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Bad boundary behavior in star-invariant
subspaces I

Andreas Hartmann and William T. Ross

Abstract. We discuss the boundary behavior of functions in star-invariant subspaces

(BH2)⊥, where B is a Blaschke product. Extending some results of Ahern and Clark, we are

particularly interested in the growth rates of functions at points of the spectrum of B where B

does not admit a derivative in the sense of Carathéodory.

1. Introduction

For a Blaschke product B with zeros {λn}n≥1 ⊂D={z :|z|<1}, repeated ac-
cording to multiplicity, let us recall the following theorem of Ahern and Clark [1]
about the “good” non-tangential boundary behavior of functions in the model spaces
(BH2)⊥ :=H2 �BH2 [7] of the Hardy space H2 of D ([4] and [6]).

Theorem 1.1. ([1]) For a Blaschke product B with zeros {λn}n≥1 and
ζ ∈T:=∂D, the following are equivalent :

(1) Every f ∈(BH2)⊥ has a non-tangential limit at ζ , i.e.,

f(ζ) :=� lim
λ→ζ

f(λ) exists.

(2) B has an angular derivative in the sense of Carathéodory at ζ , i.e.,

� lim
z→ζ

B(z) = η ∈ T and � lim
z→ζ

B′(z) exists.

(3) The following condition holds

(1.1)
∑

n≥1

1− |λn|
|ζ −λn|2 < ∞.
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(4) The family of reproducing kernels for (BH2)⊥

kB
λ (z) :=

1−B(λ)B(z)
1−λ̄z

is uniformly norm-bounded in each fixed Stolz domain

Γα,ζ :=
{

z ∈ D :
|z −ζ|
1− |z| <α

}
, α ∈ (1, ∞).

We point out three things here. First, the equivalence of conditions (2) and (3)
of this theorem is a classical result of Frostman [5]. Moreover, condition (1) implies
condition (4) by the uniform boundedness principle, while the reverse implication
follows from the Banach–Alaoglu theorem. Second, this theorem can be extended
to characterize the existence of non-tangential boundary limits of the derivatives
(up to a given order) of functions in (BH2)⊥ as well as the boundary behavior of
functions in (IH2)⊥, where I is a general inner function [1]. Third, there is a version
of this result for various types of tangential boundary behavior of (BH2)⊥ functions
([2] and [9]). Of course there is the well-known result (see e.g. [7, p. 78]) which says
that every f ∈(BH2)⊥ has an analytic continuation across the complement of the
accumulation points of the zeros of B.

In this paper we consider the growth of functions in (BH2)⊥ at the points ζ ∈T

where (1.1) fails. Thus, as in the title of this paper, we are looking at the “bad”
boundary behavior of functions from (BH2)⊥. First observe that every function
f ∈H2 satisfies

(1.2) |f(λ)| = o

(
1√

1− |λ|

)
, λ ∈ Γα,ζ ,

and this growth is, in a sense, maximal. As seen in the Ahern–Clark theorem, func-
tions in (BH2)⊥ can be significantly better behaved depending on the distribution
of the zeros of B. We are interested in examining Blaschke products for which the
growth rates for functions in (BH2)⊥ are somewhere between the Ahern–Clark sit-
uation, where every function has a non-tangential limit, and the maximal allowable
growth in (1.2).

To explain this a bit more, let ζ=1 and observe that

(1.3) |f(λ)| = | 〈f, kB
λ 〉| ≤ ‖f ‖

(
1− |B(λ)|2

1− |λ|2

)1/2

, f ∈ (BH2)⊥ and λ ∈ D.

In the above, ‖ · ‖ denotes the usual norm in H2. So, in order to give an upper
estimate of the admissible growth in a Stolz domain Γα,1, we have to control ‖kB

λ ‖
which ultimately involves getting a handle on how fast |B(λ)| goes to 1 in Γα,1.
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Of course the subtlety occurs when

� lim
z→1

B(z) = η ∈ T

which is implied by the Frostman condition ([3] and [5])

(1.4)
∑

n≥1

1− |λn|
|1−λn| < ∞.

Observe the power 1 in the denominator in (1.4) compared with the square in the
Ahern–Clark condition (1.1).

The main results of this paper will be non-tangential growth estimates of func-
tions in (BH2)⊥ via non-tangential growth estimates of the norms of the kernel
functions. Our main results (Theorems 3.1, 3.6, and 4.1) will be estimates of the
form

‖kB
r ‖ 
 h(r), r→ 1−,

for some h : [0, 1)→R+ which depends on the position of the zeros of the Blaschke
product B near 1. This will, of course via (1.3), yield the estimate

|f(r)| �h(r), f ∈ (BH2)⊥ and r→ 1−.

To get a handle on the sharpness of this growth estimate, we will show (Theorem 3.4)
that for every ε>0, there exists an f ∈(BH2)⊥ satisfying

(1.5) |f(r)| � h(r)
log1+ε h(r)

, r→ 1−.

(All logarithms appearing in this paper should be understood in base 2.)
While this estimate might not be optimal, it allows us to show that a cer-

tain sequence of reproducing kernels cannot form an unconditional sequence (see
Section 5).

Though a general result will be discussed in Section 4, the two basic types of
Blaschke sequences {λn}n≥1 for which we can get concise estimates of ‖kB

r ‖, are

(1.6) λn =(1−xn2−2n)ei2−n

, xn ↓ 0,

which approaches 1 very tangentially, and

(1.7) λn =(1−θ2
n)eiθn , 0 <θn < 1 and

∑

n≥1

θn < ∞,

which approaches 1 along an oricycle. For example, when xn=1/n in (1.6), we have
the upper estimate (see Example 3.3(1))

|f(r)| �
√

log log
1

1−r
, r→ 1−,

for all f ∈(BH2)⊥. This estimate is optimal in the sense of (1.5).
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Picking θn=1/nα, α>1, in (1.7), we have the estimate (see Example 3.7(1))

|f(r)| � 1
(1−r)1/2α

, r→ 1−.

Compare these two results to the growth rate in (1.2) of a generic H2 function.
This is the first of two papers on “bad” boundary behavior of (IH2)⊥ functions

near a fixed point on the circle, where I is inner. In this paper we consider the case
when I is a Blaschke product giving exact estimates on the norm of the reproducing
kernel. The next paper will consider the case when I is a general inner function
providing only upper estimates.

2. What can be expected

We have already mentioned that every f ∈H2 satisfies

(2.1) |f(λ)| = o

(
1√

1− |λ|

)
, λ ∈ Γα,ζ .

The little-oh condition in (2.1) is, in a sense, sharp since one can construct
suitable outer functions whose non-tangential growth gets arbitrarily close to that
in (2.1).

Contrast this with the following result which shows that functions in certain
(BH2)⊥ spaces cannot reach the maximal growth in (2.1). Recall that a sequence
Λ={λn}n≥1 ⊂D is interpolating if

H2|Λ=
{

{an}n≥1 :
∑

n≥1

(1− |λn|2)|an|2 < ∞
}

,

where X|Λ={ {f(λn)}n≥1 :f ∈X} for a space X of holomorphic functions on D.

Proposition 2.1. ([10]) Let B be a Blaschke product whose zeros λn form
an interpolating sequence and tend non-tangentially to 1. Then for {εn}n≥1 there
exists f ∈(BH2)⊥ with

|f(λn)| = εn
1√

1− |λn|
for all n ∈ N

if and only if {εn}n≥1 ∈	2.

Strictly speaking this result is stated in H2 (and for arbitrary interpolating
sequences), but since functions in BH2 vanish on Λ, we obviously have (BH2)⊥ |Λ=
H2|Λ.

A central result in our discussion is the following lemma.
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Lemma 2.2. If B is a Blaschke product with zeros λn=rneiθn and

� lim
z→1

B(z) = η ∈ T,

then

‖kB
r ‖2 


∑

n≥1

1−r2
n

|1−λ̄nr|2
, r ∈ (0, 1).

(The estimate extends naturally to a Stolz angle.)

Proof. Since � limz→1 B(z)=η ∈T, the zeros of B (after some point) cannot lie
in Γα,1. Thus if

bλ(z) =
z −λ

1−λ̄z
,

then

inf
n≥1

|bλn(r)| ≥ δ > 0

and so

log
1

|bλ(r)|2 
 1− |bλn(r)|2.

Use the well-known identity

1− |bλn(r)|2 =
(1−r2)(1− |λn|2)

|1−rλ̄n|2
,

to get

log
1

|B(r)|2 =
∑

n≥1

log
1

|bλn(z)|2 

∑

n≥1

(1− |λn|2)(1− |r|2)
|1−λ̄nr|2


 (1−r2)
∑

n≥1

1−r2
n

|1−λ̄nr|2
.

Since |B(r)|→1 when r→1− the latter quantity goes to 0 and so

‖kB
r ‖2 =

1− |B(r)|2
1−r2


 − log |B(r)|2
1−r2



∑

n≥1

1−r2
n

|1−λ̄nr|2
. �
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3. Key examples

We will prove a general growth result in Theorem 4.1. But just to give a more
tangible approach to the subject, let us begin by obtaining growth estimates of
functions in (BH2)⊥ for Blaschke products B whose zeros are

λn =(1−xn2−2n)ei2−n

, xn ↓ 0,

which approaches 1 very tangentially, or

λn =(1−θ2
n)eiθn , 0 <θn < 1 and

∑

n≥1

θn < ∞,

which (essentially) approaches 1 along an oricycle.

3.1. First class of examples

Λ={λk }k≥1 with λk=rkeiθk and

1−rk =xkθ2
k, θk =

1
2k

and k ∈ N.(3.1)

We will suppose that {xn}n≥1 is a sequence of positive numbers satisfying

xn+1

xn
≤ q < 2.

This in particular implies that 0≤xn�qn �2n (however, in our examples below we
will be essentially interested in examples for which xn→0 and n→∞). Note that

1−rk =xkθ2
k �

(q

4

)k

= θα
k ,

where α=log(4/q)>log 2=1, so that Λ goes tangentially to 1. Again, we will be
in particular interested in sequences with xk↓0. In this situation, the faster xk

decreases to zero, the more tangential the sequence Λ. The condition on {xn}n≥1

also implies that
∑

n≥1

(1− |λn|) =
∑

n≥1

(1−rn) =
∑

n≥1

xn

22n
�

∑

n≥1

(q

4

)n

< ∞,

and so Λ is indeed a Blaschke sequence.
We will need the well-known Pythagorean-type result: If λ=reiθ, r ∈(0, 1) and

ρ∈(0, 1], then

|1−ρλ|2 
 (1−ρr)2+θ2 
 ((1−ρr)+θ)2, ρ ≈ 1, r ≈ 1 and θ ≈ 0.(3.2)
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Observe that using (3.2) and 0≤xkθ2
k �θk, we get

|1−λk | 

√

(1−rk)2+θ2
k 
 (1−rk)+θk 
 xkθ2

k+θk 
 θk.

Hence ∑

n≥1

1− |λn|
|1−λn| 


∑

n≥1

1−rn

θk
=

∑

n≥1

θnxn < ∞

and so condition (1.4) is satisfied thus ensuring � limz→1 B(z)=η ∈T. Similarly,

∑

n≥1

1− |λn|
|1−λn|2 


∑

n≥1

xn.

In light of the Ahern–Clark result (1.1), we will be interested in the “bad behavior”
scenario when

∑
n≥1 xn=∞.

Theorem 3.1. For a sequence of positive numbers {xn}n≥1 with

xn+1

xn
≤ q < 2,

consider the Blaschke product whose zeros are

λn =(1−xn2−2n)ei2−n

.

Set

σN :=
N∑

n=1

xn,

and let ϕ0 be continuous on R+, piecewise linear, and such that ϕ0(N)=σN . Define
ϕ by

ϕ(y) :=ϕ0

(
log

1
1−y

)
.

Then
‖kB

z ‖ 

√

ϕ(|z|), z ∈ Γα,1,

and so every f ∈(BH2)⊥ satisfies

|f(z)| �
√

ϕ(|z|), z ∈ Γα,1.

The function ϕ0 is an increasing function which is concave (convex) when
{xn}n≥1 is decreasing (increasing).

A direct consequence of this theorem is the following result.
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Corollary 3.2. For every concave function ψ0 : R+→R+ increasing to infinity,
there exists a Blaschke product B, whose zeros accumulate at 1, such that

‖kB
z ‖ 


√
ψ(|z|), z ∈ Γα,1,

where

ψ(y) =ψ0

(
log

(
1

1−y

))
, y ∈ (0, 1).

Proof. It suffices to pick

λn =(1−xn2−2n)ei2−n

with xn=σn+1 −σn and σn=ψ0(n). Since ψ0 is increasing and concave, the sequence
{xn}n≥1 is positive and decreasing which in particular gives xn+1/xn ≤q<2. Let ϕ0

be the function constructed from {xn}n≥1 as in the theorem which is also concave.
It is easy to see that ϕ0 
ψ0, and the theorem allows us to conclude. �

Before discussing the proof, here are two concrete examples showing how the
growth slows down when approaching the Ahern–Clark situation, i.e., the summa-
bility of the sequence {xn}n≥1.

Example 3.3. (1) If B is a Blaschke product whose zeros are

λn =(1−xn2−2n)ei2−n

, xn =
1
n

,

then

σN =
N∑

n=1

1
n


 log N

and so every f ∈(BH2)⊥ satisfies the growth condition

|f(r)| �
√

log log
1

1−r
, r→ 1−.

(2) If the zeros of B are

λn =(1−xn2−2n)ei2−n

, xn =
1

n log n
,

then σN 
log log N and so every f ∈(BH2)⊥ satisfies

|f(r)| �
√

log log log
1

1−r
, r→ 1−.
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Proof of Theorem 3.1. We have already mentioned that

0 ≤ xn � qn � 2n.

Set ρN =1−2−N and θk=2−k. Using (3.2) we have

|1−ρNλk |2 
 (θk+(1−ρNrk))2 =(θk+(1−ρN (1−xkθ2
k)))2

= (θk+(1−ρN )+ρNxkθ2
k)2,

and since by the above observation xkθ2
k �θk when k→∞, we get

|1−ρNλk |2 
 (θk+(1−ρN ))2.(3.3)

Hence

1−r2
k

|1−ρNλk |2 
 xkθ2
k

(θk+(1−ρN ))2
=

xkθ2
k

(θk+θN )2



⎧
⎪⎪⎨

⎪⎪⎩

xkθ2
k

θ2
k

, if k ≤N,

xkθ2
k

θ2
N

, if k>N,

(3.4)




⎧
⎪⎨

⎪⎩

xk, if k ≤N,

kθ2
k

θ2
N

, if k>N.

Thus we can split the sum in Lemma 2.2 into two parts

‖kB
ρN

‖2 

∑

k≥0

1−r2
k

|1−ρNλk |2 

∑

k≤N

xk+22N
∑

k≥N+1

xkθ2
k.

The first term is exactly σN . For the second term, observe that for k ≥N+1,

xkθ2
k =

k−1∏

l=N+1

xl+1θ
2
l+1

xlθ2
l

xN+1θ
2
N+1 ≤ xN+1θ

2
N+1

(q

4

)k−1−N

≤ xN+1

22N
2−(k−1−N)

which yields
22N

∑

k≥N+1

xkθ2
k �xN+1 ≤ qxN ≤ qσN .

These estimates immediately give us the required estimate for ρN =1−1/2N ,

‖kB
ρN

‖2 
 σN =ϕ0(N) =ϕ(ρN ).

In order to get the same estimate for z ∈Γα,1 we need the following well-known
result

(3.5) |bλ(μ)| ≤ ε< 1 =⇒ 1−ε

1+ε
≤ |1−λ̄z|

|1−μ̄z| ≤ 1+ε

1−ε
, z ∈ D.



122 Andreas Hartmann and William T. Ross

Now let z ∈Γα,1 and suppose that |z|> 1
2 . Then there exists an N such that

|bz(ρN )| = |bz(1−2−N )| ≤ δ < 1

(where δ only depends on the opening of the Stolz angle). Hence

(3.6) ‖kB
z ‖2 


∑

n≥1

1−r2
n

|1−λ̄nz|2



∑

n≥1

1−r2
n

|1−λ̄nρN |2

 ‖kρN

‖2,

and so
‖kB

z ‖2 
 ‖kB
ρN

‖2 
 σN .

Clearly
1 ≤ σn+1

σn
≤ 1+

xn+1

σn
≤ 1+

xn+1

xn
≤ 1+q,

so that σN 
σN+1 
σN −1. Hence, by the construction of ϕ0, we also have

ϕ0(x) 
 ϕ0(N) =σN , N −1 ≤ x ≤ N+1.

Taking into account that ρN −1 ≤ |z| ≤ρN+1, we get

‖kB
z ‖2 
 ‖kB

ρN
‖2 
 σN 
 ϕ(|z|).

This completes our proof. �

We would now like to consider the sharpness of the growth in Theorem 3.1.

Theorem 3.4. Suppose B is a Blaschke product whose zeros satisfy the con-
ditions of Theorem 3.1. Then for every ε>0 there exists an f ∈(BH2)⊥ such that

(3.7) |f(z)| �
√

ϕ(|z|)
log1+ε ϕ(|z|)

, z ∈ Γα,1.

An immediate consequence of this result is the following corollary.

Corollary 3.5. For every concave function ψ0 : R+→R+ increasing to infinity,
there exists a Blaschke product B whose zeros accumulate at 1 and such that for
every ε>0 there exists an f ∈(BH2)⊥ with

|f(z)| �
√

ψ(|z|)
log1+ε ψ(|z|)

, z ∈ Γα,1,

where ψ(y)=ψ0(log(1/(1−y))), y ∈(0, 1), while ‖kB
z ‖ 


√
ψ(|z|).
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Proof of Theorem 3.4. Functions in (BH2)⊥ behave rather nicely if the se-
quence Λ is interpolating. To see that Λ is interpolating, recall that

sup
k≥1

xk+1

xk
≤ q < 2.

Hence

|brk
(rk+1)| 
 xk2−2k −xk+12−2(k+1)

xk2−2k+xk+12−2(k+1)
=

1− 1
4xk+1/xk

1+ 1
4xk+1/xk

≥
1− 1

2

1+ 1
2

=
1
3
.

Thus the sequence of moduli is pseudo-hyperbolically separated which implies that
the sequence of moduli is interpolating—as will be the one spread out by the argu-
ments, i.e., Λ.

Now, since Λ is an interpolating sequence, we also know that the normalized
reproducing kernels

Kn :=
kλn

‖kλn ‖ =

√
1− |λn|2
1−λ̄nz

, n ∈ N,

form an unconditional basis for (BH2)⊥. This is essentially a result by Shapiro and
Shields [10], see also [8, Section 3] and in particular [8, Exercise C3.3.3(c)]. Hence
for every f ∈(BH2)⊥, there is a sequence α:={αn}n≥1 ∈	2 such that

(3.8) fα(z) :=
∑

n≥1

αn
kλn(z)

‖kλn ‖ =
∑

n≥1

αn

√
1−r2

n

1−rne−iθnz
.

We will examine this series for z=r ∈[0, 1) (it could be necessary at some point
to require r ≥r0>0). In what follows we will assume that αn>0. Note that the
argument of 1−rrne−iθn is positive (this is γn in Figure 1).

Hence, for fixed ρN =1−2−N , we have

|fα(ρN )| ≥ |Im fα(ρN )| = −
∑

n≥1

αn Im
( √

1−r2
n

1−ρNrne−iθn

)
(3.9)

≥ −
N∑

n=1

αn Im
( √

1−r2
n

1−ρNrne−iθn

)
.

In order to consider the last sum appearing in (3.9), we will first show that for
1≤n≤N the argument of 1−e−iθnρNrn is uniformly close to π/2 (or at least from
a certain n0 on), meaning that 1−e−iθnρNrn points in a direction uniformly close
to the positive imaginary axis (this is actually clear from the tangential convergence
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Figure 1. Angles.

of the sequence). To give a little argument, set γn=arg(1−ρNrne−iθn). Then for
sufficiently big n≤N ,

tan γn =
rnρN sin θn

1−rnρN cos θn

 θn

1−(1−xnθ2
n)(1−θN )

(
1− 1

2θ2
n+o(θ2

n)
) ≥ θn

1−(1−θN )
≥ 1.

Hence the argument of 1−ρNrne−iθn is uniformly bounded away from zero and less
than π/2 so that

1 ≥ sin arg(1−ρNrne−iθn) ≥ η > 0.

In particular, for 1≤n≤N ,
∣∣∣∣Im

1
1−ρNrne−iθn

∣∣∣∣ 
 1
|1−ρNrne−iθn | 
 1

θn+(1−ρN )

 1

θn
.

This implies that

|fα(ρN )| ≥
N∑

n=1

αn

√
1−r2

n

∣∣∣∣Im
1

1−ρNrne−iθn

∣∣∣∣ 

N∑

n=1

αn

√
xnθn

θn
=

N∑

n=1

αn
√

xn.

Let us discuss the following choice

αn :=
√

xn

σn log1+ε σn

.

We need to show two things (i) we get the desired lower estimate in the statement of
the theorem; and (ii) {αn}n≥1 ∈	2. Let us begin with the lower estimate. Observe
that σN is increasing and so
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N∑

n=1

αn
√

xn =
N∑

n=1

√
xn√

σn log1+ε σn

√
xn =

N∑

n=1

xn√
σn log1+ε σn

≥ 1√
σN log1+ε σN

N∑

n=1

xn =
σN√

σN log1+ε σN

=
√

σN

log1+ε σN

.

This proves that

|f(ρN )| �
√

σN

log1+ε σN

.

To get the desired inequality in (3.7) (i.e., replace ρN with z ∈Γα,1), apply the
argument used to prove (3.6).

To show that {αn}n≥1 ∈	2, observe that

N∑

n=1

α2
n =

N∑

n=1

xn

σn log1+ε σn

=
N∑

n=1

σn −σn−1

σn log1+ε σn

,

where we set σ0=1 (since σN ↑∞, we can assume that σ1>1). This is a lower
Riemann sum for the integral

∫ σN

σ0

1
t log1+ε t

dt

which has a limit as N→∞. This completes our proof. �

Without going into cumbersome technical details, here is another remark on
the optimality of Theorem 3.4. We are interested in the following question: For
which sequences εn↓0 does there exist a sequence {αn}n≥1 ∈	2 such that

N∑

n=1

αn
√

xn = εNσN?(3.10)

For example, when xn ≡1 (Theorem 3.4 is valid in this setting) we have σN =N

and the question becomes: For which sequences εn↓0 does there exist a sequence
{αn}n≥1 ∈	2 such that

N∑

n=1

αn = εN

√
N ?(3.11)

It is possible to show that, in this case, we can take αn to be

αn = εn

√
n−εn−1

√
n−1,
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which, since {αn}n≥1 ∈	2, yields

∑

n≥1

ε2
n

n
=

∑

n≥1

εn

σn
< ∞.

So, for instance, if we were to choose εn=1/logα n, then we would need α> 1
2 which

is, in a sense, optimal in view of the preceding corollary.
A crucial point in this discussion is the fact that {εn}n≥1 is a decreasing se-

quence.

3.2. Second class of examples

In the preceding class of examples from (3.1), we slowed down the growth of
functions in (BH2)⊥ by controlling the “tangentiality” of the sequence (given by
the speed of convergence to zero of xn). Our second class of examples are of the
type

(3.12) λn = rneiθn , 0 <θn < 1, 1−rn = θ2
n and

∑

n≥1

θn < ∞,

where θn can be adjusted to control the growth speed of (BH2)⊥-functions. Asymp-
totically, this sequence is in the oricycle

{
z ∈D:|z − 1

2 |= 1
2

}
. We also note that

∑

n≥1

(1− |λn|) =
∑

n≥1

θ2
n < ∞

so indeed {λn}n≥1 is a Blaschke sequence. Moreover,

(3.13)
∑

n≥1

1− |λn|
|1−λn| 


∑

n≥1

θ2
n

θn
=

∑

n≥1

θn < ∞

and so, by (1.4), limr→1− B(r)=η ∈T. Still further, we have

∑

n≥1

1− |λn|
|1−λn|2 


∑

n≥1

θ2
n

θ2
n

= ∞

so {λn}n≥1 does not satisfy the hypothesis (1.1) of the Ahern–Clark theorem. Thus
we can expect bad behavior of functions from (BH2)⊥.

As in (3.2), we have

1− |λk |2
|1−rλk |2 
 1−rk

(1−r)2+θ2
k

=
θ2

k

(1−r)2+θ2
k




⎧
⎨

⎩

1, if 1−r ≤θk,
θ2

k

(1−r)2
, if 1−r>θk.
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Using again Lemma 2.2, the splitting gives

‖kB
r ‖2 


∑

k≥1

1− |λk |2
|1−rλk |2 


∑

k:(1−r)≤θk

1+
1

(1−r)2
∑

k:(1−r)>θk

θ2
k.(3.14)

Theorem 3.6. Let {σN }N ≥1 be a sequence of positive numbers strictly in-
creasing to infinity such that

σN+1 ≤ 2βσN , N ∈ N,(3.15)

for some β ∈(0, 1). Then there exists a sequence {θk }k≥1 ∈	1 such that

‖kB
ρN

‖ 
 √
σN ,

where B is the Blaschke product whose zeros are Λ={λk }k≥1 and

λk = rkeiθk and 1−rk = θ2
k.

Proof. Let {σN }N ≥1 be as in the theorem and let

ψ : [0, ∞) −→ [0, ∞)

be a continuous increasing function such that

ψ(N) =σN , N ∈ N.(3.16)

We could, for example, choose ψ to be the continuous piecewise affine function

defined at the nodes by (3.16). Since ψ is continuous and strictly increasing to
infinity on [0, ∞), it has an inverse function ψ−1. Set

θk =2−ψ−1(k), k ∈ N.

Let us consider the first sum in (3.14) (with r=ρN ),

∑

k:(1−ρN )≤θk

1 =
∑

k:1/2N ≤1/2ψ−1(k)

1 =
∑

k:ψ−1(k)≤N

1 =
∑

k≤ψ(N)

1 =ψ(N) =σN .

We have to consider the second sum in (3.14),

1
(1−ρN )2

∑

k:(1−ρN )>θk

θ2
k =22N

∑

k:ψ−1(k)≥N+1

2−2ψ−1(k) =22N
∑

k≥ψ(N+1)

2−2ψ−1(k).
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Since σn=ψ(n), equivalently ψ−1(σn)=n, we have

∑

k≥ψ(N+1)

2−2ψ−1(k) =
∑

n≥N+1

σn+1−1∑

k=σn

2−2ψ−1(k)

≤
∑

n≥N+1

(σn+1 −σn)2−2ψ−1(σn)

≤
∑

n≥N+1

1
22n

σn+1(3.17)

≤ 2β
∑

n≥N+1

1
22n

σn.

Now, setting un=σn/22n, we get vn=un+1/un ≤2β−2<1, from which standard ar-
guments give

∑

n≥N+1

σn

22n
� σN

22N
.(3.18)

Hence
22N

∑

k≥ψ(N+1)

2−2ψ−1(k) �σN .

So, according to (3.14),

σN ≤
∑

k:(1−r)≤θk

1+
1

(1−r)2
∑

k:(1−r)>θk

θ2
k

︸ ︷︷ ︸
� ‖kB

ρN
‖2

�σN +σN .

It remains to show that {θn}n≥1 ∈	1 (in order to satisfy the Frostman condition
(3.13)). As in (3.17) we see that

∑

k≥σ1

θk =
∑

k≥σ1

2−ψ−1(k) =
∑

n≥1

σn+1−1∑

k≥σn

2−ψ−1(k) ≤ 2β
∑

n≥1

σn

2n

which converges due do to (3.15) and the fact that β ∈(0, 1). This completes the
proof. �

Example 3.7. Here is a list of examples on how one applies our estimates.
(1) Let σN =2N/α, N=1, 2, ..., where α>1 (this is needed for (3.15)). Then we

can choose ψ(t)=2t/α. Hence
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θk =2−ψ−1(k) =2−α log k =
1
kα

.

With this choice of arguments, we get

‖kB
ρN

‖ 
 2N/2α =
1

(1−ρN )1/2α
,

which, by similar arguments as given earlier (see the proof of Theorem 3.1), can be
extended to every r ∈(0, 1), i.e.,

|f(r)| � 1
(1−r)1/2α

, f ∈ (BH2)⊥.

We thus obtain all power growths beyond the limiting case 1
2 .

(2) Let σN =Nα, N=1, 2, ..., where α>0. Then we can choose ψ(t)=tα. Hence

θk =2−ψ−1(k) =2−k1/α

,

and, with this choice of arguments, we get

‖kB
ρN

‖ 
 Nα/2 =
(

log
1

1−ρN

)α/2

.

Thus, as in the previous example, we get

|f(r)| �
(

log
1

1−r

)α/2

, f ∈ (BH2)⊥.

In the special case α=2 we obtain logarithmic growth.
(3) Let σN =log2 N , N=2, 3, ... . Then we can choose ψ(t)=log2 t. Hence

θk =2−ψ−1(k) =2−2
√

k

.

With this choice of arguments, we get, for large enough N ,

‖kB
ρN

‖ 
 log N = log log
1

1−ρN
,

and so

|f(r)| � log log
1

1−r
, f ∈ (BH2)⊥.
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Figure 2. An example of a domain ΓN,1
n .

4. A general growth result for (BH2)⊥

It turns out that growth results can be phrased in terms of a more general
result. In fact our first class of examples can be deduced from such a general result
(see Remark 4.2).

We will start by introducing a growth parameter associated with a Blaschke
sequence Λ={λn}n≥1 ⊂D and a boundary point ζ ∈T. Let us again set

ρN := 1− 1
2N

, N ∈ N.

For every N ∈N and n∈Z, set

(4.1) ΓN,ζ
n :=

{
z ∈ D :

1− |z|2
|ζ −ρNz|2 ∈

[
1

2n+1
,

1
2n

)}
.

This is a kind of pseudo-hyperbolic annulus (see Figure 2). A routine computation
shows that

1− |z|2
|ζ −ρz|2 = c ⇐⇒

∣∣∣∣z − cρ

1+cρ2
ζ

∣∣∣∣
2

=
1−c(1−ρ2)
(1+cρ2)2

.

From here observe that necessarily c≤1/(1−ρ2) which means that ΓN,ζ
n is empty

when
1

2n+1
≥ 1

1−ρ2
N

≥ 1
2(1−ρN )

= 2N −1.

We therefore assume that n≥ −N .
For simplicity, we will assume from now on that ζ=1 and set

ΓN
n :=ΓN,1

n .
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Figure 3. The domains ΓN
n , −N ≤n, cover D.

Define
αN,n :=#(Λ∩ΓN

n )

(the number of points in Λ∩ΓN
n ) along with the growth parameter

σΛ
N :=

∑

n∈Z

αN,n

2n
=

∑

n≥ −N

αN,n

2n
.

For each λ∈Λ∩ΓN
n we have, by definition (see (4.1)),

1
2n


 1− |λ|2
|1−ρNλ|2

and so, since there are αN,n points in Λ∩ΓN
n , we have

∑

n≥ −N

1
2n

#(Λ∩ΓN
n ) 


∑

n≥ −N

∑

λ∈Λ∩ΓN
n

1− |λ|2
|1−ρNλ|2 .

But since {ΓN
n }n≥ −N is a partition of D (see Figure 3) we get

∑

n≥ −N

∑

λ∈Λ∩ΓN
n

1− |λ|2
|1−ρNλ|2 =

∑

n≥1

1− |λn|2
|1−ρNλn|2 .

Putting this all together we arrive at

(4.2) σΛ
N 


∑

n≥1

1− |λn|2
|1−ρNλn|2 .



132 Andreas Hartmann and William T. Ross

Combine (4.2) with Lemma 2.2 to get the two-sided estimate

(4.3) σΛ
N 
 ‖kB

ρN
‖2.

Note that if the zeros {λn}n≥1 of B satisfy the Ahern–Clark condition (1.1)
then, by Theorem 1.1, the sequence { ‖kB

ρN
‖ }N ≥1 is uniformly bounded and, by (4.3),

so is {σΛ
N }N ≥1.

To discuss the case when {σΛ
N }N ≥1 is unbounded, we will impose the mild

regularity condition

0 <m := inf
N

σΛ
N+1

σΛ
N

≤ M := sup
N

σΛ
N+1

σΛ
N

< ∞.(4.4)

In Section 3, this condition was automatically satisfied by σN =
∑N

k=1 xk.
Let us associate with σΛ

N the functions ϕ0 and ϕ as in Theorem 3.1. Then,
from (4.3) we deduce the following result in the same way as Theorem 3.1.

Theorem 4.1. Let Λ={λn}n≥1 ⊂D be a Blaschke sequence with associated
growth sequence σΛ={σΛ

N }N ≥1 at ζ=1 satisfying (4.4) and B be the Blaschke prod-
uct with zeros Λ. Then

‖kB
z ‖ 


√
ϕ(|z|), z ∈ Γα,1.

Consequently, every f ∈(BH2)⊥ satisfies

|f(z)| = | 〈f, kz 〉| �
√

ϕ(|z|), z ∈ Γα,1.

Remark 4.2. It turns out that for the sequences discussed in Theorem 3.1 we
have

σΛ
N 
 σN =

N∑

k=1

xk.

The details are somewhat cumbersome so we will not give them here.

5. A final remark on unconditional bases

Since a central piece of our discussion was the behavior of the reproducing
kernels kB

ρN
, where B is the Blaschke product with the zero sequence discussed

in Section 3 and ρN =1−1/2N , one could ask whether or not {kB
ρN

}N ≥1 forms an
unconditional bases (or sequence) for (BH2)⊥.

To this end, let Kn=kB
ρn

/‖kB
ρn

‖ and G=(〈Kn, Kk 〉)n,k be the associated Gram
matrix. Suppose that {Kn}n≥1 were an unconditional basis (or sequence) for
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(BH2)⊥. In this case, it is well known (see e.g. [8, Exercise C3.3.1(d)]) that G

represents an isomorphism from 	2 onto 	2. It follows from the unconditionality of
{Kn}n≥1 that every f ∈(BH2)⊥ (or every f in the span of {Kn}n≥1) can be written
as

f = fα :=
∑

n≥1

αnKn, α = {αn}n≥1 ∈ 	2,

with ‖fα‖2 

∑

n≥1 |αn|2<∞. As before we want to estimate f=fα at ρN . Indeed,

fα(ρN ) =
∑

n≥1

αn

kB
ρn

(ρN )
‖kB

ρn
‖ = ‖kB

ρN
‖

∑

n≥1

αn

〈kB
ρn

, kB
ρN

〉
‖kB

ρn
‖ ‖kB

ρN
‖ = ‖kB

ρN
‖(Gα)N ,

where β :=Gα∈	2

After these general considerations suppose now that we were in the situation
of Theorem 3.4. In particular for ε>0 there is a function fα with

|fα(ρN )| �
√

σN

log1+ε σN

(we refer to that theorem for notation). Since by Theorem 3.1 we have

‖kB
ρN

‖ 
 √
σN ,

we would thus have

βN :=
|fα(ρN )|

‖kB
ρN

‖ 
 |fα(ρN )|
√

σN
� 1

log(1+ε)/2 σN

.

However, for instance, choosing xn=1/n yields σN �log N , in which case
{

1

log(1+ε)/2 σN

}

N ≥1

is obviously not in 	2. (Actually one can also choose xn=1 to get a sequence
{βN }N ≥1 /∈	2.) As a result, we can conclude that in the above examples {kB

ρN
}N ≥1

cannot be an unconditional basis for (BH2)⊥ (nor an unconditional sequence since
the functions in Theorem 3.4 were constructed using the reproducing kernels, so
they belong to the space spanned by {Kn}n≥1).

It should be noted that the problem of deciding whether or not a sequence of
reproducing kernels forms an unconditional basis (or sequence) for a model space is
a difficult problem related to the Carleson condition and the invertibility of Toeplitz
operators. We do not want to go into details here, but the situation becomes even
more difficult in our context where limN→∞ |B(ρN )|=1. See [8, Chapter D4] for
more about this.
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