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1. Introduction and statement of results

For any smooth compact manifold W, the diffeomorphism group Diff (W) has a classifying
space BDiff(W). This classifies smooth fibre bundles with fibre W, in the sense that for
a smooth manifold B, there is a natural bijection between the set of isomorphism classes
of smooth fibre bundles 7: E— B with fibre W and the set [B, BDiff (W)] of homotopy
classes of maps. The cohomology groups H*(BDiff(W)) therefore give characteristic
classes of such bundles, and it is desirable to understand as much as possible about
these cohomology groups. The difficulty of this question depends highly on W: it is
essentially completely understood when the dimension of W is 0 or 1, and much effort has
been devoted to understanding the case where the dimension of W is 2. Mumford [Mu]

formulated a conjecture about the case where W=3, is an oriented surface of genus g,
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in the limit g—o0. If we let Diff(X,, D?) denote the diffeomorphism group which fixes

some chosen disc DQCEQ, Mumford’s conjecture predicted an isomorphism
@H*(BDIH(Z.(N D2)7 Q) g(@[’%17 K2, K3, ]

for certain classes r; € H*'(BDiff(X,, D?)). Mumford’s conjecture was finally proved by
Madsen and Weiss [MW] in a strengthened form.

The goal of the present paper is to prove analogues of the Madsen—Weiss theorem and
Mumford’s conjecture for manifolds of higher dimension. We have results for manifolds
of any even dimension greater than 4. As an interesting special case of our results, we

completely determine the stable rational cohomology ring
lim H* (BDfi(W,, D*"); Q),

where Wy=#9(5" x5")=g(S™ xS™) denotes the connected sum of g copies of S™ xS™.
To state our result, we recall that for each characteristic class of oriented 2n-dimensional
vector bundles c€ H?"+¥(BSO(2n)), we can define the associated generalised Mumford—
Morita—Miller class of a smooth fibre bundle 7: E— B with oriented 2n-dimensional

fibres as
ke(E)=m(c(T-E)) € H*(B),

where T, F is the fibrewise tangent bundle of # (when 7 is a submersion of smooth
manifolds, this is simply the kernel of Dm: TE—7*TB). When the fibre is taken to be
W,, there is a corresponding universal class k.€ H*(BDiff(W,, D?")) which for k>0 is
compatible with increasing g.

THEOREM 1.1. Let 2n>4 and let BCH*(BSO(2n); Q) be the set of monomials in
the classes €,pn—1,Pn—2; -, P[(n+1)/4] Of total degree greater than 2n. Then the natural
map

Q[ke : ¢ € B] — lim H* (BDiff (W, D*"); Q)
is an isomorphism.
The strengthened form of Mumford’s conjecture proved by Madsen and Weiss states

that a certain map
hocolim BDiff(3,, D?) — Q5° MTSO(2)

g—o0
induces an isomorphism in integral homology. We will prove a similar homotopy-theoretic

strengthening of Theorem 1.1, which also applies to more general manifolds.

1.1. Definitions and recollections

To state the main results in their general form, we recall the following definitions.
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1.1.1. Classifying spaces
We shall use the following model for the classifying space BDiff (W, 0W) of the topo-

logical group of diffeomorphisms of a compact manifold W, restricting to the iden-
tity on a neighbourhood of OW. We first pick an embedding OW < {0} xR> and let
Emb? (W, (—o0, 0] x R>) denote the space of all extensions to an embedding of W (re-
quired to be standard on a collar neighbourhood of 9WW'). We then let

BDiff (W, OW) = Emb® (W, (—o0, 0] x R>) /Diff (W, OW)

be the orbit space. If W is closed and ACW is a compact codimension-0 submanifold, we
write BDiff (W, A)=BDiff (W \int(A),A). The construction of BDiff(W,0W) has the
following naturality property: any inclusion W CW’ of a codimension-0 submanifold in-
duces a continuous map BDiff (W, 0W)— BDiff (W', 0W’), well defined up to homotopy.
(On the point-set level it depends on a choice of embedding of the cobordism W'\ int(WW)
into [0, 1] xR>.) For example, a choice of inclusion W, \int(D?")—W,; induces a map
BDiff (W, D*")— BDiff (W1, D?"); these define the inverse system in Theorem 1.1.

1.1.2. Thom spectra

For any space B and any map 6: B—BO(d), where BO(d)=Gry(R>), there is a Thom
spectrum MTO=B"? constructed in the following way: First, we let

B(R™) =0"*(Gryq(R™)).

The Grassmannian Grg(R") carries an (n—d)-dimensional vector bundle v;-, the orthog-
onal complement of the tautological bundle. Then the nth space of the spectrum MT6
is the Thom space B(R”)e*’yi . The associated infinite loop space is the direct limit
Q°° MT8 = colim Q" (B(R™)?" 7 ),
n—oo

and we shall write 23° MT@ for the basepoint component. The rational cohomology of
this space is easy to describe; in the case where the bundle classified by 6 is oriented, it is
as follows: for each c€ H4+*(B), there is a corresponding “generalised Mumford-Morita—
Miller class” k.€H*(Q*°MT§), and H*(Q5° MTH;Q) is the free graded-commutative
algebra on the classes k., where ¢ runs through a basis for the vector space H>%(B; Q).

We describe the general case in §2.5.
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1.1.3. Moore—Postnikov towers

Let us first recall that a topological space X is said to be n-connected, for an integer
n>—1, if any map S*— X admits an extension to D**'— X for —1<k<n. For non-
empty X this is equivalent to the vanishing of 7 (X, z) for 0<k<n and all zeX. A
map f: X =Y is n-connected if all its homotopy fibres are (n—1)-connected. If n>0 and
mo(X)—=mo(Y) is surjective, this is equivalent to the vanishing of the relative homotopy
groups (M, X, z) for all k<n and all z€X. Here M; denotes the mapping cylinder
of f; henceforth we shall write (Y, X, ) for my(My, X, z) when the map f is clear. If
ACX is a subspace, we shall say that the pair (X, A) is n-connected if the inclusion map
A— X is n-connected.

Similarly, a space X is said to be n-co-connected (or an (n—1)-type) if any map
Sk — X admits an extension to D**! for k>n, and a map X —Y is n-co-connected if all
homotopy fibres are n-co-connected.

It is well known (cf. [H, Theorem 4.71]) that for any map f: A— X of spaces and any
n>=0, there is a factorisation f: A2 B X with the property that g is n-connected and
h is n-co-connected, and moreover such a factorisation is unique up to weak homotopy
equivalence. This is the nth stage of the Moore-Postnikov tower for the map A— X.
It will be important for us that this factorisation can be made strictly functorial in the
map f: A—X, and we briefly recall one way of achieving this. Define factorisations
f=hpogr: A= BF— X for k>n by setting B"=A and inductively letting B¥*! be the
relative CW complex obtained from B* by attaching one (k+1)-cell for each commutative
square of the form

Sk —— pk+1

L, ]

Bk x.

Then hy: B¥— X extends canonically to hy,1: B¥"'— X, and we may let B:Uk>n B*.

In the case where A={x} is a point, B=X(n)— X is the n-connective cover of the
based space (X, ), characterised by the property that 7;(X(n),z)=0 for 0<i<n, and
that m; (X (n),x) —m; (X, z) is an isomorphism for i>n. (Some authors write X (n-+1) for
what we denote X (n).)

1.2. Connected sums of copies of §™ x S™

We can now state our homotopy-theoretic version of Theorem 1.1, generalising Madsen—
Weiss’ theorem to dimension 2n (recall that we assume 2n>4 throughout). As before,
we write Wy=#9(S" x S™)=g(S™ x.S™) for the connected sum of g copies of 5™ xS™.
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If we pick a disc DQ”CT/Vg7 there is a classifying space BDiff (W, D?") and there
are maps BDiff(W,, D?*")— BDiff (W1, D*") induced by taking connected sum with
one more copy of S xS™. Let ™: BO(2n)(n)—BO(2n) be the n-connective cover, and
MT#O™ be the associated Thom spectrum. Let us also say that a continuous map is a
homology equivalence if it induces an isomorphism in integral homology (and hence for
homology or cohomology with coefficients in any spectrum, at least after replacing both

spaces by weakly equivalent CW complexes).

THEOREM 1.2. Let 2n>4. There is a homology equivalence

hocolim BDiff (W, D*™) — Qg° MT6™.
g—0o0
More generally, if W is any (n—1)-connected closed 2n-manifold which is parallelisable
in the complement of a point, there is a homology equivalence
hocolim BDiff (W#W,, D*") — Qg MT".
g—00 ;

It is easy to deduce Theorem 1.1 from Theorem 1.2. In [GRW2] we proved that the
maps BDiff (W, D*")— BDiff (W, 1, D?") induce isomorphisms in integral homology up
to degree |1(g—4)] (cf. also [BM]). Thus, Theorem 1.2 also determines the homology
and cohomology of BDiff(W,, D?") in this range.

1.3. The moduli space of highly connected null-bordisms

The determination, in Theorems 1.1 and 1.2, of the stable homology and cohomology of
the space BDiff(W#g(S™ x S™), D?") is a special case of Theorem 1.8 below, in which
we determine the stable homology of BDiff (W) for more general manifolds W. We also

consider manifolds equipped with an additional tangential structure, defined as follows.

Definition 1.3. Let 0: B—»BO(2n) be a map. A 0-structure on a 2n-dimensional
manifold W is a bundle map £: TW —60*~, i.e. a fibrewise linear isomorphism. Such a
pair (W, ¢) will be called a 8-manifold. A 0-structure on a (2n—1)-dimensional manifold
M is a bundle map e'@TM—0*y. If ¢ is a f-structure on W, the induced structure
on OW is obtained by composing with a certain isomorphism e! ®@T(OW)—=TW |s . In
fact, there are two such isomorphisms: One comes from a collar [0,1) x OW —W of OW.
Differentiating this gives an isomorphism e'@T(OW)—TW s, and the resulting -
structure on W will be called the incoming restriction. Another comes from a collar
(—=1,0] x OW — W this is the outgoing restriction. When W is a cobordism, i.e. a compact
manifold together with a partition OW =0;, W L0yt W of its boundary, we will generally
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use the incoming restriction to induce a #-structure on the incoming boundary of W and
the outgoing restriction on the outgoing boundary.

Let £o: TW |sw —0*y be a f-structure on W, and Buna(TVV, 0*v;¢p) denote the
space of all bundle maps ¢: TW —6*~ which restrict to £y over OW, equipped with the
compact-open topology. The group Diff (W, 0W) of diffeomorphisms of W which restrict
to the identity near W acts on Bun? (TW, 6*~; £y) by precomposing a bundle map with

the differential of a diffeomorphism.

The most general case of our theorem concerns the moduli space of highly connected

null-bordisms, defined as follows.

Definition 1.4. Let PCR® be a closed (2n—1)-dimensional manifold with 8-structure
(p:et®@TP—0%y. A null-bordism is a pair (W, fy ), where W C(—o00,0] x R*® is a com-
pact manifold with OW={0} x P and (—&,0]x PCW for some >0, and {y: TW —6*y
is a f-structure satisfying fy |sw=~Cp. A null-bordism (W, {ly) is highly connected if
(W, P) is (n—1)-connected, and the moduli space of highly connected null-bordisms is the
set N?(P,¢p) of all highly connected null-bordisms of (P, {p). It is topologised as

JT(Emb? (W, (=00, 0] xR>) x Bun® (TW, §*; £p)) /Diff (W, OW), (1.1)
w
where the disjoint union is over compact manifolds W with OW =P for which (W, P) is
(n—1)-connected, one of each diffeomorphism class.

If KC[0,1]xR*> is a cobordism with collared boundary 0K = ({0} x Py)U({1} x Pp)
we say that K is highly connected if each pair (K,{i} x P;) is (n—1)-connected. If K is
equipped with a f-structure £ restricting to £y and ¢; on the boundaries, then there is an
induced map N (Py, o) —N?(Py,¢;) defined by taking union with K and subtracting 1
from the first coordinate. (If (W, Py) is (n—1)-connected then (WUK, K) is too, and it
follows from the long exact sequence of the triple (WUK, K, P;) that (WUK, P) is also

(n—1)-connected.)

This moduli space classifies smooth families of null-bordisms of P, in the sense that
if B is a smooth manifold without boundary, there is a natural bijection between the set
of homotopy classes [B, N%(P,{p)] and the set of equivalence classes of triples (, ¢, ),
where 7: E— B is a proper submersion (i.e. smooth fibre bundle), ¢ is a diffeomorphism
OE=Bx P over B, such that (E,JF) is (n—1)-connected, and ¢ is a f-structure on the
fibrewise tangent bundle T, E=Ker(D) restricting to £p on the boundary of each fibre.

Let us also introduce notation for each of the disjoint summands in (1.1).

Definition 1.5. Let W be a compact 2n-dimensional manifold, and £o: TW|aw — 60*y
be a @-structure on OW. We shall write

BDift® (W £y) = (EDiff (W, OW ) x Bun® (TW, 6*~; £y)) /Diff (W, OW)
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for the homotopy orbit space of the action of Diff(W,0W) on Buna(TVV, 0* ;). If
0: TW —0*~ is a particular extension, we shall write BDiff? (W; o), BDiff? (W; £;) for

the path component containing £.

Using the model EDiff(W, W )=Emb? (W, (—oo, 0] x R*), we have the homeomor-
phism
N?(P,tp) =] ] BDiff*(W; £p).
w

Definition 1.6. A tangential structure 0: B—BO(2n) is called spherical if any 0-
structure on the lower hemisphere 9_D?"*t1CdD?*"*! extends to some #-structure on
the whole sphere. (If B is path connected, this is equivalent to the sphere S?" admitting

a f-structure.)

Most of the usual structures, for example SO, Spin, Spin®, etc. are spherical, but
some are not, e.g. framings. Theorem 1.8 below determines the homology of N?(P,¢p)
after stabilising with cobordisms in the (P, {p)-variable. The following definition makes

the stabilisation procedure precise.

Definition 1.7. Let 8: B—BO(2n) be spherical, and K C[0,00) xR*> be a submani-
fold with #-structure ¢x. For AC[0,00), we let (K|a,%Kk|a) denote the pair

(Knzi'(A), Ukl nam(a))>

which will again be a #-manifold when A is an interval whose endpoints are regular values
of z1: K—10,00). We shall assume that each natural number n is a regular value of x;.
If MCR*> is the manifold such that K|,={n}xM we also impose the existence of a
cylindrical collar, i.e. an open neighbourhood U CJ0, 00) of n such that K|y=U x M.

(i) Let WCJ[0,1]xR* be a cobordism with #-structure ¢y, and suppose that
(Wlo,twlo)=(K|o,lkl|o). We say that (K,lx) absorbs (W, ly ) if there exists an em-
bedding j: W — K which is the identity on W|o=K]|p, such that lxoDj: TW —6* is
homotopic to £y relative to Wlo. That K|[; o) absorbs a 6-bordism W C[i,i+1] xR> is
defined similarly.

(i) We say that (K, {f) is a universal 0-end if for each integer i>0, K|[; 1] is a
highly connected cobordism and K|[; o absorbs W for any highly connected cobordism
W Cli,i+1]xR*> with f-structure £y such that (W1, bw ) =(K|i, £xli)-

For example, in dimension 2 with #=Idpo(2), we can construct a universal 6-
end by letting each Kl; ;41 be diffeomorphic to RP? with two discs removed. For
0=0": BO(2n)(n)—BO(2n), a universal #-end can be constructed by letting each K|j; ;11

be diffeomorphic to S™xS™ with two discs removed. In many other cases, a universal
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f-end K can be constructed as the infinite iteration of a single self-bordism Ko 1). In
particular, this will be the case in the examples in §1.5 below.

As we shall see, universal 0-ends are unique up to isomorphism in the following
sense. If (K, £k ) and (K', %) are two universal §-ends with K|o=K"|o, then there exists
a diffeomorphism K — K’ preserving #-structure up to homotopy, relative to K|o. More
generally, given a highly connected cobordism (W, ¢y) from K|y to K'|g, there exists a
similar diffeomorphism from K to WUK'.

THEOREM 1.8. Let 2n>4 and let 6: B—BO(2n) be spherical. Let (K,lx) be a
universal 0-end with N°(K|o, lx|o)#@. Then there is a homology equivalence

hocolim N (K |;, £c|;) — Q> MT#’,
71— 00
where

¢:B'— B -2+ BO(2n)
is the n-th stage of the Moore—Postnikov tower for £x: K— B.

The property of being a universal #-end can often be checked in practice, using the

following addendum, as it is essentially a homotopical property.

ADDENDUM 1.9. Let 6: B—BO(2n) be spherical, let K C[0,00) xR be a subman-
ifold such that K|; ;1) is a highly connected cobordism for each integer i, and let lx
be a O-structure on K. Then (K,lk) is a universal 0-end if and only if the following
conditions hold:

(i) For each integer i, the map mn (K| o)) —Tn(B) is surjective, for all basepoints
in K.

(ii) For each integer i, the map mn_1(K|[i 00)) —Tn—1(B) is injective, for all base-
points in K.

(iii) For each integer i, each path component of Kl o) contains a submanifold
diffeomorphic to (S™x S™)\int(D?"), which in addition has null-homotopic structure map
to B.

Remark 1.10. The maps in all the theorems above are induced by the Pontryagin—
Thom construction. We shall briefly explain this in the setting of Theorem 1.8, after
replacing N9(P,£p) by a weakly equivalent space, and refer the reader to [MT, §2.3]
for further details. First we say that a submanifold W C(—o0,0]xR?™! with collared
boundary is fatly embedded if the canonical map from the normal bundle vW to R?
restricts to an embedding of the disc bundle into (—oo,0]xR?71. In that case the

Pontryagin—-Thom collapse construction gives a continuous map from [—oo, 0JAS?~! to
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the Thom space of vW. Secondly we replace 8’: B'— BO(2n) by a fibration, and rede-
fine N'9(P,£p) as a space of pairs (W, £};,), where W C(—o0, 0] x R* is a fatly embedded
submanifold, collared near OW ={0} x P, and ¢};,: W — B’ is a continuous map such that
0ol W —BO(2n)=Gra, (R*) is equal to the Gauss map and whose restriction to OW
is equal to a specified map ¢p: P— B’ lifting £p. There is a forgetful map from the
space of such pairs to the space in Definition 1.4, and standard homotopy-theoretic
methods imply that it is a weak equivalence (see Corollary 7.17). If PCRI~*CR>, the

Pontryagin—Thom construction (composed with ¢},) gives a point
a(P,lp) € Q1 (B'(RY) )7 ) c Q°~ 1 MT¢,
and if (W, #;;,) EN?(P,¢p) has W C(—o0,0] xRI™1, it gives a path
(W, by ): [~00,0] — QI L(B/(RY) )70 ) c Q"I MT,

starting at the basepoint and ending at a(P,{p). If we write Qg pQ>°~t MT# for the

space of all such paths, then this construction determines a map
NP lp) — Qp pQ>~IMTH'.

The non-compact manifold K C[0,00) x R>* admits a homotopically unique #’-structure
0 lifting its f-structure and extending the canonical @’-structure on P=K|y. The
Pontryagin-Thom construction applied to each cobordism K|j; ;1) then gives a path
(K| i1 Uiclpiie1)): [0, 1] = Q7P MTE from o K|, O li) to a(K|it1,liv1). The

maps « then give a map of direct systems, which on direct limits is
hocolim N (K |;, £|;) — hocolim Qg ¢, 2~ MT¢'.
1—00 71— 00

Finally, the maps in the direct system on the right-hand side are all homotopy equiv-
alences, so the direct limit is equivalent to its zeroth term, and a choice of path from
a(K|p, Uk |o) to @ identifies the zeroth term with Q> MT¢’.

Remark 1.11. Tt is often useful to consider the homology equivalence in Theorem 1.8
one path component at a time, so we spell out the resulting statement using the notation
of Definition 1.5. Any path component of the infinite loop space Q°° MT#’ is homotopy
equivalent to the basepoint component Q° MT’. On the left-hand side of the homology
equivalence, the path component of an element (W, ¢y ) €N?(K |y, x]o) is the homotopy
colimit of the spaces

BDift? (WUK (.11 £:)

Lw Ul |0,
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Conversely, given any triple (W, K, £), where K C[0,00) xR* is a non-compact sub-
manifold such that the subset K|j; ;1) CK is a highly connected cobordism for each
integer i >0, W C(—o00,0] xR is a compact manifold with collared boundary OW =Ko
such that (W,0W) is (n—1)-connected, and £: T(WUK)—6*y is a bundle map, the

Pontryagin-Thom construction described in Remark 1.10 provides a map

hocolim BDiff’ (WUK |joi: £i)e — Q45° MT¥, (1.2)
where 0": B —>Bi>BO(2n) is obtained from the nth Moore-Postnikov stage of the un-
derlying map WUK — B. If it is the case that K is a universal §'-end then ¢} : K —B’
is n-connected (cf. Addendum 1.9), so 6’ is also obtained from the nth Moore-Postnikov
stage of £x: K— B, and so by Theorem 1.8 the map (1.2) is a homology isomorphism. In
particular, Theorem 1.2 can be deduced this way: If we let each K|[; ;1] be diffeomorphic
to ([0, 1] x S2"~1)#(S™ x S™) and let §=Id o (2n), then 8'=6": BO(2n)(n)—BO(2n), and
K is a universal §™-end. Similarly, all examples in §1.5 below arise in this way.

Let us also remark that the homotopy colimit (1.2) may be replaced by the strict
colimit BDiff’(WUK; ¢), defined by

BDiff’(WUK; ¢) = (EDiff ,(WUK) x Bune(T(WUK), 6*~; £)) /Diff o(WUK),

where Diff .,(WUK) is the topological group of compactly supported diffeomorphisms
of the non-compact manifold WUK, and Bun.(T(WUK), 8*v; ¢) is the space of bundle
maps which agree outside of a compact subset of WUK with ¢.

1.4. Algebraic localisation

There is one final algebraic version of our main theorem. Fix P, a closed (2n—1)-manifold
with @-structure £p:e! @TP—0*y. As explained in Definition 1.4, a cobordism (K, ()
from (P, £p) to itself with K C[0, 1] x R*, which is (n—1)-connected with respect to both
boundaries, gives a self-map of (P, £p) defined by W (W Up K)—e;. We shall write
Ko for the set of isomorphism classes of such (K, {k), where we identify (K, {x) with
(K', L) if there is a diffeomorphism ¢: K — K’ which is the identity near 0K such that
©*lgs is homotopic to {x relative to K. It is clear that the homotopy class of the
self-map of N?(P,¢p) induced by (K,{x) depends only on the isomorphism class of
(K,fK), and we get an action of the non-commutative monoid Ky on H.(N?(P,¢p)).

Our theorem determines the algebraic localisation

H,(N?(P,tp)) K]
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at a certain commutative submonoid K C Ky which we now describe.

We say that a 6-cobordism K: P~»P has support in a closed subset ACP if it
contains [0,1]x (P\A): P\A~P\ A as a sub-cobordism with the product @-structure.
We let KC Ky consist of those elements which admit a representative with support in a
regular neighbourhood of a simplicial complex of dimension at most n—1 inside P, and

prove the following lemma.
LEMMA 1.12. The subset KC Ky is a commutative submonoid.

We may localise the Z[K]-module H,(N?(P,{p)) at any submonoid LCK. The

content of Theorem 1.13 below is an isomorphism
H, (NP, ¢p) L7 = H (Q®MTE)

under certain conditions, where 6’: B’—)Bi>BO(2n) is the (n—1)-st stage of the Moore—
Postnikov tower for /p: P— B. (Note that in Theorem 1.8 we used the nth stage instead.)

To describe the isomorphism explicitly, recall that in Remark 1.10 we described a map
NU (P, tp) — Q> MT¥',

compatible with gluing highly connected cobordisms of (P,¢p) equipped with €’-struc-

tures, and hence the induced map
H,(NY(P,tp)) — H,(Q° MT#) (1.3)

is a map of Z[K']-modules, where the monoid K’ is defined like K but using 6" instead
of #. An obstruction-theoretic argument, which we explain in more detail in §7.6, shows
that the natural map K'—K is a bijection, so (1.3) is naturally a homomorphism of
Z[K]-modules.

THEOREM 1.13. Let 2n>4 and let §: B—BO(2n) be spherical. Let P be a closed
(2n—1)-manifold with 0-structure {p: e ©TP—0*, such that N°(P,{p) is non-empty.

Then the morphism (1.3) induces an isomorphism
H,(N°(P,p)) K™Y — H,(Q®MT#).

Furthermore, localisation at a submonoid LCK agrees with localisation at KC, pro-
vided L satisfies the following conditions:

(i) The group mp(B) is generated by the subgroups Im(m,(K)—m,(B)), KeL.

(ii) The subgroup of m,_1(P) generated by Ker(m,_1(P)—=m,_1(K)), K€L, con-
tains Ker(m,—1(P)—=mn-1(B)).

(iii) There is an element of L containing a submanifold diffeomorphic to

(8™ x S™)\int(D*").
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(There is a bijection wo(P)=m(K), and if P is not connected, conditions (i)—(iii)
are required to hold for each path component of P.)

Applying the functor Homgzcj(—, Q) to both sides of the isomorphism in the theorem
identifies the subring of H*(NY(P,{p); Q) consisting of K-invariants with

H*(QF MTE¢;Q).
Observing that these classes are also invariant under the larger monoid Ky, we deduce

the isomorphism
H*(N?(P,(p); Q) = H* (O MT¥'; Q).

The left-hand side can be interpreted as characteristic classes of certain bundles, invariant

under fibrewise gluing of trivial bundles.

1.5. Examples and applications

Recall that the connective cover BO(d)(k) is BSO(d) if k=1, BSpin(d) if k=2, 3, and
is often called BString(d) if k=4,5,6,7. We will write MTSO(d), MTSpin(d) and
MTString(d) for the corresponding Thom spectra. As special cases of Theorem 1.8 we
have the following maps, which become homology equivalences in the limit g—o0. All
are deduced from Theorem 1.8 and Addendum 1.9 as in Remark 1.11, with 0=Idgo(2x):

BDiff(g(S8*x $%), D®) — Q5° MT Spin(6

))
BDiff(g(HP*#HP"), )

3

D®) — Q5° MTSpin(8

BDiff(g(S* x §*), D¥) — Q5° MT String(8),
BDiff(g(S° x §°), D'%) — Q5° MT String(10),
BDiff(g(S°®x §%), D'?) — Q5° MT String(12),
BDiff (g(S™ x S7), D) — Q&° MT String(14),
BDiff (g(OP2#0P"), D'%) —s 02° MTString(16).

A slightly different type of example is given by BDiff(CP3#g¢(S®x S3),U), where
UCCP? is a tubular neighbourhood of CP!. In this case the stable homology is that of
Q5° MTSpin‘(6), where BSpin®(6) is the homotopy fibre of the map

Bws: BSO(6) — K (Z, 3).

An example where we need a more complicated stabilisation (not induced by con-
nected sum) comes from RPY. The map RPS%— BO(6) lifts canonically to a 3-connected
map RPY— BPin™ (6), where 6: BPin™ (6)— BO(6) is the homotopy fibre of

wo+wi: BO(6) — K (Z/27Z,2).
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The standard self-indexing Morse function f: RP®— [0, 6] given by

f(xo;...;6) :sz?

has one critical point of each index, and we let W=f~1([0,2.5])=RP?x D*. Cutting
out a parallel copy of W gives a #-bordism I?%ffl([2.5,3.5]) from OW =RP?x 53 to
—OW (i.e. RP%x S? equipped with the opposite §-structure). Hence Kozl?o(—f{) is a
cobordism from OW to itself, and we let K be the infinite iteration. In this situation we

get a stable homology equivalence
BDiff((RP?x D*)UsgKy, d) — Q5° MTPin ™ (6).

Another interesting special case concerning the manifolds Wy=#9(S" x S") is the

following. Let (Y,y) be a pointed space, and consider the homotopy orbit space
SE(Y.y) = (EDifE(Wy, D) x Map((W,, D?"), (Y, y)))/Diff(Wy, D?").
We can determine the stable homology of these spaces using a Pontryagin-Thom map

[T Sy (v.y) — Q®(Y (n—1), AMT6™), (1.4)

920
defined as in Remark 1.10. Any map f:(S™, D")—(Y,y) may be composed with the
projection to the first coordinate S™x S™—S™ to give a map (W1, D**UD?")—(Y,y),
representing an element [W;]€K, and we let LCK be the submonoid generated by the
[W]. Tt is easy to check that £ satisfies the conditions of Theorem 1.13 for the tangential
structure Y (n—1) x BO(2n)(n)— BO(2n). This shows that (1.4) induces a map from the
stabilised homology

( EB H. (S, (Y, y))) (L7 — H (Q®(Y (n—1), AMTO™)) (1.5)
920

which is an isomorphism, after restricting to appropriate path components. This result

is a generalisation of the result of Cohen and Madsen [CM], who proved the special case

where 2n=2 and Y is simply connected. (The case 2n=2 was generalised to non-simply

connected Y in [GRW1].)

As a final application, in [GRW3] we deduce a generalisation of the detection result of
Ebert [E1]. We will prove that for any abelian group k and any non-zero cohomology class
ce H*(25° MTSO(2n); k), there exists a bundle m: E— B of smooth oriented manifolds,
such that the characteristic class associated with ¢ is non-vanishing in H*(B;k). (The

case k=Q was proved by Ebert.)
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1.6. Cobordism categories and outline of proof

Finally, let us say a few words about our method of proof, which follows the strategy
in [GRW1] and [GMTW]. A central object is the cobordism category Co(RY), whose
morphisms are cobordisms W C[0,¢] xRY of dimension 2n and whose objects are closed

(2n—1)-dimensional manifolds M CR¥ | both equipped with #-structures.

Remark 1.14. The applications described above use only the case where morphisms
are even-dimensional. Many of our results about cobordism categories are valid for odd-
dimensional cobordisms as well, but we do not know an interpretation in terms of stable
homology in that case. In fact, Ebert [E2] has shown that there are non-trivial classes
in H*(Q5° MTSO(2n+1); Q) which are trivial when restricted to any BDiff*(M,dM).
Thus there can be no analogue of e.g. Theorem 1.8, expressing H,(25° MTSO(2n+1))
as a direct limit of H,(BDiff(WUK|jg ), K|;))’s. It is an interesting question to find an

odd-dimensional analogue of our results.

In the limit N— o0, the main result of [GMTW] gives a weak equivalence
QBCy ~ Q> MT6. (1.6)

As in [GRW1], our strategy will be to find subcategories C CCy, as small as possible, such
that the inclusion induces a weak equivalence QBC—QBCy. The proof of Theorem 1.8
will consist of applying a version of the “group-completion” theorem to a very small
subcategory of Cy. Let us briefly describe the conditions we impose on objects and
morphisms of this subcategory.

Let L be a (2n—1)-manifold with boundary which admits a handle structure with no
handles of index n or larger, and let £;, be a §-structure whose underlying map L— B is
(n—1)-connected. Then we pick a (collared) embedding L— (—o0, 0] x R*, and consider
the subcategory Cy 1, CCy where objects M CRxR* satisfy MN((—oo,0]xR>*)=L and
morphisms W C[0, t] xR xR satisfy WN ([0, t] x (=00, 0] xR*)=]0,t] x L. For both ob-
jects and morphisms, these identities are required to hold as #-manifolds. In §2 we prove

that the inclusion map induces a weak equivalence
BCQ,L—>BCQ. (17)

Secondly, we filter Cy 1, by connectivity of morphisms: for —1<x<n—1, the subcat-
egory Cy ; has the same objects as Cy,r, but a morphism W from M, to M; is required
to satisfy that the inclusion M7 —W is k-connected. In §3 we prove that the inclusion

map induces a weak equivalence

BC&L —>BCQ,L. (18)
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(In the case where k=0, this is the “positive boundary subcategory”, and this case was
proved in [GMTW].)

Thirdly, we filter Cg ; by connectivity of objects: for —1<I<min{n—2,x}, the sub-
category Cg”y’iCCg’ ;, is the full subcategory on those objects where the structure map
M — B induces an injection ;(M)—m;(B) for all i<! and all basepoints, or equivalently
the inclusion L— M is l-connected. In §4 we prove that the inclusion map induces a weak

equivalence
BCy, — BCj . (1.9)

(In the case where [=0 and B is connected, this is the full subcategory on objects which
are path connected, and this case was proved in [GRW1].)

We have now reduced to C;L’zl’n_Q, the full subcategory on those objects for which
the inclusion L—M is (n—2)-connected. In the fourth and final step of the filtration we
let C denote the full subcategory on those objects M which can be obtained from L by
attaching handles of index at least n. (This is equivalent to the condition that M \int(L)
is diffeomorphic to a handlebody with handles of index at most n—1, which if n>3 is in
turn equivalent to the inclusion L— M being (n—1)-connected.) In §5 we prove that the

inclusion map induces a weak equivalence
QBC — QBC) " (1.10)

provided that 6 is spherical.

Now, given a closed (2n—1)-manifold P with 8-structure £p, we will show how to
obtain a #-manifold L as described above, such that the space N?(P,{p) occurs as a
space of morphisms in the category C. The weak equivalences (1.6)—(1.10) establish the
homotopy equivalence

QBC ~Q*° MTH,

and the proof of Theorem 1.8 in this case will be completed by applying a suitable version
of the “group-completion” theorem to the map N?(P,¢p)—QBC.

The weak equivalences (1.8)—(1.10) are established using a parameterised surgery
procedure, and the proof depends on the contractibility of certain spaces of surgery data.
Contractibility is proved in a similar way in all three cases, and we defer this to §6.
Finally, in §7 we explain how to use a version of the group-completion theorem to prove
Theorem 1.8 and tie things together.

§3-86 contain the main technical steps, but on a first reading it is possible to skip
to §7 after reading §2, to see the overall structure of the argument. The reader mainly

interested in Theorems 1.1 and 1.2 can take

0=0":BO(2n)(n) — BO(2n)
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and L=D?"~1 in the above outline and throughout the paper. Considering only this
special case would not significantly simplify the main technical steps in §3—§6, but the
group-completion arguments in §7 do simplify, and we incorporate a separate discussion
of this case in §7.1.

2. Definitions and recollections
2.1. Tangential structures

Throughout this paper, an important role will be played by the notion of a tangential
structure on manifolds. This will be important even for the proof of theorems which
do not explicitly mention tangential structures on manifolds. However, for the proofs of
Theorems 1.1 and 1.2, the structure §=60": BO(2n)(n)— BO(2n) suffices.

Definition 2.1. A tangential structure is a map 6: B—»BO(d). A 6-structure on a
d-manifold W is a bundle map (i.e. fibrewise linear isomorphism) ¢: TW —0*y. A 6-
manifold is a pair (W, £). More generally, a §-structure on a k-manifold M (with k<d)
is a bundle map £: e?"FOT M —0*.

Given vector bundles U and V of the same dimension, but not necessarily over the
same space, we write Bun(U, V') for the subspace of map(U, V) (with the compact-open
topology) consisting of the bundle maps. Thus, Bun(T'W, 8*v) is the space of f-structures
on W.

2.2. Spaces of manifolds

We recall the definition and main properties of spaces of submanifolds, from [GRW1].
Fix a tangential structure §: B— BO(d).

Definition 2.2. For an open subset UCR", we denote by Uy(U) the set of pairs
(M9, ¢) where M?CU is a smooth d-dimensional submanifold that is closed as a topo-
logical subspace, and £ is a #-structure on M.

We denote by Wy, (U) the set of pairs (M, ¢) where M CU is a smooth (d—m)-
dimensional submanifold that is closed as a topological subspace, and ¢ is a 6-structure
on M, i.e. a bundle map e™®TM —0*.

In [GRW1, §2] we have defined a topology on these sets so that Ur— Wy, (U) defines
a continuous sheaf of topological spaces on the site of open subsets of R”. We will not
give full details of the topology again here, but remind the reader that the topology is

“compact-open” in flavour: disregarding tangential structures, points nearby to M are
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those which near some large compact subset K CU look like small normal deformations
of M. In particular, a typical neighbourhood of the empty manifold @€Wy(U) consists

of all those manifolds in U disjoint from some compact K.

Definition 2.3. We define g (n, k) C¥g(R™) to be the subspace consisting of those
§-manifolds (M, ¢) such that M CR¥ x (—1,1)"~*. We make the analogous definition of

de—m (nv k)

2.3. Semi-simplicial spaces and non-unital categories

Let A denote the category of finite non-empty totally ordered sets and monotone maps,
the simplicial indexing category. Let Aj,; CA denote the subcategory with the same
objects but only injective monotone maps as morphisms. For a category C, a simplicial
object in C is a contravariant functor X: A—C, and a semi-simplicial object in C is
a contravariant functor X:A;;;—C. A map of (semi-)simplicial objects is a natural
transformation of functors.

We call a semi-simplicial object in the category of topological spaces a semi-simplicial
space. More concretely, it consists of a space X,, =X (0<1<...<n) for each n>0, and face
maps d;: X, —X,,_1 defined for =0, ..., n satisfying the simplicial identities d;d;=d;_1d;
for i<j. We often denote a semi-simplicial space by X., where we treat  as a place-holder
for the simplicial degree.

The geometric realisation of a semi-simplicial space X, is defined to be

=TT xaxam)/~,

n=0

IX.

where A™ denotes the standard topological n-simplex and the equivalence relation is
generated by (d;(z),y)~(z,d'(y)), where d': A"— A"*! is the inclusion of the ith face.

This space is given the quotient topology. We shall need to make reference to specific

points in geometric realisations: a point y€|X.
z€X, and t€int(AP).
The k-skeleton of |X.

is uniquely written as y=(z,t) with

is

k
210 =TT (X x A/ ~

n=0

with the quotient topology, and one easily checks that | X.

=Ukso | X.|®) with the direct
limit topology. A useful consequence of this is the following: a map from a compact space
to | X.

to prove this for the terminal semi-simplicial space, where it is clear). We recall the

factors through a finite skeleton (since we do not have degeneracies, it suffices

following result (cf. e.g. [S2, Proposition A.1 (ii)]).
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LEMMA 2.4. If X.—=Y. is a map of semi-simplicial spaces such that each X,—Y,

is a weak homotopy equivalence, then |X. Y.| is too.

—

Remark 2.5. The term semi-simplicial object we have defined above is not quite
standard (though is gaining popularity) and deserves some justification. Our justifi-
cation is that it agrees with Eilenberg and Zilber’s original usage of “semi-simplicial
complex” [EZ]. Another is that the alternative used in the literature is A-space, but as

A is the indexing category for full simplicial objects this seems counterintuitive.

A non-unital topological category C consists of a pair of spaces (O, M) of objects and
morphisms, equipped with source and target maps s, t: M—0O. We let M x;0sM denote
the fibre product made with the maps ¢ and s, and require in addition a composition
map p: M x0sM— M which satisfies the evident associativity requirement.

A non-unital topological category C has a semi-simplicial nerve, generalising the
simplicial nerve of a topological category [S1]. Define N.C by NoC=0 and

NkC:MXt(’)sMXtOsztOsMa k>0,

being the space of k-tuples of composable morphisms, and let the face maps be given by
composing and forgetting morphisms, as in the simplicial nerve of a topological category.

We define the classifying space of a non-unital topological category by

BC=|N.C

2.4. Definition of the cobordism categories

For convenience in the rest of the paper, we introduce the following notation. All of
our constructions will take place inside RxRY, and we write z1: RxRY R for the
projection to the first coordinate. Given a manifold WCRxRY and a set ACR, we
write

Wla=Wnay'(A),

if it is a manifold, and we also write £|4 for the restriction of a #-structure £ on W to
this manifold.

Our definition of the cobordism category of #-manifolds is similar to that of [GRW1]
(the only difference is that here will we only define a non-unital category); it follows that
of [GMTW] in spirit, but is different in some technical points. (These slight variations
all have equivalent classifying spaces.) We use the spaces of manifolds of §2.2 in order to

describe the point-set topology of these categories.
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Definition 2.6. For each >0 we let the non-unital topological category Co(RY).
have space of objects vg,_, (IN,0). The space of morphisms from (My, p) to (M, ¥¢;) is
the subspace of those (¢, (W, £))€R xg(N+1,1) such that >0 and

W|(—<x>,5) = (RXMO)|(—<>0,E) € \119((—007 6) XRN)

and
W (t—c.00) = (RXM1)|(1—c.00) € Ua((t—¢, 00) xRY).

Here R x M; denotes the #-manifold with underlying manifold Rx M,;,CRxRY and 6-
structure
T(RxM;) — ' &TM; 25 6%4.

Composition in this category is defined by
(tla W/)O(ta W) = (t+t/7 W‘(—oo,t] U(W/+t61)|[t,oo))a

where W'+te; denotes the manifold W’ translated by ¢ in the first coordinate. We
topologise the total space of morphisms as a subspace of (0,00) X e (N+1,1).
If e<¢’ there is an inclusion Co(RM ). CCy(RY)., and we define Co(RY) to be the

colimit over all £>0.

Note that a morphism (¢, (W,¢)) in this category is uniquely determined by the
restriction (t,(Wlo,4,£lj0,¢])).- We often think of morphisms in this category as being
given by such restricted manifolds, but the topology on the space of morphisms is best
described as we did above.

As explained in the introduction, we will also require a version of this category where
the objects and morphisms contain a fixed codimension-zero submanifold. In order to
define this, we let

Lc(-3,0]x(-1,n)N !

be a compact (d—1)-manifold which near {0} xRN ~! agrees with (—1,0] x L. Further-
more, we let £|;:e!@®TL—0*y be a f-structure on L. Near L we require that the
structure is a product (i.e. that translation in the collar direction preserves the struc-
ture). Such an /|, makes Rx L into a #-manifold with boundary, and we make the

following definition.

Definition 2.7. The topological subcategory Cp 1,(R™Y)CCy(R™) has space of objects
those (M, ¢) such that
MO((—o00, 0] xRN"1 =L
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as f-manifolds. It has space of morphisms from (My,¥y) to (M, £1) given by those
(t, (W, £)) such that
WN(Rx (00,0 xRY ") =Rx L

as f-manifolds.

Remark 2.8. The category Cp 1,(RY) does not really depend on L, but only on L.
It is sometimes convenient to think of the interior of L as being cut out, so that objects
in the category are manifolds with boundary 0L and morphisms are cobordisms between
manifolds with boundary which are trivial along the boundary.

If we take L=D%"1  then the category Cy (RY) is equivalent to the category of
“manifolds with basepoint” defined in [GRW1, Definition 4.2]. That case is sufficient for
the proofs of Theorems 1.1 and 1.2.

The subject of our main technical theorem, from which we shall show how to obtain
results on diffeomorphism groups in §7, is certain subcategories of Cy 1, (RY) where we
require the morphisms to have certain connectivities relative to their outgoing boundaries,
and objects to be those (M, ¢p;) whose Gauss map M— B (i.e. the map underlying
lpr: et ®@TM —0%y) has a certain injectivity range on homotopy groups.

Definition 2.9. For an integer k> —1, the topological subcategory
C5 L(RY) CCoL(RY)

has the same space of objects. It has space of morphisms from (My,¥y) to (My,¥¢;)
given by those (¢, (W, £)) such that the pair (W|y 4, W|;) is x-connected. Thus this is
the subcategory on those morphisms which are k-connected relative to their outgoing

boundary.

The category Cg is the “positive boundary category” as in [GMTW], where each

path component of a cobordism is required to have non-empty outgoing boundary.

Definition 2.10. For an integer [>—1, the topological subcategory
Cop(RY) CC L (RY)
is the full subcategory on those objects (M, ¥¢) such that the map
lo:miy(M) — m;(B)

is injective for all i<l and all basepoints. (In our main application in §7, the map L— B
will be (I+1)-connected. In that case the requirement is equivalent to (M, L) being

{-connected.)
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For our final definition we specialise to even dimensions.

Definition 2.11. Let d=2n and ACWO(Ob(Cg)Zl’"_Q(RN))) be a collection of path
components of the space of objects. The topological subcategory

Cg’zl,A(RN) c C;zl’n_Q(RN)
is the full subcategory on the subspace of those objects in \A.

For N =00, we shall often denote Cy(R°*)=colimy Cy(R™) by Cy, and similarly with

any decorations.

2.5. The homotopy type of the cobordism category

The main theorem of [GMTW] identifies the homotopy type 2BCy in terms of the infinite
loop space of a certain Thom spectrum MT6.
Recall from the introduction that given a map 6: B—BO(d)=Grq(R>) we let

B(R™) =0""(Grq(R™))

and define v;-—Gry(R") to be the orthogonal complement of the tautological bundle.
The canonical map B(R")— B(R"*!) pulls back H*W#H to 0*v;-@e! and hence we obtain
pointed maps

B(R™)?" 7% ASY — B(R™)?

of Thom spaces, which form a spectrum MT6. Its associated infinite loop space is

Q°° MT6 = colim Q" (B(R")? 7).
n—oo
THEOREM 2.12. (Galatius—Madsen—Tillmann—Weiss [GMTW]) There is a canonical
map
QBCy — Q> MTH0

which is a weak homotopy equivalence.

We write Q3° MT@ for the basepoint component of 2°° MT¥6, and now describe the
rational cohomology of this space. The map B i>BO(0Z)£>BO(1) on fundamental
groups defines a character wy:m(B)—Z*, and we write H*(B; Q") for the rational
cohomology of B with local coefficients given by this character. For each n there are
evaluation maps

ev: DO (B(R™)? ) — B(R™)? 7,
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and so we can define the dashed map in the diagram

H+(BR"); Q™) - = = = > H(Q"(B(R")? 7% );Q)
Thom iso. suspension iso.

Hn (B Q) 2 B+ (50 (BRM) ) Q)
by commutativity. Taking limits and restricting to the basepoint component, we obtain
a map
o: H*T4(B; Q") — H*(QF° MTH; Q)
(there is no lim' contribution as we are working over a field). The right-hand side is

a graded-commutative algebra, so o extends to the free graded-commutative algebra on
the part of H*t4(B; Q") of degree >0,

A(H™T20(B; Q™)) — H* (9 MT6; Q).

This is an isomorphism of graded-commutative algebras.

2.6. Poset models
A key step in the proofs of [GMTW] and [GRW1] identifying the infinite loop space BCy

is to first identify this classifying space with the classifying space of a certain topological
poset. The result holds for all variations of the cobordism category mentioned above; we

prove the general result in Proposition 2.14 below.

Definition 2.13. Let
Dy CR xR+ Xlﬁg(N—‘rl, 1)

denote the subspace of tuples (¢, e, (W, £)) such that [t—e,t+¢] consists of regular values
for z1: W —R. Define a partial order on Dy by

(t,e, W, 0))< (t',e, (W', "))

if and only if (W, £)=(W"',¢") and t+e<t’'—e.

Define the full subposet Dy 1, C Dy to consist of those tuples (¢,e, (W,£)) such that
WN(Rx (—o00, 0] x RY"1) =R x L as §-manifolds.

If CCCyr,(RY) is a subcategory which consists of entire path components of the
object and morphism spaces of Cg 1 (RY), let Dg, 1,.CDg, 1. be the smallest subposet con-
sisting of entire path components of the object and morphism spaces of Dy ; which con-
tains those tuples (¢, e, (W, ¢)) such that W|;€Ob(C), and those morphisms (¢, ¢, (W, £)) <
(t' &', (W', £")) with W|p ;;€Mor(C).
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PROPOSITION 2.14. Let CCCy 1 (RN) be a subcategory which consists of entire path
components of the object and morphism spaces of C97L(RN). Then there is a weak ho-

motopy equivalence
BC~BDj .

Proof. We introduce an auxiliary topological poset Dg:i‘ which maps to both Dg7 I
and C. It is the subposet of DGCJJ consisting of (¢,¢, (W, £)) such that (W,¢) is a product
over (t—e,t+¢). This condition means that if we write W|;={t} x M and give M the
inherited #-structure, then

W|(t—€,t+5) = (ti{‘:a t+5) x M
as f-manifolds. Then there is a zig-zag of functors

D§ , +— Dy —C,

where the first arrow is the inclusion of the subposet and the second is the functor that
sends a morphism (a<b, W,{) to the manifold (W{(, ; —ae;) extended cylindrically in
(—00,0] xRN and [b—a, 00) x RY. This induces a zig-zag diagram

N.D§ ;, +— N Dg'i — NiC,
and we prove that both maps are weak equivalences for all k in the same way as in

[GRW1, Theorem 3.9]. O

Applying the above construction to the categories Cg}’IlJ (RN) we obtain topological

posets Dg’lL (RY) and weak homotopy equivalences
BCyy (RN) ~ BDyy (RY). (2.1)

Similarly, when we specialise to the case d=2n and let ACWQ(Ob(C;ZLn_Q(RN))) be a

collection of path components of objects, we obtain weak homotopy equivalences

BCy M RN )~ BDy P (RY). (2.2)

2.7. The homotopy type of Co,r (RYV)

In [GRW1, Theorems 3.9 and 3.10] we proved that there is a weak homotopy equivalence
BDg(RY)~g(N+1,1), which combined with Proposition 2.14 gives

BCy(RN) ~ BDg(RN) ~ (N +1,1). (2.3)

(Strictly speaking, in that paper we worked with a version of Dg(R”Y) where e=0, but
the obvious map induces a levelwise weak equivalence of nerves.) For the purposes of
this paper we require a slightly stronger version of this result, taking into account the
submanifold L.
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ProproOSITION 2.15. There are weak homotopy equivalences
BCo,r(RY) = BDy 1 (RY) =g (N +1,1),
where Yo L (N+1,1)Cpg(N+1,1) is the subspace consisting of those (W, £) such that
WN(Rx (—00, 0] xRN "N =Rx L as §-manifolds.
Proof. The proof of [GRW1, Theorem 3.10] applies verbatim. O

PROPOSITION 2.16. The inclusion
i ’(/JQ’L(N—f—l, 1) — 1/)9(N+17 1)
is a weak homotopy equivalence.

Proof. This is similar to [GRW1, Lemma 4.6], which is essentially the case L=D9"1.
It requires careful analysis of f-structures, so let us, for this proof only, denote the 6;_1-
structure on L by ¢:e'®@TL—0*y. We first want to construct the double D(L) of L as
a 04_1-manifold, and a canonical #-null-bordism of it. Recall that L is a submanifold of
(—=%,0] x(=1,1)V~1 which we identify with

0% (—5,0] % (~1, )N € (1,0 (=3, 0] x (~1, 1)V

Let VC (-1, ( 5 ) —1,1)N~! denote the subset swept out by rotating L around
(0,0) in the half- plane (-1
sional submanifold with boundary, and L lies in its boundary. We define D(L)=0V, and

,0]x(—1,1). Since L was collared, this subset is a d-dimen-

L=D(L)\int(L). The inclusion L=V is a homotopy equivalence, so there is a unique
extension up to homotopy

¢
S @TL —— 0%y

A
7
7/
Vd
Ve

TV,

where the vertical map sends €' to the outwards pointing vector. This restricts to a
f-structure on D(L), and hence on L, and V gives a -cobordism V: @~+D(L).

Similarly, we can rotate L in the half-plane [0,1)x (—1,1) around the point (0, f%)
to obtain a submanifold of [0, 1] x[~1,0]x (—1,1)V~1, extending to a §-cobordism UC
[0,1]x [~1,0] x (—=1,1)N = ending at {1} x[~1,0] x L and starting at {0} x (LU(L—e1)),
where L—e; C [71, %) x (—1,1)N~! denotes the parallel translate of L.

The @-manifolds U and V give us the tools we need. D(L) is a submanifold of
(=1, 1) x(=1,1)N1, so we have a f-manifold Rx D(L)CRx (-1, 1) x(-1,1)N~1. We
define a map

ripg(N+1,1) — e, L (N+1,1),
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...... o \
Figure 1. Adding and removing L.
which given (W, ¢)CRx(—1,1)x(—1,1)N¥~! applies the unique increasing affine diffeo-
morphism (—1, )%(% 1) to its second coordinate, and then takes the (disjoint) union

with Rx D(L).

The composition o7 is homotopic to the identity as the #-null-bordism V of D(L)
may be used to push the cylinder Rx D(L) off to the right. A similar argument, pushing
U to the left, proves that the composition roi is homotopic to the identity. Figure 1

shows how. O

Combining this proposition with Proposition 2.15 and the homotopy equivalence (2.3)

gives the following corollary.

COROLLARY 2.17. For any pair (L,L1,) as in Definition 2.7, the inclusion
BCo,(RY) — BCy(RY)

s a weak homotopy equivalence.

2.8. A more flexible model

From the poset models of §2.6 we construct the semi-simplicial spaces
K,l K,
De,L(RN)° = N°D9,L(RN)~

The remarks of §2.6 and Proposition 2.15 show that the geometric realisations of these
semi-simplicial spaces are models for the classifying spaces of the categories Cy é (RN)
in which we are interested. The benefit of working with these semi-simplicial spaces

instead of the cobordism categories is that we can often make constructions which are
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not functorial, yet give well-defined maps between geometric realisations of the semi-
simplicial spaces involved.

To make this technique easier to apply, we will define an auxiliary semi-simplicial
space X!, (The space also depends on #, N and L, but we suppress these from the
notation.) We will prove that its geometric realisation is weakly equivalent to BC(’;:}J (RM),
but it will be easier to construct a simplicial map into X' than into N.ng’i(RN ) or
Dg:lL (RM).. We will also write X for X1

Definition 2.18. Let 6: B—»BO(d), N and L be as before, and let k,{>—1 be in-
tegers. Define X! to be the semi-simplicial space with p-simplices consisting of cer-
tain tuples (a,e,(W,¥)) such that a=(ao,...,a,) ERPTL, e=(eg,...,ep) €(R50)PT!, and
(W, 0)€Wq((ap—eo, ap+e,) xRY), satisfying

(i) Wc(ap—eo,ap+ep)x (—1,1)N;

(ii) W and (ag—¢o, a,+e,) x L agree as §-manifolds on the subspace x5 *(—oc,0];

(iil) a;—1+e;—1<a;—¢; for all i=1, ..., p;

(iv) for each pair of regular values to <t €| J;_; (a;—&;, a;+€;), the cobordism Wy, 4]
is k-connected relative to its outgoing boundary;

(v) for each regular value t€(a; —¢;, a;+¢;), the map
mi(Wl) — m;(B),

induced by |, is injective for all basepoints and all j<I.

We topologise this set as a subspace of RPT!x (R+)PH x Wy((—1,1)xRY), where
we use the standard affine diffeomorphism (—1,1)=(ag—¢o, ap+ep) to identify the sets
Wy ((ag—eo, ap+ep) xRN) and Wy((—1,1) xRY). The jth face map is given by forgetting

a; and €5, and if j=0, composing with the restriction map
y((ap—eo, ap+ep) xRY) — Wy((ag —e1,ap+e,) xRY),

and similarly if j=p.

There are semi-simplicial maps Dg:lL(]RN )e— X! which on p-simplices are given
by sending (a, e, (W,¢)) with (W,£)€W¥y(RxRY) to the same thing restricted down to
Uy ((ag—eo, ap+ep) xRY).

The semi-simplicial space X! is easier to map into (by a semi-simplicial map) than
Dg:lL (RM), for two reasons. Firstly, we do not require that the intervals (a;—¢;, a;+¢;)
consist entirely of regular values: instead we allow critical values, and conditions (iv)
and (v) ensure that the critical values do not affect the essential properties of the space.
Secondly, we discard those parts of the manifold outside of (ap—eo,ap+¢;), and so do

not need to worry about controlling parts of the manifold outside of the region.
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Definition 2.19. Tn the case d=2n, with ACm(Ob(Cy """ *(RN))) being a collec-
tion of path components of objects, we make the entirely analogous definition of X7~ 1A,
Precisely, in Definition 2.18 we replace condition (v) by

(v") for each regular value t€(a; —¢;, a;+€;), the 84_1-manifold (W], £];) lies in A.

The following is our main result concerning these models, and together with (2.1) and
(2.2) provides weak homotopy equivalences Bcgi (RM)~|X#!| and, in the case d=2n,
BCy M (RN )= | XA,

PROPOSITION 2.20. Let x and | satisfy the inequalities in Definition 2.18. The
semi-simplicial map Dg,’lL(RN).%XF’l, and when d=2n also Dg,zl’A(RN).%X,”_l’A,

induce weak homotopy equivalences after geometric realisation.

Proof. For the proof we introduce an auxiliary semi-simplicial space X!, Its p-

simplices are those tuples
(a,e, (W, £)) €RPTLx (Ruo)P x9hp (N +1,1)

satisfying the conditions of Definition 2.18, except that the interval (ag—eo, ap+ep) is
replaced by R in (i) and (ii). We can regard D;’IL (RM), as a subspace of X! and write

r for the inclusion, and we have a factorisation
Dy (RY). 5 Xt — X,

The map X! — X! is a weak homotopy equivalence in each simplicial degree, by meth-
ods similar to [GRW1, Theorem 3.9]. Briefly, in simplicial degree p choose—continuously
in the data (ao,ap, €0, p)—diffeomorphisms (ag—eo, ap+ep) =R which are the identity
on [ag,ap]. Using this family of diffeomorphisms to stretch gives a map X/'— X/,
which is homotopy inverse to the restriction map X' — X7,

To show that the first map r induces a weak homotopy equivalence on geometric
realisation, we use a technique which we shall use many times in this paper. That is, we

consider a commutative diagram

f K
oD" —— | Dy (RY).

bl

Ve 7]

D X2

and show that the pair of maps (f, f) may be changed by a homotopy of such maps to

a new pair which admits a dashed diagonal map making both triangles commute. This



STABLE MODULI SPACES OF HIGH-DIMENSIONAL MANIFOLDS 285

shows that |r| is a weak homotopy equivalence, as claimed. Let us take the opportunity
to point out that |r| is a continuous injection because it is the geometric realisation of a
levelwise continuous injection, but it does not follow that |r| is a homeomorphism onto
its image, even though r has this property levelwise.

For each z€ D" the point f(z) is a tuple (¢,a,e, (W (x),£)), where t€int(AP) and
(a,e, (W(x),£))eX;"!, and we may choose a pair (a”,&”) such that

p
[a® =", a"+€%] C U (ai—ei,ai+e;)\{ai}
=0

and that [a®—e”, a”+&"] consists of regular values of x1: W (xz)—R. By properness of
x1: W(z)—R, there is a neighbourhood U, >« for which [a® —e®, a” +£7] still consists of
regular values. The U,’s cover D" and we let {U;};cs be a finite subcover. We may
suppose that a’#a”, as otherwise we may change the cover by letting U j’-:UjUUk with
(a?)'=a?=a" and (¢7)'=min{e’,e"}. Once the a’ are distinct, we may shrink the &/ so
that the intervals [a’ +&7, a’ —e7] are pairwise disjoint, and so that no a; lies in such an
interval.

As the intervals [a/+¢7,a’ —¢7] are chosen to consist of regular values, the data
{(Uj,a%,€%)} e, together with a choice of partition of unity subordinate to the cover by
the U;’s, determine a map F": D”%|D;}:’71(RN).
manifolds. As [a/ —&7,a/+e7|CU!_,(a;—&;, a;+¢€;), this new family satisfies conditions
(iv) and (v) of Definition 2.18 (as the old family did) so F’ actually lifts further to
a map F:D"%\DS,’]{J(RN). .

underlying #-manifolds it is constant, but on the interval data we first use the straight-

with the same underlying family of 6-

There is a homotopy H from |r|oF to f as follows: on

line homotopy from the data {(a’,&7)};c; to the data {(a;,e)}’_,, where we choose
e<min; &; small enough so that [a;—¢,a;+¢] is disjoint from the [a/ —&’,a? +€7]. This
straight-line homotopy is in the barycentric coordinates: as the intervals are all disjoint,

the join of the simplices they describe also lies in | Dy ’ZL(]RN )e

, and so there is a canonical
straight line between them. Then we use the obvious homotopy from the data {(a;,)}?_,
to the data {(a;,e;)}!_, that stretches the ’s. The same construction gives a homotopy
H from F|sp» to f such that |r|oH=H|sp=, which is the data we required.

The case when d=2n and A is chosen is identical. O

3. Surgery on morphisms

In this section we wish to study the filtration

CorRY)C...cCy (RY)ccCy  (RY) cCyp (RY) =Co . (RY)
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and in particular establish the following theorem. The reader mainly interested in The-
orems 1.1 and 1.2 can take d=2n, §=0": BO(2n)(n)—BO(2n), L=2D?*"~1 and N=o0

(but the proof does not simplify much in this special case).

THEOREM 3.1. Suppose that the following conditions are satisfied:
(i) 26<d—2;
(il) K+1+d<N+1;
(iii) L admits a handle decomposition only using handles of index at most d—rk—2.
Then the map
BCj (RY) — B (RY)

s a weak homotopy equivalence.

The proof of Theorem 3.1 consists of performing surgery on morphisms, in order to
make them more highly connected relative to their outgoing boundary. Making this idea
into a proof has two main ingredients. Firstly, we construct for each morphism in Cg,zl a
contractible space of surgery data. The space is defined in Definition 3.2, and the precise
statement is Theorem 3.4. Secondly, we implement the surgery described by the surgery
data, using a standard one-parameter family of manifolds defined in §3.2.

In order to motivate some of the more technical constructions, let us first give an
informal account of this technique. For simplicity, we suppose that N=oo, L=2 and
k=0. We first discuss a technique which works when there are no tangential structures
to keep track of, and then explain a small modification which makes it work for any
tangential structure.

We first apply the equivalence (2.1) to reduce the problem to studying the map
BD" — BD ™!
of classifying spaces of posets. Let
o= (to, t1;a0,a1;€0,1; W) € BD ™1

be a point on a l-simplex (for example), where (to,t1)E€A! are the barycentric coor-
dinates. We will describe a way of producing a path from its image in | X, !| into the
subset | X?

construction. If the cobordism W{i,, 4,1 is already 0-connected relative to its outgoing

. The proof of Theorem 3.1 will be a systematic, parameterised version of this

boundary, then the image of ¢ in | X !| already lies in the subset | X?|, and we are done.

If not, we may choose a finite set of distinct points

{foc: *— W‘[ao,al]}aeA
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ai

ao

Figure 2. An element of N1 D! which is not in N1DY, together with surgery data.

such that the pair (Wlja,,a,)s (Wlay )UUuep fa(*)) is O-connected. We then choose tubu-
lar neighbourhoods of these points to obtain codimension-0 embeddings

Far {=1} xR — W40 a1
which we can extend to embeddings
a:[-2,0] xRT — RxR>®

sending {—2} xR? into (—00,ag—¢co) x R® and {0} xR? into (a;+e1,00) xR>®. As the
original points f, (x) were distinct, we may suppose that the embeddings e, are disjoint
from each other, and only intersect W in {—1} x R, In Figure 2 we have shown a typical
example of the case d=2: The original bordism is not O-connected relative to its outgoing
boundary, but we have chosen the e,’s and depicted the images e, ({—1} xR?) as the
shaded discs. (One of the discs in the figure is redundant; it will be important that we
allow such redundant surgery data.)

Now on each e, ([—2,0]xR9) we do the surgery move shown in Figure 3, a move
similar in spirit, though much simpler, than that described in [GMTW, §6.2]. More

precisely, Figure 3 describes a continuous 1-parameter family of d-manifolds

P, C[-2,1] xR te[0,1],

9 ia %a %a
functions to R, depicted in the figure as the height function (projection onto the vertical

depicted (for d=2) by its values at times t=0 1. The family comes equipped with
axis), such that under the embedding e, the height ag—eg corresponds to the bottom of
the pictures in Figure 3 and the height a; 4+ corresponds to the dashed line in the figure,

and anything above the dashed line will actually end up being forgotten in a moment.
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Figure 3. The simple move for surgery on morphisms.

(We find it useful to depict it anyway, in order to better explain the surgery move: The
manifold at time 1 is obtained from the manifold at time 0 by performing connected sum,
alias zero-surgery.) The family starts at the manifold Py=S° x R?, and we may cut out
each e, ([—2,0] x R?) from W and glue in the part of P; below the dashed line, to obtain
a one-parameter family of manifolds Wy, each equipped with a height function W; —R,
with Wo=W. The values {ag, a1} do not remain regular throughout this move, so this
does not describe a path in the space BD~!. However, it does describe a path in the
space | X !|. Furthermore, at the end of the move we obtain a manifold W;=W such
that (W|ia,,a,)» Wla,) is O-connected, and hence a point in |X?|. By Proposition 2.20,
this proves that 7o(BD%)—mo(BD™1) is surjective, as required.

This surgery move generalises easily to the case when N is finite (but sufficiently
large), L#@ and x>0 (the analogue of the surgery move will start with S* x R?~* and
end with R*+1 x §9=#~1 equipped with appropriate height functions). However, it does
not generalise well to the case of arbitrary tangential structures (to understand how it can
fail, we suggest that the reader attempt to impose a family of framings to the family of
2-manifolds in Figure 3). One way to fix this would be to use the surgery move described
in [GMTW, §6.2], but that does not seem to generalise to x>0. Instead we modify the

surgery move in Figure 3 as shown in Figure 4.

The refined surgery move still begins with S° xR?, but it ends with (R! x S4=1)\ {p;}
for a point p; €R! x S9!, The height function is modified so that it goes to —oo (or at
least below ag—eg) at p;. As we shall see (in the proof of Proposition 3.6, where we
also explain the analogous process for k>0) there is a canonical way of extending any

tangential structure on {—1} xR to the resulting one-parameter family of manifolds.
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Figure 4. The refined move for surgery on morphisms.

3.1. Surgery data

In order to implement the ideas discussed above, we will fatten the semi-simplicial space
Dy L(RN ). up to a bi-semi-simplicial space Dy L(RN )... which includes suitable surgery
data. The space DS,L(RN).,. is described in Definition 3.3 below, using the following
notation. Let VCV CR*T! xR%~* be the subspaces

V=(-2,00xR? and V=[-2,0]xR,

and let h: V—[-2,0]CR denote the projection to the first coordinate, which we call the
height function. Let O_D*t1CdD"**! denote the lower hemisphere (explicitly, it is given
by &_D**1=9D*t1Nh~1([-1,0])). We shall also use the notation [p]¥=A([p], [1]) when
[pl€Ainj. The elements of [p]Y are in bijection with {0,...,p+1}, using the convention
that ¢: [p]—[1] corresponds to the number i with ¢=*(1)={i,i+1, ..., p}. Finally, we fix

once and for all an infinite set €.

Definition 3.2. Let z=(a,e, (W, EW))EDg”le (RY), and define Zy(z) to be the set of
triples (A, d,e), where ACQ is a finite set, §: A—[p]V is a function, and

e AxV e Rx(0,1)x(~1,1)N?

is an embedding, satisfying the following conditions:

(i) on every subset (x1°€|(xy57)” " (ak—&k, ar+ex) C{A}xV, the height function
x10€e coincides with the height function h up to an affine transformation;

(i) e sends Axh~1(0) into z; *(a,+ep, 0);

(ili) for i>0, e sends 671(i) x h ™1 (—2) into z7 " (a;_1+&;_1,00);
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(iv) e sends Axh~1(—2) into x7 ! (—00, ap—¢ep);
(v) e Y(W)=Ax0_Drtl xRI=*;
(vi) writing D;=e(671(i) x0_D**1 x{0}) for i€[p]", the pair

(W|[ai71,a7y]a W

aiUDihai—lvai])
is k-connected for each i€{1, ..., p}.

A typical example of a surgery datum is (partially) depicted in Figure 2. In that
figure d=2 and k=0, and only the image e(Axd_D*T!xRI=%)CW is shown. Let us
explain the role that elements of Zy(x) will play in the proof of Theorem 3.1. In §3.3 we
shall describe a surgery process which to an element of Zy(x) associates a path from the
image of 2 under the forgetful map D'gle (RN )p—>XI’f’1 to a point in the subspace X,
formalising the one-parameter family depicted in Figure 4 (the image of e is automatically
disjoint from L). Conflating the three different simplicial spaces modelling BCy . (RY)
from §2.4, §2.6 and §2.8, we can thus think of an element of Zy(z) as a surgery datum for
making morphisms k-connected relative to their outgoing boundary (they start out being
only (k—1)-connected). To explain this in more detail, it is helpful to write A;=5"1(4)
for i€ [p]¥={0, ...,p+1}. For 0<i<p+1, the restriction of e to A; x V is then the surgery
data which will be used to make the bordism W/, _, q,] k-connected relative to its
outgoing boundary. (The embeddings associated with the outer values i=0 and i=p+1
play a more technical role; they will make the surgery construction compatible with face
maps in the p direction.)

In order to prove Theorem 3.1 we would like to have a contractible space of surgery
data, but Zy(x) is usually far from contractible (we only defined Zy(x) as a set, but it
would be disconnected in any reasonable topology). To fix that, we extend the definition
to a semi-simplicial set Z. (x) whose set of g-simplices is the subset Z,(z)C Zo(z)7™* con-
sisting of (g+1)-tuples which are disjoint (i.e. the subsets AC are disjoint and the maps
e have disjoint images). Allowing also x to vary gives rise to a bi-semi-simplicial space
Dj 1 (RN). ., whose (p, q)-simplices are p-chains in the poset Dg’_Ll (RN) equipped with
(¢+1)-tuply redundant surgery data. To fix notation we spell this out in the following
definition.

Definition 3.3. Let x=(a, e, (W, KW))EDg’_Ll (RY), and ¢=0, define Z,(x) to be the
set of triples (A, d,e), where ACQ is a finite set, §: A—[p]Y x[q] is a function, and
e AxV = Rx(0,1)x(—1,1)N !
is an embedding, subject to the requirement that for each j€[q], the restriction of e

to 67 1([p]Y x{j})xV defines an element of Zo(x). We shall write A; ;=6"*(i, ;) and
eij=¢lp, ,xv for i€[p]" and j€[ql.
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We then define a bi-semi-simplicial space Dy L(RN )... as a set by
Dg,L(RN)M ={(z,y):we Dg;:l(RN)p and y € Zy(x)}

topologised as a subspace of
B (P+2)(q+1)
D7 (RY), x ( 11 COO(Axv,RN+1)> .
ACQ
The space D’g)L(RN)p’q is functorial in [p]€ Ajyj by composing each §;: Aj—[p]¥ with the
induced map [p']¥ —[p]" and functorial in [g]€ Ajj in the same way as Z,(z). Explicitly,
the face map d; in the ¢ direction forgets the embeddings e, ; and in the p direction takes
the union of e; , and e;;1 .. We shall write Dg,L(RN)p7,1:Dg_Ll (RY),,, and there is an

augmentation map D’g,L(RN)p’q%Dg,L(RN)p’_l which forgets all surgery data.

The main result concerning this bi-semi-simplicial space is the following, whose proof

we defer until §6.

THEOREM 3.4. Under the assumptions of Theorem 3.1, the augmentation map
D§ (RY)... — Dy ' (RY).

induces a weak homotopy equivalence after geometric realisation.

In fact, we shall prove this theorem with condition (i) of Theorem 3.1 replaced
by the weaker condition 2k<{d—1. The stronger assumption 2k <d—2 will be used in

Lemma 3.7.

3.2. The standard family

We will now construct a one-parameter family Py, t€[0, 1], of submanifolds of the space
V=(—2,0)xR? which formalises the family of manifolds depicted in Figure 4 (more
precisely, it corresponds to the part of Figure 4 which is below the dashed line). In
the process, we will also define a family P; formalising the family depicted in Figure 3.
(This simpler family would suffice for proving Theorem 3.1 in the case without tangential
structures; we shall not actually use the simpler family, but it is perhaps helpful to keep
in mind.) The manifolds Py and P; (and P}) shall be defined by intersecting V CR4*!
with submanifolds of the larger space R4t denoted Py, Py, and P|. (These larger
manifolds include the parts of Figures 3 and 4 above the dashed line.) For following the
construction, it might also be useful to have the case d=1 and k=0 in mind, which is

depicted in Figure 5 (although these dimensions do not satisfy the inequality 2k <d—2).
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First define the element PyeW4(R xR* x R4™%) as
ﬁo = D" xRI~,

This manifold is depicted in Figure 5a (for d=1 and k=0) and the first frame in Figures 3

and 4 (for d=2 and x=0). We then choose a function ¢: [0, 00)—[0,00) which is the

1

7 near 0, and has ¢"”>0.

identity function on a neighbourhood of [%, oo), takes value
The map defined by

¢ R x@DIF — DR RI#,

T
]
is an embedding with inverse (u,v)(|v|u,v/|v]), and we shall write P} for its image,
which is depicted in Figure 5b (for d=1 and £=0) and in the last frame of Figure 3 (for
d=2 and k=0).

Finally, we define Py by modifying the embedding ¢’ in the following way: The
subset 75{ agrees with the subset D*T! x R?~* in a neighbourhood of the region defined
by [v]>3,
|v|:%, which we shall temporarily denote by S. This sphere is “level” in the sense that

and in particular it contains the (d—x—1)-sphere defined by u=—e; and

the height function u1:751—>[—1, 1] takes the constant value —1 on S. We shall modify
the embedding ¢’ by “tilting” a small neighbourhood of S so that the height function on

the tilted sphere is instead the Morse function vl—%. The resulting subset
Py C[-2,1]x D¥ xR

is depicted in the last frame of Figure 4 (in the case d=2 and xk=0) and in Figure 5c
(in the case d=1 and k=0). To define P1 more precisely, we first pick a bump function
A:R—0, 1] supported in a small neighbourhood of 0, increasing on (—oo, 0], decreasing
on [0,00), and having A71(1)={0}, and define a bump function 7: R+ xR4=*—[0,1]
supported in a small neighbourhood of S as the product

T(u, v) = Aug +1)AM(ug) ... A1) A(2]v]—1).

We choose A with support in [—1,1], and small enough that the support of = will be

contained in the region where P} agrees with D"+ x R9~" and we shall verify presently
that the smooth function defined by

§: DX RITF 5 [=2,1] x DF xR4™F,

(u,v) — (u,v)+(v1 —1)7(u,v)eq,
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(a) Po R+ (b) P4
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Figure 5. (a)—(c) The submanifolds Py, 'Pl and Py of RFT1 xR4~F in the case d=1 and £=0.
(1)—(6) The path P; of submanifolds of V.

O

hell
| S
I

is an embedding. We then let P, be the image of the composition
g=jog i R""' %D — [=2,1]x D" xR*™"

and define
730, 7)1 S \I/d(V)

by intersecting the manifolds 750 and 731 with the open set V=(—2,0) x R%.

To see that the function j is indeed an embedding, we first note that it is the
restriction of a function [~1,1]xR%—=RxR? defined by the same formula. Since the
extended function commutes with the projection to the R¢ coordinates, it suffices to
prove that

Uy — J1 (U1, U2y ey Ug41, V)

defines an embedding [—1,1]—R for any (us, ..., uxt1,v) ERY, where j; denotes the first
coordinate of j. We calculate
9
Ouy
By the assumption on A, we will have A (u;+1)<0 as u; >—1. We can also conclude
that (v —1)A(2|v]—1)<0, as A(2]v|—1)=0 unless |v|<1, in which case v; —1<0. Since
Auz) ... A(ug4+1) =0, we conclude that 951 /0u; >1.

= (u,v) =1+X (u1+1) (11 = DA = 1)) A(u2) ... A1)
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To construct P, €W q(V) for intermediate values of t€[0, 1], we first observe that Py
and P agree near the subset |v|>1. (And 75{ agrees with Py near the larger subset
|v|>%.) Starting with the two submanifolds 750,751 CRxR*xR4 " we then pull the
entire region {(u,v):|v|<1} downwards, much in the same fashion as we tilted the sphere
S, i.e. we compose with an ambient diffeomorphism which subtracts a non-negative
amount from the first coordinate. We pull far enough so that the region where the
submanifolds may disagree is moved completely outside of V. This will give two one-
parameter families of submanifolds which, upon restricting to V, give two paths in ¥ 4(V)
starting at Py and P; and ending at the same point in ¥4(V). Concatenating one path
with the reverse of the other, we get the desired path from Py to P;.

Spelling this pulling-down process out in a little more detail, we first choose a func-
tion g: [0, 00)— [0, c0) taking the value 1 near [0, 1], the value 0 near [2, c0), and which is
strictly decreasing on o~ 1((0,1)). We then define embeddings

Hy:RxRFxRI™® s RxR®xRI¥™*,

(u, v) = (u, v) =to([v])er,

which for all ¢ restrict to the identity near the region defined by |v|>2. Define one-

parameter families of manifolds by

PP =VNH(Po)=(H_s|v)"*(Po),
Pl =VNH(P1)=(H_e|v) " (P1).

The second description shows that these are closed subsets of V' and describe continuous
functions R—W4(V). It is easy to see that we have PY=PLeW (V) for t>3, and we
then define the path P, as the concatenation

'Po:'Pg w\,)’Pg:’P% ’\’\‘>'P&='P1

in Wy(V), reparameterised so that the path has length 1. We collect the most important

properties of this family in Proposition 3.6 below.

Remark 3.5. The one-parameter family of d-manifolds described above is in fact
strongly related to the more usual description of performing x-surgery on a d-manifold,
which we briefly recall (see e.g. [Mil, pp.12fF]). Let Q(u,v)=—|u|?+v|?, where as
usual (u,v) ER*xRI"%. Then the inverse image Q~*(s) is a smooth d-manifold for
570, diffeomorphic to 9D*T1 x R4~* for s<0 and to R*t! x 9D for s>0. The classical
description of a k-surgery consists of cutting out a copy of Q~!(—3) from a d-manifold

and replacing it with Q~1(3). The trace of the surgery is a cobordism equipped with a
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Q7' (3)

Q7 (-3)

Pbo

Figure 6. The image of the embedding P—Q~1([-3, 3]).

Morse function with a single critical point, interpolating between the original manifold
and the surgered one.

To explain the relation between this classical picture and the one-parameter fam-
ily we have defined above, we shall exhibit a continuous family of open embeddings
PP —Q 1 (t—3) and P} —Q~(3—t) gluing to a continuous family of embeddings P;—
Q1(6t—3). Indeed, for t€[0,3] the function (u,v)— Hy(u/|u|,v) defines a diffeomor-
phism from Q1 (t—3) to Hy(Py) which restricts to a diffeomorphism from an open subset
of Q7(t—3) to PY. Similarly the function (u,v)rs Hiog(u,v/|v|) defines a diffeomor-
phism from Q~1(3—t) to Hy(P;) restricting to a diffeomorphism from an open subset
of Q7'(3—t) to P{. The inverses of these diffeomorphisms give the desired smooth
embeddings PP —Q~1(t—3) and P} —-Q~1(3—t), which fit together at t=3.

The one-parameter family ¢t—7P; has “total space” given by

P={(t,z)€[0,1]xV:z€P:},

and the above remarks give a continuous embedding P—Q~1([-3,3]). Let us briefly
discuss the image of this embedding, which is depicted as the shaded area in Figure 6 in
the case d=1 and xk=0.

The point plz(f%,(),f%\/ﬁ, 0) has Q(p1)=3, and corresponds to the point in
Py at the bottom of the tilted sphere, i.e. the global minimum of the height function
751H[72, 1]. Since this bottom point is outside V, the point p; is not in the image of
the embedding of P. Likewise, the pulled-down global minimum of the height function
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Hg(ﬁl)%[f&l] corresponds to the point po=(—3,0,—3,0)€Q~1(0), and the entire
straight line from pg to p; is disjoint from the image of the embedding P—Q~*([-3, 3]).
Finally, the straight line from 0 to pg, which takes place inside Q~1(0), is also disjoint
from the embedding P. Thus we have obtained a homeomorphism from P to an open

subset of the set
Q=Q([-3,3)\([0, po]U[po, p1)); (3.1)

which is contractible.

PROPOSITION 3.6. For d>2 and 2k<d—1, the one-parameter family Pre¥y(V),
defined for t€[0,1], has the following properties:

(i) The height function, i.e. the restriction of h:V—(—2,0) to P,CV, has isolated
critical values.

(ii) Po=int(0_ DY) xRI=" where 0D T1=0D*+1N([-1,0] x R®).

(iii) Independently of t€[0,1] we have

P\ (R % BS77(0)) = int(8_ D" 1) x (RT%\ BS=%(0)).

For ease of notation we write P2 for this closed subset of P;.
(iv) For all t and each pair of regular values —2<a<b<0 of the height function, the
pair
(Ptlia0) PelsUP? |(a.0) (3.2)

18 k-connected.

(v) For each pair of regular values —2<a<b<0 of the height function, the pair

(P1l{ap)> P1lv)

18 K-connected.

Furthermore, if Py is equipped with a 6-structure £ we can upgrade this, continuously
in £, to a one-parameter family Py(£)€Wy(V) starting from (Po, L) such that

(iii") The path Py({) is constant as 0-manifolds near P?.

Proof. We have seen properties (i)—(iii) during the construction (the statement
in (iii) would still be true with 3 replaced by 2, but we wish to emphasise the smaller
set). For property (iv) we consider two cases depending on the value of a. In the case

a>—1, the pair (3.2) is homotopy equivalent to the pair

(Pt|[a,b] ) Pt|b)7

using e.g. the gradient flow trajectories of h to deform P?'[a,b] back to P?|,. In the case

a<—1 we consider the modified height function, defined using the coordinates (u,v)€
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RAHLXRI=F as h(u,v)=h(u,v)+A(Jv]), where A:[0,00)—[0,00) is a smooth function
which is 0 on [0, 4] and restricts to a diffeomorphism (4, 00)— (0, c0). This modification
ensures that h is a proper function on P;. With this definition P;Nh~*([a, b]) is contained
in P,Nh~*([a,b]), and P;Nh~1(b) is contained in Py, UP?|(, 4, which may be seen as
follows. Let (u,v)€P;,Nh~1([a,b]): if |v|<4 then h(u,v)=h(u,v)€Ea,b] and we are done;
if |v|>2 then (u,v) lies in the part of P; that does not vary with ¢, i.e. 9D"*1 x R¥=* and
s0 h(u,v)=u;>—1>a by assumption, and b>h(u,v)>h(u,v) too. The same reasoning
treats PyNh~1(b).

We claim that the inclusion of pairs
(Penh™*([a, b)), Penh (D) — (Pilap)s PelsUPY |(an) (3.3)

is a homotopy equivalence. To define a homotopy inverse, we first consider the continuous,

piecewise smooth function g;: [0, 00)— (0, 00) defined for ¢<b by

ot(s)=1 for s €0, 2],

ot(s)= A~ (61 1(:_” for s €[3,00),
and by linear interpolation for s€[2,3]. Then the function (u,v)— (u,vey, (Jv])) re-
stricts to a homotopy inverse of (3.3), where both homotopies are given by straight lines
in RI+L,

In either case, the connectivity question is reduced to studying the inverse image of
an interval relative to its outgoing boundary and can be studied as in ordinary Morse
theory one critical level at a time. The proof of (iv) will be finished once we establish that
for each critical value of h:P;—R in the interval (a,b), the function can be perturbed
in a neighbourhood of the critical set contained in h~'((a, b)) to a Morse function with
no more than one critical point, and of index at most d—x—1. (In the case a>—1 we
have h=h near any critical point of &, so it suffices to consider h.) It is easy to verify
that h: P? —R has at most two critical values in (—2,0). One critical value moves with ¢
and is homotopically Morse of index 0 for 0<t<1 and index x for 1<¢<3 (meaning that
the function can be perturbed to a Morse function with one critical point of that index).
The other is at —1 and can be cancelled (meaning that the function can be perturbed
to a non-singular function there). Since 2k <d—1 and hence k<d—r—1, the index is at
most d—k—1 as claimed. Similarly, one verifies that h: P! —R has at most two critical
values in (—2,0), one of which is —1 and can be cancelled, the other of which moves with
t and is homotopically Morse of index d—x—1.

Property (v) can be proved in a similar way. In the case a<—1<b the pair is
a relative (d—1)-cell, so it is (d—2)-connected and hence k-connected (since d>2 and

2k<d—1). In all other cases the inclusion P;|,—P¢|(4,5) is @ homotopy equivalence.
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To establish the extra properties which can be obtained given a 6-structure ¢ on
Po=int(0_D"T1) xRI~* we again use the “total space” P={(t,x)€[0,1]xR¥*1:xcP;}
and its identification with an open subset of the manifold Q of (3.1). The tangent
bundles TP; assemble to a d-dimensional vector bundle 7,P—P which then becomes
identified with the restriction of the vector bundle T;,Q=Ker(DQ:TQ—T[-3,3]) and
since both Py and Q are contractible, there is no obstruction to picking a vector bundle
map 7:T,Q—TPy which is the identity (with respect to the identifications) over Py
and each Pf:P(‘?CPo. We can then restrict r to r: TP;—TPy and let P;(¢) have the

0-structure fory. O

Let (a,e, (W, 4w ), e)eDg’L(RN)p,O, with e={e; 0}*") (where we omit the set A and
the function §: A—[p]¥ from the notation). We construct a one-parameter family of

f-manifolds

ICE(VV,EW)6\1'9((a0—50,ap+€p)><RN), tG[O, 1]7

by letting it be equal to W{(4,—cy,a,+¢,) Outside of the images of the e; o[, ;xv, and
on each e; o({\}xV) we let it be given by e;o0({\} xPi(weDe;)). This gives a -
manifold, as, by the properties established above, P;(¢y o De; o) and Po(ly - De; o) agree
as #-manifolds near the set (—2,0)xR* x (R4%\ BS7%(0)).

LEMMA 3.7. Let 26<d—2. The tuple (a,e, K (W, b)) is an element of Xz’ffl. If
t=1 or (W,KW)EDG""L(RN),), then (a,e, KL(W, w)) lies in the subspace XjyC X!,

Proof. We must verify conditions (i)—(v) of Definition 2.18 (with /[=—1). Condition
(i) is true by definition, and certainly (ii) is satisfied as the embeddings e; o are disjoint
from Rx L. For (iii) and (v) there is nothing to say.

For (iv), consider regular values a<belJ!_(a;—&;, a;+¢;) of the height function

x1: Wy ZK:E(VV, éw) —R.

The cobordism Wi|(, 5 is obtained from W] [a,b) Dy cutting out embedded images of
cobordisms Po|(4, »,] indexed by )\EA:Hf:(} Ao and gluing in Py, 5,], Where ay <bx
are regular values of the height function on Py and P;. If we denote by X the complement
of the embedded e; o(int(d_ D"1) x B§~*(0)) in the manifold W[4, there are homotopy

pushout squares

X|p — Wilp

|

X —— W [puX
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and
HAEA(Pt|bA U'Ptahambx]) I Wt‘bUX

| |

[xea Peliar o) ——— Wilfa,)-

The left-hand map of the second square is a disjoint union of the maps discussed in
property (iv) of Proposition 3.6, and so is k-connected. As this square is a homotopy
pushout, the right-hand map is also x-connected.

The pair (X, X|p) is obtained from the manifold pair (W), W) by cutting out
embedded copies of (D", dD"). By transversality we see that this does not change relative
homotopy groups in dimensions *<d—x—2, which includes *<x by our assumption that
2k<d—2. In particular, suppose the pair (W|i, 4, W) is k-connected, with k<&, then
the pair (X, X|;) is k-connected too. As the first square above is a homotopy pushout
square, the inclusion Wy|,—W;|,UX also has this connectivity. Hence the composition
Wilo—Wi|sUX — W[4 has the same connectivity as W, —W/|(q,p), up to a maximum
of . This establishes that the tuple (a,e, KL(W, fyy)) is an element of X!, and also
that it lies in X7 if (W, &) lies in DS,L(RN)~ When t=1, there is a little more to say.

Step 1. Suppose a<be&(a;—¢e;,a;+¢;). Then (Wi, W) is oo-connected and so

(Wil{a,5), Wilp) is -connected, by the discussion above.

Step 2. Suppose a€(a;—1—¢€;-1,a;—1+¢;—1) and b€ (a;—¢;, a;+¢;). We now do the
surgeries for A; oCA first, giving a family of manifolds Wt. We claim that the pair
(Wlha,b],wl\b) is k-connected. Once this is established, doing the remaining surgeries
to obtain W; does not change this property, as we have seen above.

Recall from Definition 3.2 (vi) that the pair (Wl WolsUDj,0l[a,5) is £-connected,
where

Dio=¢eio(Nioxd D"t x{0}) C W =Wy.

If we write
Djo=e;0(Aioxd-D" 1 x{v}) W =W,

for some v€R?*\ B{"(0), then the pair (Wol[a,b)5 WO|bU5i,O|[a,b]) is also k-connected.
Now the subset Ei,OCW is contained in e; o(A; XP{?), so we can regard 5170 as a
subset of Wt for all t€[0,1]. The same transversality argument as before now shows
that (X, X |bU1~)1 0l[a,p)) 18 also k-connected, and the same gluing argument shows that
(Wt|[a B Wt\bUD 1)) is r-connected for all t€[0,1]. When t=1, Proposition 3.6 (v)

shows that the 1nclu31on D; 0| [a,b] —W |ja,4) is homotopic relative to DZ olp to @ map into

W1|b, and hence (W1|[a oF W1|b) is k-connected.
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Step 3. For general a<belJ!_,(a;—e;,a;+¢;), we may choose regular values in
each intermediate interval (a;—e;,a;+¢;). By the previous case, this expresses Wil s
as a composition of cobordisms which are all k-connected relative to their outgoing

boundaries, and hence the composition also has that property. O

3.3. Proof of Theorem 3.1

We begin with the composition

D L (R™)... — X5,

— |Dg . (RY).

where the first map (induced by the augmentation) is a homotopy equivalence by Theo-
rem 3.4 and the second is a homotopy equivalence by Proposition 2.20. We will define a
homotopy

110, 1] x| Df L (RY)...| — | X771

starting from this map so that .#(1, —) factors through |X*|—|X*~t|, which is a con-

tinuous injection. Furthermore, there is an injection

|Dg,L(RN)- — \Dg,L(RN)-,O‘ — |D0K,L(RN)-,-
using the empty collection of surgery data, and . will be constant on the image of this
injection. The existence of a homotopy with these properties establishes Theorem 3.1 as

follows: there is a diagram

| Df [, (RY).| ——— | X7
y(L*)
K ‘y(077) K—
|D0,L(RN)’,’ |Xo 1|7

where the square commutes, the horizontal maps are weak homotopy equivalences, the
top triangle commutes exactly and the bottom triangle commutes up to the homotopy .7
Taking homotopy groups we see that the vertical maps are also weak equivalences. Under
the equivalence BC@”"’L(RN)2|X,“|, and similarly for k—1, we obtain Theorem 3.1.

To define the surgery map . we will give a collection of maps

. [0, 1]x D [ (RN, g x AT — X5~
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compatible on their faces. The construction of the last section gives a one-parameter

family
KT Dj 1 (BY) 0 — X5
(a,6, W, €) — (a,e, K (W),
for r€[0, 1], such that ! lands in X, . When ¢=0, we set
Fpolr,(a,e,We))=(a,e, KL(W)) € X;_l.
More generally, for ¢>0 we have e={e; ;}, and for each j we get an element
(a,e, W, exj) € Dj L (RY) 0.

We then set
<Eﬂp,q(ra (a,e,Wye),s)=(a,¢, ]szrq O"'OIC(S;S:) W),

where 5;=s;/maxy, s;. Note that some 5; is always equal to 1, so when r=1, some ICéw_ is
applied to W making each morphism x-connected relative to its outgoing boundary. The
remaining ICgf_k do not change this property, by Lemma 3.7, and so the map .7, 4(1, —)
factors through the subspace X .

The resulting map from [] - ,([0,1] ng)L(RN)p,q x A?) factors through a map

71 [0,1] x| Df L, (RY),..

-1
— X,
which together form a map of semi-simplicial spaces with geometric realisation

Z:0,1]x|Dg [ (RN). .| — | X1,

On the image of |Dg7L(]RN). , the homotopy is constant as there is no surgery data. At
r=1 it factors through |X#|. This finishes the proof of Theorem 3.1.

4. Surgery on objects below the middle dimension

In this section we wish to study the filtration
CoL(BRY) C .. CCp (RY) C R (RY) €y " (RY) = L (RY)

and in particular establish the following theorem. The reader mainly interested in
Theorems 1.1 and 1.2 can take d=2n, k=n—1, I<n—2, §=0": BO(2n)(n)—BO(2n),

L=D?"~! and N=oo (but the proof does not simplify much in this special case).
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THEOREM 4.1. Suppose that the following conditions are satisfied:

i) 2(1+1)<d;

i) I<k;

i) I<d—k—2;

iv) 14+2+d<N+1;

v) L admits a handle decomposition only using handles of index at most d—1—2;
vi) the map £r: L— B is (I41)-connected.

Then the map

A~ N N N~

BCyy (RN) — BCyy H(RY)
18 a weak homotopy equivalence.

We remark that under the assumptions of Theorem 3.1, (iii) and (v) in the theorem
above are implied by (ii).

The proof will be similar in spirit to that of the last section, in so far as we will
define a contractible space of surgery data and describe a surgery move which compresses
BC;’JI;I(RN) into Bng’]lL (RM). In the same way that the surgery move of the last section
was a refinement of that of [GMTW], the surgery move we use in this and the next
section is a refinement of that of [GRW1]. Let us first give an informal account of this
move, and for simplicity suppose that N =00, that we have no tangential structure (i.e.
we consider #=Id: BO(d)—BO(d)), that L=, and that d>2, [=0 and x=0. We first
apply the equivalence (2.1) to reduce the problem to studying the map

BD"" — BDO~!
of classifying spaces of posets. Let
o = (to, t1; a0, a1;€0,€1; W) € BDO ™

be a point on a 1-simplex (for example), and let us suppose that W, is already connected
(so mo(Wla,) injects into mo(BO(d))). We will describe a way of producing a path from
the image of this point in | X2 7!| into the subset | X2°].

If W/, is already connected, then the point o already lies in |X?°| and there is

nothing to prove. Otherwise, let us choose disjoint embeddings

{fa: SO — W|a0}aEA

such that if we perform 0-surgery along (thickenings of) all of these embeddings, the re-
sulting (d—1)-manifold is connected. As k=0, the cobordism W|(4, 4,] is path connected

relative to its top, and so we can extend the f, to smooth maps

fa: (a0*€0,a1+€1) xSY — W
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Figure 7. An element of N1 D%~ which is not in N1.D99, together with two pieces of surgery
data for the level ag.

such that the standard height function (i.e. the projection to (ag—¢eg,a1+¢1)) and x; ofa
agree inside (mlofa)_l( fzo(ai—ai,ai—&—ai)). As we have supposed that d>2, we may
assume that these fa are mutually disjoint embeddings. By taking a tubular neighbour-

hood, we extend the f, to embeddings
éa: (ag—eg,a1+e1) xR % S0 W
which are still mutually disjoint, and extend these further to disjoint embeddings
ea: (ap—e0,a1+e1) xR DT 5 RXR™®

such that e; ' (W)=(ag—co, a1 +e1) x R¥1 x SO, It is clear that we can arrange the same
relationship between the standard height function on (ag—eg,a1+¢€1) xR4=1x D! and
the function zice, as we have over (ap—eg, a1 +51)><]Rd*1 xS%. In Figure 7 we have
shown a typical example (the picture has d=2, but the reader should imagine a slightly
larger d): the original manifold does not have path-connected level set at the level ag,
but we have chosen two e,’s and depicted the images e, ((ag—eg, a1+¢1) x R4 x S0) as
the shaded parts.

The surgery move is then given by gluing in the one-parameter family shown in
Figure 8 along each e,. The family depicted there (with d=2, but again the reader
should imagine a larger d) starts at the manifold (ag—¢g,a;+e1) xR?~1 x SO, replaces it
with the trace of a 0-surgery on R%~1x S0, sliding the critical value down from a;+&;
to aoféso. This does not define a path in BD%~ 1, as (a1 —e€1,a1+¢€1) will contain a
critical value at some points during the path. However, it does define a path in |X%71].
Furthermore, if we let W be the manifold obtained at the end of the path, then W, is
obtained from W|,, by doing O-surgery along the data {€a|{a,}xri-1x50 }aca