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Time-global smoothing estimates for a class of
dispersive equations with constant coefficients

Kei Morii

Abstract. We discuss smoothing effects of homogeneous dispersive equations with con-

stant coefficients. In the case where the characteristic root is positively homogeneous, time-global

smoothing estimates are known. It is also known that a dispersiveness condition is necessary for

smoothing effects. We show time-global smoothing estimates where the characteristic root is not

necessarily homogeneous. Our results give a sufficient condition so that lower order terms can be

absorbed by the principal part, and also indicate that smoothing effects may be caused by lower

order terms in the case where the dispersiveness condition fails to hold.

1. Introduction

We will consider the initial value problem for homogeneous pseudodifferential
equations with constant coefficients

Dtu−a(D)u= 0 in R
1+n,(1.1)

u(0, x)= φ(x) in R
n,(1.2)

where u(t, x) is a complex-valued unknown function of (t, x)=(t, x1, ..., xn)∈R
1+n,

n≥1, and

Dt =−i
∂

∂t
, D = (D1, ..., Dn), Dj =−i

∂

∂xj
,

where i always denotes the imaginary unit. Here, a(D) is a differential operator
defined by

a(D)u(x)= (2π)−n

∫
Rn

∫
Rn

ei(x−y)·ξa(ξ)u(y) dy dξ.
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Throughout this paper, we assume that the symbol a(ξ)∈C1(Rn) is real-valued and
has at most polynomial growth at infinity. The solution to the initial value problem
(1.1)–(1.2) is given by

eita(D)φ(x)= (2π)−n

∫
Rn

∫
Rn

ei(x−y)·ξ+ita(ξ)φ(y) dy dξ.

Smoothing effects of dispersive equations have been studied by many authors.
First, Sjölin [11] showed a local estimate in the case where a(ξ)=|ξ|m, m>1. Let
us focus our attention on time-global L2-estimates for homogeneous equations.
Originally, the smoothing effects of dispersive equations such as (1.1)–(1.2) had
been established for the usual Laplacian i.e., the case a(D)=−∑n

j=1 ∂2/∂x2
j , that

is, a(ξ)=|ξ|2. Then several extensions for the general symbol a were studied.
See [2], [4], [5], [6], [7], [8], [9], [10], [12], [14], [15] and [16] and references therein.

To explain the details, we introduce the notation of function spaces. Let Ω be
a subset of a Euclidean space. For s∈N∪{0}, let Cs(Ω) denote the set of all s times
continuously differentiable real-valued functions on Ω. Let L2(Ω) denote the set of
all square integrable functions f on Ω. Set

‖f‖L2(Ω) =
(∫

Ω

|f(x)|2 dx

)1/2

.

A local smoothing effect for positively homogeneous symbols is established as
follows. Set 〈x〉=(1+|x|2)1/2.

Theorem 1.1. (Chihara [4, Theorem 1.1]) Let n≥1. Suppose that a∈C1(Rn)
is positively homogeneous of degree m>1, and satisfies the dispersiveness condition

∇a(ξ) �= 0 for ξ ∈R
n\{0}.

Let δ> 1
2 . Then there exists C>0 such that

‖〈x〉−δ|D|(m−1)/2eita(D)φ‖L2(R1+n) ≤C‖φ‖L2(Rn)

for all φ∈L2(Rn).

Other types of local smoothing estimates are known. See [8] and the references
therein. Roughly speaking, local smoothing effects are caused by the dispersiveness
condition, which is equivalent to the nontrapping condition of classical orbits, that
is, X(t; x, ξ)=x+t∇a(ξ) tends to infinity, as t!±∞, for all (x, ξ)∈R

n×R
n\{0}.

Hoshiro recently proved that the dispersiveness condition is necessary for a local
smoothing effect.

Theorem 1.2. (Hoshiro [6, Theorem 1.1]) Let a(ξ)=
∑

|α|≤m cαξα be a real
polynomial of degree m>1. Let am(ξ) be the principal part of the symbol : am(ξ)=∑

|α|=m cαξα. Let χ∈C∞(Rn) be a compactly supported function satisfying χ(x)=1
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for x∈U , where U is a nonempty bounded open set. Suppose that there exist positive
constants C and T such that∫ T

0

‖〈D〉(m−1)/2χeita(D)φ‖2
L2(Rn) dt≤C‖φ‖L2(Rn)

for all φ∈L2(Rn). Then the dispersiveness condition

∇am(ξ) �= 0 for ξ ∈R
n\{0}

holds.

Set BR={x∈R
n ;|x|<R} and BR={x∈R

n ;|x|≤R} for R>0. A real polyno-
mial a of order m is said to be of real principal type if there exists R>0 such that

|∇a(ξ)| ≥C(1+|ξ|)m−1 for ξ ∈R
n\BR.

Note that in particular, for a real simply characteristic polynomial a, we have

∇a(ξ) �= 0 for ξ ∈R
n\BR(1.3)

for some R>0. The following theorem gives a time-global smoothing estimate for
real-principal-type operators.

Theorem 1.3. (Ben-Artzi and Devinatz [1, Theorem 3.1]) Let a be a real
simply characteristic polynomial and assume that a satisfies

lim
|ξ|!∞
ξ∈Mβ

|∇2a(ξ)|
|∇a(ξ)| = 0 for all β > 0,

where

Mβ = {ξ ∈R
n ; |a(ξ)| ≥ βã(ξ)}, ã(ξ)=

∑
α∈(N∪{0})n

|Dαa(ξ)|.

Choose R>0 such that (1.3) holds. Let b be a real function of class C1(Rn) satisfying

|b(ξ)|(|b(ξ)|+|∇b(ξ)|)≤ c|∇a(ξ)| for ξ ∈R
n\BR.

For φ∈L2(Rn), decompose φ=φ1+φ2, where their Fourier transforms φ̂1(ξ)=
χBR(ξ)φ̂(ξ) and φ̂2(ξ)=(1−χBR(ξ))φ̂(ξ). Then there exists C>0 such that

sup
(t,x)∈R1+n

|Dαeita(D)φ1(t, x)| ≤C‖φ‖L2(Rn)

and

‖〈x〉−1/2b(D)eita(D)φ2‖L2(R1+n) ≤C‖φ‖L2(Rn)

for all φ∈L2(Rn).
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As is stated in [1, Corollary 3.2], if a is a real-principal-type polynomial of
order m, then we can choose b(ξ)=〈ξ〉(m−1)/2 to obtain the estimate

‖〈x〉−1/2〈D〉(m−1)/2eita(D)φ2‖L2(R1+n) ≤C‖φ‖L2(Rn).

This gives a better weight δ=− 1
2 than that of Theorem 1.1.

The aim of this paper is to show time-global smoothing estimates where the
characteristic root is not necessarily homogeneous. The symbols which have so
far been studied are mainly positively homogeneous functions and polynomials. We
show a smoothing effect where the symbol a(ξ) need not be a positively homogeneous
function nor a polynomial. Let am(ξ) be the principal part of the symbol a(ξ)
where am is positively homogeneous of order m. While ∇am(ξ) �=0 for ξ∈R

n\{0} is
assumed in Theorem 1.1, we allow a to contain the lower part and we assume that
∇a(ξ) �=0 for ξ∈R

n\{0}.
Our main result is the following. Set Sn−1={x∈R

n ;|x|=1}.
Theorem 1.4. Let n≥1. Suppose the following:
(A1) a∈C1(Rn);
(A2) ∇a(ξ) �=0 for all ξ∈R

n\{0};
(A3) there exist m>1 and am∈C1(Rn) such that
(i) ∇am(ξ) �=0 for all ξ∈R

n\{0};
(ii) am(λξ)=λmam(ξ) for all λ>0 and ξ∈R

n\{0};
(iii)

lim
λ!∞

max
ω∈Sn−1

|λ−m+1∇a(λω)−∇am(ω)|= 0;

(A4) there exists a continuous function a0 : Sn−1!R
n such that

lim
λ&0

max
ω∈Sn−1

∣∣∣∣ ∇a(λω)
|∇a(λω)| −a0(ω)

∣∣∣∣ = 0.

Let δ> 1
2 . Then there exists C>0 such that

‖〈x〉−δ|(∇a)(D)|1/2eita(D)φ‖L2(R1+n) ≤C‖φ‖L2(Rn)

for all φ∈L2(Rn).

Roughly speaking, Theorem 1.4 corresponds to Theorem 1.3 in the case where
R=0 formally and b(ξ)=|(∇a)(D)|1/2. We also remark that in Theorem 1.4 we
do not assume that a is simply characteristic. Theorem 1.4 shows that even if the
lower part exists, we can gain a smoothing effect whenever it satisfies appropriate
conditions. Namely, we give a sufficient condition that the lower order term is
absorbed by the principal part. For instance, consider

a(ξ)=
n∑

j=1

ξ4
j +|ξ|2.
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It satisfies the assumption in Theorem 1.4. Namely, a(D) is a real-principal-type
operator.

On the other hand, even if the dispersiveness condition fails to hold, our method
will work well in the particular case where the symbol is the sum of one-dimensional
functions.

Theorem 1.5. Let n≥2. Let

a(ξ)= g(h(ξ)), h(ξ)=
n∑

j=1

aj(ξj),

where g∈C1(R) has at most polynomial growth at infinity, g′(h(ξ)) �=0 for ξ∈R
n\

{0}, and for all j=1, ..., n,
(i) aj∈C1(R) has at most polynomial growth at infinity;
(ii) |a′

j | is nonincreasing on (−∞, 0) and nondecreasing on (0,∞);
(iii) a′

j(ρ)=0 if and only if ρ=0.
Let δ> 1

2 . Then there exists C>0 such that

‖〈x〉−δ|(∇a)(D)|1/2eita(D)φ‖L2(R1+n) ≤C‖φ‖L2(Rn)

for all φ∈L2(Rn).

Theorem 1.5 shows that even if the condition for the principal symbol
∇am(ξ) �=0 for ξ∈R

n\{0} fails, if the lower part a−am helps to hold ∇a(ξ) �=0
for ξ∈R

n\{0}, then we can also gain a smoothing effect whenever it satisfies appro-
priate conditions. In other words, we can gain a smoothing effect for some operators
which are not of real principal type. For instance, let n≥2 and consider

a(ξ)=
n−1∑
j=1

ξ4
j +|ξ|2.

Then all of the assumptions in Theorem 1.5 are satisfied. However, it does not
satisfy the assumption (A2) in Theorem 1.4. It seems reasonable to conclude that
the lower order term ξ2

n besides the principal part
∑n−1

j=1 ξ4
j causes a smoothing

effect.
Other types of smoothing effect are studied by using the limiting absorption

principle. See [3] and [13] for example. Ben-Artzi and Nemirovsky [3, Theorem 3A]
investigated the continuity of the resolvent and proved the large-time decay

‖〈x〉−1eita(D)φ‖L2(R1+n)≤C‖φ‖L2(Rn)

for some suitable symbols a, including the relativistic Schrödinger operator a(D)=
〈D〉.
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We give an outline of our method. We here define the Fourier transform in
(t, x)∈R

1+n by setting

f̃(τ, ξ)= (2π)−(1+n)/2

∫
Rn

∫ ∞

−∞
f(t, x)e−itτ−ix·ξ dt dx.

Generally speaking, the time-global smoothing estimate

‖〈x〉−δ|(∇a)(D)|1/2eita(D)φ‖L2(R1+n) ≤C‖φ‖L2(Rn)

is equivalent to a Fourier restriction inequality

(∫
Rn

|∇a(ξ)| |f̃ (a(ξ), ξ)|2 dξ

)1/2

≤C‖〈x〉δf‖L2(R1+n)(1.4)

by duality. For homogeneous symbols, Chihara [4] decomposed the Fourier phase
space R

n into finite connected cones according to nonvanishing entries of ∇a(ξ),
and obtained (1.4) by some change of variables in each cone. Since our symbols
are not necessarily homogeneous, we need to decompose the Fourier phase space
R

n into finite connected curved regions to show (1.4) in our proof of Theorem 1.5.
In Theorem 1.4, when |ξ| is large enough, we can decompose it in the same way as
in [4] since a(ξ) can be approximated by a homogeneous function.

In this paper, Sections 2 and 3 describe the proofs of Theorems 1.4 and 1.5,
respectively.

2. An estimate for real-principal-type operators

In this section, we give a proof of Theorem 1.4.

Remark 2.1. By substituting eita(0)u(t, x) for u(t, x), we may assume that
a(0)=0 without loss of generality.

Lemma 2.2. Let n≥2. Suppose (A1)–(A3). Set

Γj =
{

ξ ∈R
n\{0} ;

∣∣∣∣∂am

∂ξj
(ξ)

∣∣∣∣ > (2n)−1/2|∇am(ξ)|
}

for j=1, ..., n. Then there exists R>1 such that
∣∣∣∣ ∂a

∂ξj
(ξ)

∣∣∣∣≥C|∇a(ξ)|

for all ξ∈Γj \BR−1.
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We note that (A3) (i) implies that
n⋃

j=1

Γj = R
n\{0}(2.1)

when n≥2.

Proof. It follows from (A3) (iii) that there exists R>1 such that

|∇a(ξ)−∇am(ξ)|
|ξ|m−1

≤ (2n)−1/2

10
min

ω∈Sn−1
|∇am(ω)|

for ξ∈R
n\BR−1. Then,

|∇a(ξ)| ≤ |∇am(ξ)|+ (2n)−1/2|ξ|m−1

10
min

ω∈Sn−1
|∇am(ω)|

= |∇am(ξ)|+ (2n)−1/2

10
min

ξ∈Rn\{0}
|∇am(ξ)|

≤ 11
10 |∇am(ξ)|

for ξ∈R
n\BR−1. Using the above inequality, we have that

∣∣∣∣ ∂a

∂ξj
(ξ)

∣∣∣∣≥
∣∣∣∣∂am

∂ξj
(ξ)

∣∣∣∣− (2n)−1/2|ξ|m−1

10
min

ω∈Sn−1
|∇am(ω)|

≥ (2n)−1/2|∇am(ξ)|− (2n)−1/2

10
min

ξ∈Rn\{0}
|∇am(ξ)|

≥ 9(2n)−1/2

10
|∇am(ξ)|

≥ 9(2n)−1/2

11
|∇a(ξ)|

for ξ∈Γj \BR−1. �

The next lemma provides a decomposition of the Fourier phase space R
n into

finite convex regions on which specific directional derivatives of a do not vanish.

Lemma 2.3. Let n≥1. Suppose (A1)–(A4). Then there exist l∈N, convex
sets Λ1, ..., Λl⊂R

n\{0} and ω1, ..., ωl∈Sn−1 such that
(i)

⋃l
k=1 Λk=R

n\{0};
(ii) ∇a(ξ)·ωk≥C|∇a(ξ)| for all ξ∈Λk.

Proof. Step 1. For ω0∈Sn−1 and r>0, set

Λω0,r =
{
λω ; 0 < λ< r, ω∈Sn−1 and ω ·ω0 > 9

10

}
,
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which is convex and open. It follows from (A4) that a0(λω)=∇a(λω)/|∇a(λω)| is
a uniformly continuous function on [0, 1]×Sn−1. Therefore, there exists r∈(0, 1]
such that ∣∣∣a0(λω)−a0

(rω0

2

)∣∣∣< 1
10

for λω∈Λω0,r. Then

a0(λω)·a0

(rω

2

)
=

∣∣∣a0

(rω

2

)∣∣∣2+
(
a0(λω)−a0

(rω

2

))
·a0

(rω

2

)

≥ 1−
∣∣∣a0(λω)−a0

(rω

2

)∣∣∣> 9
10

for λω∈Λω0,r. Now, if we set ηω0 =a0

(
1
2rω0

)
, then

∇a(λω)·ηω0 > 9
10 |∇a(λω)|

for λω∈Λω0,r. Since Λω0,r� 1
2rω0, we have

⋃
ω0∈Sn−1

Λω0,r ⊃ 1
2
rSn−1 =

{1
2
rω ; ω∈Sn−1

}
.

As 1
2rSn−1 is compact, there exist l∈N and ω0,1, ..., ω0,l∈Sn−1 such that

l⋃
k=1

Λω0,k,r ⊃ 1
2
rSn−1.

Since Λω0,k,r is a circular cone, we have
⋃l

k=1 Λω0,k,r=Br\{0}. Finally, set Λk=
Λω0,k,r and ωk=ηω0,k

. Then,
⋃l

k=1 Λk=Br\{0} and ∇a(ξ)·ωk≥C|∇a(ξ)| for ξ∈Λk.

Step 2. (a) The case n≥2. Let R>1 be as in Lemma 2.2. Let ω0∈Sn−1.
Note that (2.1) implies that ω0∈Γj for some j. Therefore, we can choose Uω0⊂
Sn−1∩Γj which is an open neighborhood of ω0 in Sn−1 such that the cone Wω0 =
{λω ;λ>0 and ω∈Uω0}⊂Γj is convex. We have that

⋃
ω0∈Sn−1 Uω0 =Sn−1. As Sn−1

is compact, there exist l∈N and ω0,1, ..., ω0,l∈Sn−1 such that
⋃l

k=1 Uω0,k
=Sn−1.

Then,
⋃l

k=1 Wω0,k
=R

n\{0}. Covering Wω0,k
with finite thin enough cones (we

use the same notation {Wω0,k
}l

k=1 again) if necessary, we can choose a convex
set Λk such that Wω0,k

\BR⊂Λk⊂Wω0,k
\BR−1. By virtue of Lemma 2.2, the set

{(∂a/∂ξj)(ξ);ξ∈Λk} is an interval which does not contain 0. For each k=1, ..., l, let
ωk=ej=(0, ..., 0, 1(j), 0, ..., 0) with j defined above if (∂a/∂ξj)(ξ) is positive on Λk,
and let ωk=−ej if (∂a/∂ξj)(ξ) is negative on Λk. Then,

⋃l
k=1 Λk⊃R

n\BR and
∇a(ξ)·ωk≥C|∇a(ξ)| for ξ∈Λk.

(b) The case n=1. It follows from (A3) that there exists R>1 such that

|a′(ξ)−a′
m(ξ)|

|ξ|m−1
≤ 1

10
min{|a′

m(1)|, |a′
m(−1)|}
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for ξ∈(−∞,−R+1]∪[R−1,∞). Then,

|a′(ξ)| ≥ |a′
m(ξ)|− |ξ|m−1

10
min{|a′

m(1)|, |a′
m(−1)|}

= |a′
m(ξ)|− 1

10 min
ξ∈R\{0}

|a′
m(ξ)| ≥ 9

10 |a′
m(ξ)|> 0

for ξ∈(−∞,−R+1]∪[R−1,∞). Set now Λ1=(R−1,∞), Λ2=(−∞,−R+1), ω1=
sgn a′(R) and ω2=sgna′(−R). Then we obtain the same conclusion as in the case
n≥2.

Step 3. Let r∈(0, 1] and R>1 be as in Steps 1 and 2, respectively. Fix an
arbitrary ξ∈BR\Br. Set ωξ=∇a(ξ)/|∇a(ξ)|. The function

∇a(ζ+tωξ)·ωξ

|∇a(ζ+tωξ)|
is continuous with respect to (t, ζ)∈R×R

n except on a neighborhood of ζ+tωξ=0,
and it attains 1 at (t, ζ)=(0, ξ). Therefore, there exist d1, d2>0 such that

∇a(ζ+tωξ)·ωξ ≥ 1
2 |∇a(ζ+tωξ)|

for ζ+tωξ∈Λξ, where we set

Λξ = {ζ+tωξ ; ζ ∈R
n, |ζ−ξ|< d1 and −d2 < t < d2},

which is convex and open. Since Λξ�ξ, we have that
⋃

ξ∈BR\Br
Λξ⊃BR\Br. As

BR\Br is compact, there exist l∈N and ξ1, ..., ξl∈BR\Br such that
⋃l

k=1 Λξk
⊃BR\

Br. Set Λk=Λξk
and ωk=ωξk

. Then,
⋃l

k=1 Λk⊃BR\Br and ∇a(ξ)·ωk≥ 1
2 |∇a(ξ)|

for ξ∈Λk.

Combining Steps 1–3, we obtain the desired conclusion. �

We prove Theorem 1.4 using Lemma 2.3.

Proof of Theorem 1.4. First we show (1.4). We split the integral in the left-
hand side of (1.4) into integrals on Λk by Lemma 2.3(i). Namely, we have

(∫
Rn

|∇a(ξ)| |f̃ (a(ξ), ξ)|2 dξ

)1/2

=
(∫

⋃
l
k=1 Λk

|∇a(ξ)| |f̃(a(ξ), ξ)|2 dξ

)1/2

(2.2)

≤
l∑

k=1

(∫
Λk

|∇a(ξ)| |f̃(a(ξ), ξ)|2 dξ

)1/2

.

We deal with the right-hand side term by term. We may assume that ωk=e1=
(1, 0, ..., 0) without loss of generality by substituting a(P · ) for a (and PΛk for Λk),
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where P is the orthogonal matrix satisfying Pωk=e1. We write ξ=(ξ1, ξ
′)∈

R×R
n−1. Set Zk={(a(ξ), ξ′);ξ∈Λk}. The set {t∈R;te1+ξ′∈Λk} is an interval

for all fixed ξ∈Λk since Λk is convex. By virtue of Lemma 2.3,

d

dt
a(te1+ξ′)=

∂a

∂ξ1
(te1+ξ′)≥C|∇(te1+ξ′)|> 0

on the interval, which implies that a(te1+ξ′) is strictly increasing with respect to t.
Then the mapping

Λk � ξ �−! (τ, ξ′)= (a(ξ), ξ′)∈Zk(2.3)

is bijective. We here denote its inverse by

Zk � (τ, ξ′) �−! (Ξk(τ, ξ′), ξ′)∈Λk.

We have ∣∣∣∣det
∂ξ

∂(τ, ξ′)

∣∣∣∣=
∣∣∣∣det

∂(τ, ξ′)
∂ξ

∣∣∣∣
−1

=
∣∣∣∣ ∂a

∂ξ1
(ξ)

∣∣∣∣
−1

≤C|∇a(ξ)|(2.4)

for ξ∈Λk. Changing the variables by (2.3), using (2.4), the Minkowski inequality,
the Plancherel–Parseval formula and the Schwarz inequality yield∫

Λk

|∇a(ξ)| |f̃(a(ξ), ξ)|2 dξ(2.5)

=
∫∫

Zk

|∇a(Ξk(τ, ξ′), ξ′)| |f̃(τ, Ξk(τ, ξ′), ξ′)|2
∣∣∣∣ ∂a

∂ξ1
(Ξk(τ, ξ′), ξ′)

∣∣∣∣
−1

dτ dξ′

≤C

∫∫
Zk

|f̃(τ, Ξk(τ, ξ′), ξ′)|2 dτ dξ′

= C

∫∫
Zk

∣∣∣∣
∫ ∞

−∞
exp(−ix1Ξk(τ, ξ′))Ft,x′ [f ](τ, x1, ξ

′) dx1

∣∣∣∣
2

dτ dξ′

≤C

∫∫
Zk

(∫ ∞

−∞
|Ft,x′ [f ](τ, x1, ξ

′)| dx1

)2

dτ dξ′

≤C

(∫ ∞

−∞

(∫∫
Zk

|Ft,x′ [f ](τ, x1, ξ
′)|2 dτ dξ′

)1/2

dx1

)2

≤C

(∫ ∞

−∞

(∫∫
Rn

|Ft,x′ [f ](τ, x1, ξ
′)|2 dτ dξ′

)1/2

dx1

)2

= C

(∫ ∞

−∞

(∫∫
Rn

|f(t, x)|2 dt dx′
)1/2

dx1

)2

≤C

(∫ ∞

−∞
(1+x2

1)
−δ/2

(∫∫
Rn

|〈x〉δf(t, x)|2 dt dx′
)1/2

dx1

)2
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≤C‖〈x〉δf‖2
L2(R1+n)

∫ ∞

−∞
(1+y2)−δ dy

= C‖〈x〉δf‖2
L2(R1+n),

where Ft,x̂j [f ] denotes the Fourier transform of f in (t, x̂j)∈R
n. Substituting (2.5)

for (2.2), we obtain
(∫

Rn

|∇a(ξ)| |f̃(a(ξ), ξ)|2 dξ

)1/2

≤C‖〈x〉δf‖L2(R1+n).(2.6)

Finally we show that the Fourier restriction inequality (2.6) implies the time-
global smoothing estimate. Using the Plancherel–Parseval formula and (2.6) yield

‖〈x〉−δ|(∇a)(D)|1/2eita(D)φ‖L2(R1+n)

= sup
‖〈x〉δf‖L2(R1+n)=1

∣∣∣∣
∫

Rn

∫ ∞

−∞
(|(∇a)(D)|1/2eita(D)φ(x))f(t, x) dt dx

∣∣∣∣

= sup
‖〈x〉δf‖L2(R1+n)=1

∣∣∣∣
∫

Rn

φ̂(ξ)|(∇a)(ξ)|1/2

∫ ∞

−∞
e−ita(ξ)f̂(t, ξ) dt dξ

∣∣∣∣

= (2π)1/2 sup
‖〈x〉δf‖L2(R1+n)=1

∣∣∣∣
∫

Rn

φ̂(ξ)|(∇a)(ξ)|1/2 f̃(a(ξ), ξ) dξ

∣∣∣∣

≤ (2π)1/2‖φ‖L2(R1+n) sup
‖〈x〉δf‖L2(R1+n)=1

(∫
Rn

|(∇a)(ξ)| |f̃ (a(ξ), ξ)|2 dξ

)1/2

≤C‖φ‖L2(R1+n),

where φ̂ denotes the Fourier transform of φ in x∈R
n. �

3. An estimate for operators which need not be of real principal type

In this section, we give the proof of Theorem 1.5.

Proof of Theorem 1.5. It follows from the definition of a(ξ) that

∇a(ξ)= g′(h(ξ))(a′
1(ξ), ..., a

′
n(ξ)) �= 0 for ξ ∈R

n\{0}.(3.1)

Set

Γj =
{

ξ ∈R
n\{0} ;

∣∣∣∣ ∂a

∂ξj
(ξ)

∣∣∣∣ > (n+1)−1/2|∇a(ξ)|
}

=
{

ξ ∈R
n\{0} ; |a′

j(ξj)|> n−1/2

(∑
l 	=j

a′
l(ξl)2

)1/2}
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and

Γj,1 =
{

ξ ∈R
n\{0} ; |a′

j(ξj)|> n−1/2

(∑
l 	=j

a′
l(ξl)2

)1/2

and ξj > 0
}

,

Γj,2 =
{

ξ ∈R
n\{0} ; |a′

j(ξj)|> n−1/2

(∑
l 	=j

a′
l(ξl)2

)1/2

and ξj < 0
}

for j=1, ..., n. Our assumption implies that Γj=Γj,1∪Γj,2. Then (3.1) implies that
R

n\{0}=
⋃n

j=1

⋃2
k=1 Γj,k.

We claim that each Γj,k is either connected or empty. We only demonstrate
that Γ1,1 is connected if it is not empty; we can argue for the others similarly.
We write ξ=(ξ1, ξ

′)∈R×R
n−1. Let ξ and η be arbitrary points in Γ1,1. Define

a mapping Ψ: [0, 1]!R
n\{0} by

Ψ(θ)=

⎧⎪⎨
⎪⎩

(ξ1, (1−3θ)ξ′), if 0≤θ≤ 1
3 ,

((2−3θ)ξ1+(3θ−1)η1, 0), if 1
3≤θ≤ 2

3 ,

(η1, (3θ−2)η′), if 2
3≤θ≤1.

It is easy to see that Ψ is continuous and maps [0, 1] to Γ1,1. Therefore, Γ1,1 is
arcwise connected in R

n and hence connected. Moreover, the set

{t∈R ; te1+ξ ∈Γ1,1}=
{

t >−ξ1 ; |a′
1(t+ξ1)|> n−1/2

(∑
l 	=1

a′
l(ξl)2

)1/2}

is an interval for all fixed ξ∈Γ1,1.
After this, we can argue as in the proof of Theorem 1.4 to prove Theorem 1.5.

We omit the details. �
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