:
(

h1
)

t −d1Δh1 = r(t)h1− k(t)h2
1−Cδh1, x ∈Ω, t > tδ ,

∂h1

∂ν
= 0, x ∈ ∂Ω, t > tδ ,

h1
(

x, tδ
)= ρ1, x ∈Ω,

(

h2
)

t −d1Δh2 = r(t)h2− k(t)h2
2, x ∈Ω, t > tδ ,

∂h2

∂ν
= 0, x ∈ ∂Ω, t > tδ ,

h2
(

x, tδ
)= ρ2, x ∈Ω,

(2.20)

where ρ1 > 0 is a small enough constant and ρ2 is a large enough constant, such that

0 < ρ1 < h
(

x, tδ
)

< ρ2 a.e. x ∈Ω (2.21)

(existence of such ρ1 is a consequence of a result in [5]).
Then, by the comparison principle for the parabolic equations, we obtain

h1(x, t)≤ h(x, t)≤ h2(x, t), a.e. x ∈Ω, ∀t ≥ tδ . (2.22)

As in the proof of Lemma 1.3 we can prove that h2 satisfies

lim
t→∞

∣

∣h2(t)− ˜h(t)
∣

∣= 0,

lim
t→∞

∣

∣h1(t)− ˜hδ(t)
∣

∣= 0,
(2.23)

where ˜hδ is the unique nontrivial nonnegative solution to

˜ht −d1Δ˜h= r(t)˜h− k(t)˜h2−Cδ˜h, x ∈Ω, t > 0,

∂˜h

∂ν
= 0, x ∈ ∂Ω, t > 0,

˜h(x, t)= ˜h(x, t+T), x ∈Ω, t ≥ 0.

(2.24)

Since δ 
→ ˜hδ is a decreasing function, then we may pass to the limit in (2.24) and get that

lim
t→∞

∣

∣˜hδ(t)− ˜h(t)
∣

∣= 0. (2.25)

By (2.22)–(2.24) we get the conclusion. �

Proof of Theorem 2.1. Assume that p0(x) > 0 a.e. x ∈ Ω and let (h, p) be a nonnegative
solution to (1.5) corresponding to the p-stabilizing control u∈ L∞loc(ω× [0,∞)). Since

lim
t→∞

∥

∥p(t)
∥

∥

L∞(Ω) = 0, (2.26)
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it follows by Lemma 2.3 that

lim
t→∞

∥

∥h(t)− ˜h(t)
∥

∥

L∞(Ω) = 0, (2.27)

which implies, due to the continuity of the function f2, that, for any ε > 0, there exists
tε ≥ 0 such that

∥

∥h(t) f2
(

t,h(t), p(t)
)− ˜h(t) f2

(

t,˜h(t),0
)∥

∥

L∞(Ω) < ε, (2.28)

for any t ≥ tε.
Let ε > 0 be arbitrary but fixed. Denoting now by p1 the solution to the following

problem:

(

p1
)

t −d2Δp1 =−a(t)p1 + f2
(

t,˜h(t),0
)

˜h(t)p1− εp1, x ∈Ω \ω, t > tε,

p1 = 0, x ∈ ∂ω, t > tε,

∂p1

∂ν
= 0, x ∈ ∂Ω, t > tε,

p1
(

x, tε
)= p

(

x, tε
)

, x ∈Ω \ω,

(2.29)

we obtain via the comparison principle for parabolic equations and using (2.28) that

0≤ p1(x, t)≤ p(x, t), a.e. x ∈Ω \ω, ∀t ≥ tε. (2.30)

Let ϕ1 be an eigenfunction corresponding to λ
ω,p
1 and satisfying ‖ϕ1‖L2(Ω\ω) = 1, ϕ1(x)≥ 0

a.e. x ∈Ω \ω and denote by 〈·,·〉 the usual inner product in L2(Ω \ω). Then

〈

p1(t),ϕ1

〉′
+
(

λ
ω,p
1 − l(t) + ε

)〈

p1(t),ϕ1

〉= 0, ∀t ≥ tε. (2.31)

We infer that

〈

p1(t),ϕ1

〉= exp
{

− λ
ω,p
1

(

t− tε
)

+
∫ t

tε

(

l(s)− ε
)

ds
}

〈

p
(

tε
)

,ϕ1

〉

, ∀t ≥ tε. (2.32)

The p-zero stabilizability and (2.30) imply that

lim
t→∞p1(t)= 0 in L∞(Ω \ω). (2.33)

Since p(x, tε) > 0 a.e. x ∈Ω (see [5]), we conclude that

−λω,p
1 T +

∫ T

0
l(t)dt− εT < 0. (2.34)

Making ε→0 we get the conclusion. �
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Conversely, assume that λ
ω,p
1 > α∗. Then, by Lemma 2.2, we have that for ε > 0 small

enough and for γ ≥ 0 large enough

λ
p
1,γ − ε > α∗. (2.35)

Set now u := −γp and let (h, p) be the corresponding solution to (1.5). Using (1.9) and
Lemma 1.3, we get that for every ε > 0, there exists Tε ≥ 0, such that

h(t,x) f2
(

t,h(t,x), p(t,x)
)

< ˜h(t) f2
(

t,˜h(t),0
)

+ ε, a.e. x ∈Ω, ∀t ≥ Tε. (2.36)

Denote by p2 the solution to the following problem:

(

p2
)

t −d2Δp2 =−a(t)p2 + f2
(

t,˜h(t),0
)

˜h(t)p2 + εp2−m(x)γp2, x ∈Ω, t > Tε,

∂p2

∂ν
= 0, x ∈ ∂Ω, t > Tε,

p2
(

x,Tε
)= ϕ1γ(x), x ∈Ω,

(2.37)

where ϕ1γ is an eigenfunction of (2.4) corresponding to λ := λ
p
1,γ and satisfying ϕ1γ(x)≥

p(x,Tε) a.e. x ∈Ω.
Applying the comparison result for parabolic equations, we conclude that

0≤ p(x, t)≤ p2(x, t), a.e. x ∈Ω, ∀t ≥ Tε. (2.38)

This yields

p2(x, t)≤ ϕ1γ(x)exp
{

− λ
p
1,γ

(

t−Tε
)

+
∫ t

Tε

(

l(s) + ε
)

ds
}

, a.e. x ∈Ω, ∀t ≥ Tε. (2.39)

Since λ
p
1,γ > (1/T)

∫ T
0 l(s)ds+ ε, it follows that

p2(t)−→ 0 in L∞(Ω), (2.40)

which implies that

p(t)−→ 0 in L∞(Ω), (2.41)

as t→+∞, at the same rate as exp{(−λp1,γ +α∗ + ε)t}.
Remark 2.4. Since

lim
γ→+∞, ε→0+

(

λ
p
1,γ − ε

)= λ
ω,p
1 , (2.42)

we see how important it would be to maximize λ
ω,p
1 with respect to the location and

geometry of ω and Ω.
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3. The h-zero stabilization of the predator population

In this section, we are looking for a stabilizing control v acting indirectly (acting on the
prey population). Let us consider (h, p) a solution to (1.7) corresponding to the feedback
control v :=−γh. The system becomes

ht −d1Δh= r(t)h− k(t)h2− f1(t,h, p)hp−m(x)γh, x ∈Ω, t > 0,

pt −d2Δp =−a(t)p+ f2(t,h, p)hp, x ∈Ω, t > 0,

∂h

∂ν
= ∂p

∂ν
= 0, x ∈ ∂Ω, t > 0,

h(x,0)= h0(x), p(x,0)= p0(x), x ∈Ω.

(3.1)

For any γ ≥ 0 we consider the following eigenvalue problem:

−d1ΔΨ+m(x)γΨ= λΨ in Ω,

∂Ψ

∂ν
= 0 on ∂Ω,

(3.2)

and denote by λh1,γ its principal eigenvalue. Next, we denote by λω,h
1 the principal eigen-

value to

−d1ΔΨ= λΨ, x ∈Ω \ω,

Ψ= 0, x ∈ ∂ω,

∂Ψ

∂ν
= 0, x ∈ ∂Ω.

(3.3)

It is a consequence of Rayleigh’s principle that the mapping γ 
→ λh1,γ is increasing and
continuous, and

λh1,γ −→ λω,h
1 as γ −→∞. (3.4)

Let

α̃∗ = 1
T

∫ T

0
r(s)ds. (3.5)

In the same manner as in Section 2 it follows the next result.

Theorem 3.1. If for a γ ≥ 0 one has that λh1,γ > α̃∗, then the predator population is h-zero
stabilizable and the feedback control v := −γh realizes (1.6), where (h, p) is the solution to
(1.7) corresponding to v :=−γh. Moreover,

lim
t→+∞h(t)= 0 in L∞(Ω). (3.6)
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Remark 3.2. Assume that the hypotheses in Theorem 3.1 hold. Since h(t)→0 in L∞(Ω),
as t→+∞, then it follows (as in Section 2) that p(t)→0 in L∞(Ω), as t→+∞, at the rate
of

exp
{

−
(

1
T

∫ T

0
a(s)ds+ ε

)

t
}

(3.7)

(for ε > 0 small enough).
If, in addition, (1/T)

∫ T
0 a(s)ds > λ

ω,p
1 , then the second strategy (when we act on prey)

leads to a faster convergence to zero of p, so it is better.

Remark 3.3. If λω,h
1 > α̃∗, then there exists γ ≥ 0 such that λh1,γ > α̃∗. The solution (h, p) to

(3.1) satisfies

h(t)−→ 0 in L∞(Ω), (3.8)

as t→+∞. Therefore,

p(t)−→ 0 in L∞(Ω), (3.9)

as t→+∞.

Remark 3.4. In general, the habitat of preys is larger than Ω. The strategy to eradicate the
predators via indirect control is the following one: we isolate the domain Ω (we do not
permit migration through the boundary of it), then we eradicate firstly the preys in Ω
and consequently the predators will extinct. Next, the preys are allowed to repopulate the
domain Ω.

4. Final comments

The results in Sections 2 (and 3) show how important is to find the position and the
geometry of ω and Ω in order to get a great value for λ

ω,p
1 (and λω,h

1 ).
This yields

λ
ω,p
1 = d2λ1(ω,Ω), λω,h

1 = d1λ1(ω,Ω), (4.1)

where λ1(ω,Ω) is the principal eigenvalue to

−Δϕ(x)= λϕ(x), x ∈Ω \ω,

ϕ(x)= 0, x ∈ ∂ω,

∂ϕ

∂ν
= 0, x ∈ ∂Ω.

(4.2)

The following result has been proved in [8] using rearrangement techniques and can be
used to obtain upper and lower bounds for λ1(ω,Ω).
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Theorem 4.1. Assume that ϕ∗ is an eigenfunction of (4.2), corresponding to λ := λ1(ω,Ω),
that satisfies in addition

0 < ϕ∗(x) <M, ∀x ∈Ω \ω,

ϕ∗(x)=M, ∀x ∈ ∂Ω,
(4.3)

where M > 0 is a constant. Then

λ1(ω,Ω) > λ1(ω, ˜Ω), (4.4)

for any domain ˜Ω ⊂ RN with smooth boundary and such that ω ⊂ ⊂ ˜Ω, meas( ˜Ω)
=meas(Ω), and ˜Ω �≡Ω.

Remark 4.2. If ω and Ω are balls with the same center, there exists such ϕ∗.

Remark 4.3. If there exists ϕ∗ an eigenfunction of (4.2) corresponding to λ := λ1(ω,Ω)
and satisfying (4.3), then

λ1(ω,Ω)=max
{

λ1(ω, ˜Ω); ˜Ω⊂RN is a domain with smooth

boundary and satisfying ω ⊂ ⊂ ˜Ω, meas ( ˜Ω)=meas(Ω)
}

=max
{

λ1(ω̃,Ω); ω̃ ⊂ ⊂Ω is an isometric transform of ω
}

.

(4.5)

Remark 4.4. If ω is a ball, ω ⊂ ⊂Ω, then we may conclude by Theorem 4.1 that

λ1(ω,Ω)≤ λ1(ω,B), (4.6)

where B is a ball with the same measure as Ω and with the same center as ω. Moreover,
we have equality only for Ω ≡ B and we conclude that the maximal value for λ1(ω,Ω),
subject to all domainsΩ⊂RN with smooth boundary and satisfyingω ⊂ ⊂Ω and having
a prescribed measure, is attained for the ball B of the same measure and with the same
center as ω.

Acknowledgment

This work was supported by the Grant ID 381/2007: “Optimal control and stabilization
of the continuous models of population dynamics.”

References

[1] W. Chen and M. Wang, “Qualitative analysis of predator-prey models with Beddington-De An-
gelis functional response and diffusion,” Mathematical and Computer Modelling, vol. 42, no. 1-2,
pp. 31–44, 2005.

[2] J.-D. Murray, Mathematical Biology I: An Introduction, vol. 17 of Interdisciplinary Applied Math-
ematics, Springer, New York, NY, USA, 3rd edition, 2002.

[3] H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Compu-
tational Biology, Princeton University Press, Princeton, NJ, USA, 2003.

[4] J. M. Cushing, “Periodic time-dependent predator-prey systems,” SIAM Journal on Applied
Mathematics, vol. 32, no. 1, pp. 82–95, 1977.
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Email address: sanita@uaic.ro

Carmen Oana Tarniceriu: Faculty of Mathematics, University “AL.I. Cuza”, 700506 IaŞI, Romania
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