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1. Introduction

An orientation-preserving homeomorphism φ: Ω!Ω′ between planar domains Ω,Ω′⊂C
is called K-quasiconformal if it belongs to the Sobolev space W 1,2

loc (Ω) and satisfies the
distortion inequality

max
α

|∂αφ|6Kmin
α
|∂αφ| a.e. in Ω. (1.1)

Infinitesimally, quasiconformal mappings carry circles to ellipses with eccentricity at
most K. Finer properties of quasiconformal mappings can be identified by studying
their mapping properties with respect to the Hausdorff measure, the primary focus of
this paper. It has been known since the work of Ahlfors [1] that quasiconformal map-
pings preserve sets of Lebesgue measure zero. It is also well known that they preserve
sets of Hausdorff dimension zero, since K-quasiconformal mappings are Hölder continu-
ous with exponent 1/K; see [14]. However, they need not preserve Hausdorff dimension
bigger than zero. Gehring and Reich [10] identified as a conjecture the precise bounds
for the area distortion under quasiconformal mappings, a conjecture verified by the the
groundbreaking work of Astala [2]. As a consequence of area distortion, Astala obtained
the theorem below, which proved the case n=2 of a conjecture of Iwaniec and Martin
in Rn [11].
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Astala’s Hausdorff dimension distortion theorem 1.1. For any compact set
E with Hausdorff dimension 0<t<2 and any K-quasiconformal mapping φ we have

1
K

(
1
t
− 1

2

)
6

1
dim(φE)

− 1
2

6K

(
1
t
− 1

2

)
. (1.2)

Finally , these bounds are optimal , in that equality may occur in either estimate.

The question that we study concerns refinement of the left-hand endpoint above.
Can it be improved to the level of Hausdorff measures Ht? Indeed, this is the case.
The next theorem, the main result of this paper, answers in the affirmative Astala’s
Question 4.4 in [2].

Main theorem 1.2. If φ is a planar K-quasiconformal mapping , 06t62 and

t′ =
2Kt

2+(K−1)t
,

then we have the following implication for all compact sets E⊂C:

Ht(E) = 0 implies Ht′(φE) = 0. (1.3)

Since the inverse of a K-quasiconformal mapping is also a K-quasiconformal map-
ping, the following refinement of the right-hand endpoint in (1.2) follows: for a compact
set F , we have that Ht′(F )>0 implies Ht(φF )>0.

The above theorem is sharp in two senses. Firstly, the hypothesis Ht(E)=0 can-
not be weakened to Ht(E)<∞ while keeping the same conclusion (i.e. the statement
“Ht(E)<∞ implies Ht′(φE)=0” under the same conditions as in Theorem 1.2, which
has a weaker hypothesis than Theorem 1.2 and hence is a stronger statement than
Theorem 1.2, is false). Secondly, if we keep the hypothesis Ht(E)=0, the conclusion
Ht′(φE)=0 cannot be strengthened, to Hausdorff measure zero with respect to a gauge.
For any gauge function h satisfying

lim
s!0

st
′

h(s)
= 0,

there exists a compact set E and a K-quasiconformal mapping φ with Ht(E)=0 but
Hh(φE)=∞. See Theorem 1.7 (a) in [25] for the relevant examples.

Some instances of this theorem are known, and have connections to significant further
properties of quasiconformal maps. Note that the above classical result of Ahlfors asserts
that the theorem is true when t=2, while the theorem is obviously true when t=0, since
φ is a homeomorphism. In fact, for the Lebesgue measure, there is the following precise
quantitative bound due to [2] for a properly normalized K-quasiconformal mapping φ:

|φE|6C|E|1/K .
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This bound leads to the sharp Sobolev regularity estimate φ∈W 1,p
loc (C) for every

p<
2K
K−1

.

A positive answer was also given for the special case t′=1 (hence t=2/(K+1))
in [3]. This special case is important due to its applications towards removability of sets
for bounded K-quasiregular mappings, i. e. a quasiconformal analogue of the celebrated
Painlevé’s problem. We refer the reader to [23] and [3] for details. The same paper [3]
contains other related results, as does Prause [19].

Let us give an overview of the proof and the paper. The highest levels of the
argument follow a familiar line of reasoning. Matters are reduced to the case of small
dilatation in Lemma 2.1. Thus, we take a compact set E with t-Hausdorff measure
equal to zero and a K-quasiconformal map φ. To provide the conclusion that the t′-
Hausdorff measure of φE is zero, we should exhibit a covering of φE by (quasi)disks that
is arbitrarily small in Ht′ -measure. To do this we should begin with a corresponding
covering of E that is small in the Ht-measure. The first novelty is that we show that
this can be done with certain dyadic cubes (denoted P∈P below) that admit one key
additional feature, that they obey a t-packing condition described in Proposition 2.2.

Associated with P is a measure wt,P , defined in (2.6), which exhibits “t-dimensional”
behaviour, reflective of the t-packing condition. The second novelty is that the Beurling
operator, and more generally a standard Calderón–Zygmund operator, is bounded on
L2(wt,P); see Proposition 2.3. This fact does not follow from standard weighted theory
of singular integrals, but this new class of measures have enough additional combinatorial
structure that a proof of this fact is not difficult to supply.

The mapping φ is then factored into φ=φ1�h, where φ1 is the “conformal inside”
part and h is the “conformal outside” part. The conformal inside part admits a relevant
estimate that can be found in [3], and is recalled below. The relevant estimate on
the conformal outside part is new, and uses in an essential way the two novelties just
mentioned. See the proof of Lemma 5.2. It uses Astala’s approach for distortion of
area [2]. The conformal inside/outside order of the factorization φ=φ1�h appears also
in [19].

The principal lemmas are in §2. The new lemma on approximating Hausdorff con-
tent, with control of a packing condition, namely Proposition 2.2, is given in §3. In §4
the proof of the weighted estimate for the Beurling operator, Proposition 2.3, is given.
These two propositions are combined in §5.

As usual, in a string of inequalities, the letter C might denote different constants
from one inequality to the next.
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2. Principal propositions

We state the principal propositions of the paper, with the first being a restatement of
the main theorem for a specific class of quasiconformal mappings, namely those of small
dilatation.

Lemma 2.1. Let 0<t<2. Then there is a small constant 0<�0<1 (�0=�0(t) is a
decreasing function of t) so that the following holds. Let g: C!C be a K-quasiconformal
map with

K−1
K+1

6�0.

Then we have the following implication for all compact subsets E⊂C:

Ht(E) = 0 implies Ht′(gE) = 0, (2.1)

where
t′ =

2Kt
2+(K−1)t

.

Proof of Theorem 1.2. We use the usual factorization of a K-quasiconformal map-
ping into those with small dilatation. For a fixed K-quasiconformal mapping g, we can
write

g= gλ�...�g2�g1, (2.2)

so that each gi is Ki-quasiconformal, K=K1 ...Kλ, and

Ki 6
1+�0

1−�0

for all i=1, 2, ..., λ, with �0=�0(t′). (See [1] or [12].) It follows that the dilatation of
each gi satisfies

Ki−1
Ki+1

6�0(t′),
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that is Lemma 2.1 applies to each gi individually.
Indeed, let us set

τ(t,K) =
2Kt

2+(K−1)t
,

and inductively define τ1=τ(t,K1), and τi+1=τ(τi,Ki+1). Let E⊂C be a compact subset
of the plane with Ht(E)=0. It follows from an inductive application of Lemma 2.1 (since
�0(t′)6�0(τi) for all i=1, 2, ..., λ) that we have

Hτj (gj �...�g1(E))= 0, 1 6 j6λ.

And it is easily checked that

τλ =
2Kt

2+(K−1)t
,

which is the dimension t′ in Theorem 1.2.

We state our proposition on the approximation of Hausdorff content with the t-
packing condition. Let P be a finite collection of disjoint dyadic cubes in the plane. Let
0<t<2. We denote the t-Carleson packing norm of P as follows:

‖P‖t-pack =sup
Q

(
`(Q)−t

∑
P∈P
P⊂Q

`(P )t
)1/t

, (2.3)

where the supremum is taken over all dyadic cubes Q. In this formula and throughout
this paper, `(Q) denotes the side-length of the cube Q. And we say that P satisfies the
t-Carleson packing condition if ‖P‖t-pack<∞.

Recall that for a set E, 06s62 and 0<δ6∞, one defines

Hs
δ(E) = inf

{ ∞∑
i=1

diam(Bi)s :E⊂
∞⋃
i=1

Bi and diam(Bi) 6 δ

}
, (2.4)

where Bi⊂C is a set and diam(Bi) denotes its diameter. Then one defines the Hausdorff
s-measure of E to be

Hs(E) = lim
δ!0

Hs
δ(E) = sup

δ>0
Hs
δ(E). (2.5)

The quantity Hs
∞(E) is usually referred to as the Hausdorff content of E.

It is well known that in the definition of Hausdorff measure, if instead of covering
with balls or arbitrary sets, one covers with dyadic cubes, one obtains an equivalent
measure. We will take the dyadic cubes to be closed unless otherwise stated, i.e. of the
form [2−km1, 2−k(m1+1)]×[2−km2, 2−k(m2+1)], with k a non-negative integer, and m1

and m2 integers. Recall also that Ht(E)=0 if and only if Ht
∞(E)=0. For these and

related facts, see e.g. [13] or [8].
Only the case m=2 of the following proposition is used below. As usual, for a>0,

we denote by aQ the cube concentric to the cube Q, but such that `(aQ)=a`(Q).
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Proposition 2.2. Let m>0 be an integer. Then there is a positive constant C
such that , for any compact E⊂(0, 1)2⊂C, 0<t<2 and ε>0, there is a finite collection
of closed dyadic cubes P={Pi}Ni=1 such that

(a) 2mPi∩2mPj=∅ for i 6=j;
(b) E⊂

⋃N
i=1 3·2mPi;

(c) ‖P‖t-pack61;
(d)

∑N
i=1 `(Pi)

t6C(Ht
∞(E)+ε).

Given 0<t62 and a collection P of pairwise disjoint dyadic cubes, we define the
measure wt,P associated with P by

wt,P(x) =
∑
j

`(Pj)t−2 χPj (x), (2.6)

where χPj
denotes the characteristic function of Pj and `(Pj) denotes the side-length of

Pj . Define also


P =
N⋃
i=1

Pi. (2.7)

The measure wt,P behaves as a t-dimensional measure, namely if Q is an arbitrary cube
(dyadic or not) with sides parallel to the coordinate axes, then

wt,P(Q) 6 16‖P‖tt-pack`(Q)t. (2.8)

We will be concerned with a quasiconformal map f that is conformal outside of 
P ,
and we will need an estimate on the diameters of f(Pi). The map f will have an explicit
expression as a Neumann series involving the Beurling operator, which we recall here.
Let

(Sf)(z) =− 1
π

p.v.
∫

C

f(τ)
(z−τ)2

dA(τ), (2.9)

be the Beurling transform. This is an example of a standard singular integral bounded on
L2(C) (see [21].) The second proposition gives a weighted norm inequality with respect to
the weight wt,P for the compression of S to the set 
P , i.e. the operator χ	PSχ	P , assuming
that P satisfies a Carleson t-packing condition.

Proposition 2.3. Let 0<t<2 and let P={Pi}Ni=1 be a collection of open dyadic
cubes with pairwise disjoint triples, i.e. 3Pi∩3Pj=∅ for i 6=j. Assume further that
‖P‖t-pack61. Then there exists an absolute positive constant C=C(t) such that

‖S(χ	P f)‖L2(wt,P) 6C‖f‖L2(wt,P) (2.10)

for all f∈L2(C). Moreover , C(t) is an increasing function of t.
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The proof of this proposition is presented in §4, and follows from elementary bounds
on the Beurling operator, and combinatorial properties of the measure wt,P . This es-
timate is new, and does not follow from standard weighted theory. The theory of A2

weights is built around the assumption that the weights are positive a.e., while the weights
wt,P are zero on a large set, and do not admit extensions to A2 weights uniformly in the
A2 characteristic. (Cf. Wolff’s theorem in [9, p. 439].)

3. The proof of Proposition 2.2

Given ε>0, by the definition of dyadic Hausdorff content at dimension t, there exists a
(possibly infinite) collection {Qn}n of closed dyadic cubes such that E⊆

⋃
nQn, and∑

n

`(Qn)t 6Ht
∞(E)+ε. (3.1)

By compactness of E, after relabeling indices, there is a finite number N for which

E⊆
N⋃
n=1

(3Qn)�,

where A� denotes the interior of the set A. Since each cube of the form 3Qn is the union
of 9 dyadic cubes of the same size as Qn, we can write, after relabeling, E⊆

⋃N ′

n=1Qn,
where Qn are closed dyadic cubes (possibly with overlapping or repeated cubes).

By selecting the maximal cubes among the Qn, and eliminating those Qn not inter-
secting E, we may now assume, after a relabeling, that

N∑
n=1

`(Qn)t 6 9(Ht
∞(E)+ε), (3.2)

and that the cubes Qn are dyadic, intersect E, and have pairwise disjoint interiors.
Let min{`(Qn)}=2−M , and call a finite collection of cubes R admissible, denoted

by R∈Adms, if
(1) R is a finite collection of dyadic cubes that intersect E, thus R={Ri}Hi=1 for a

finite H and Ri∩E 6=∅ for all i;
(2) 2−M6`(Ri)61;
(3) E⊆

⋃H
i=1Ri;

(4) they have pairwise disjoint interiors.
We have just seen that Adms is non-empty. The minimum

min
{ ∑
Ri∈R

`(Ri)t :R∈Adms
}
,
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is achieved, as there are only finitely many admissible collections of cubes. Denote an
admissible collection that achieves the minimum as T ={Ti}M

′

i=1. By (3.2), we have

M ′∑
i=1

`(Ti)t 6
N∑
j=1

`(Qj)t 6 9(Ht
∞(E)+ε). (3.3)

Any minimizer also satisfies a local property: for any dyadic cube Q such that
2−M6`(Q)620, it is true that

∑
Ti⊂Q

`(Ti)t 6 `(Q)t. (3.4)

Indeed, if Q intersects E, and this inequality did not hold, the cube Q would have been
selected instead of the cubes Ti with Ti⊂Q, contradicting the property of achieving the
minimum. If the cube Q does not intersect E, then the inequality is trivial.

As an immediate consequence, we get that for any dyadic cube Q, irrespective of its
size, ∑

Ti⊂Q
`(Ti)t 6 `(Q)t. (3.5)

In other words, the cubes Ti satisfy (c) in the statement of Proposition 2.2.

Thus, T satisfies conditions (c) and (d) of the conclusion. To accommodate (a) and
(b) as well, fix an integer m∈N\{0}, and fix a cube Ti∈T . Subdivide Ti into its 22m+2

dyadic descendants of side-length 2−m−1`(Ti). Let T̂i be the dyadic descendant of Ti of
side-length 2−m−1`(Ti) whose upper right corner is the center of Ti. It is now easy to
check that the cubes T̂i satisfy (d) in the statement of Proposition 2.2 (with a larger
constant C than the constant obtained for the cubes Ti), as well as (c), (b) and (a).
Since t<2, notice that C, which depends on m, can be taken independent of t.

4. Weighted norm inequalities for the Beurling transform

We prove the following estimate on the Beurling operator acting on Lp(wt,P) spaces.
Note that the same proof applies to any standard Calderón–Zygmund singular integral,
so we exhibit a whole new class of weights with respect to which singular integrals are
bounded and yet do not admit extension to Ap weights with uniformly bounded Ap

characteristic. For more on non-doubling measures see, e.g., [9, p. 439], [16], [17], [20],
[23], [24] and the references therein.
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Lemma 4.1. Under the assumptions of Proposition 2.3, for any 1<p<∞, and for
two subsets F,G⊂
P , we have the estimate∫

G

|SχF (x)|wt,P dx6Cp,t|F |1/pwt,P
|G|1−1/p

wt,P
. (4.1)

Here Cp,t is a constant that only depends on p and t. For fixed p, Cp,t is an increasing
function of t.

Here and throughout,

|A|wt,P =wt,P(A) =
∫
A

wt,P dx.

This is the restricted weak-type estimate for S as a bounded operator from the Lorentz
space Lp,1(wt,P) to Lp,∞(wt,P). A standard interpolation then proves Proposition 2.3
(see, e.g., Theorem 3.15 in [22, p. 197]).

To prove this, we split S into a local and non-local part, S=Slocal+Snon, where
writing the kernel of S as K(x, y), we define the kernel of Slocal to be

Klocal(x, y) =K(x, y)
∑
P∈P

χP (x)χP (y).

On each P∈P, wt,P is a constant multiple of Lebesgue measure, hence we can estimate
the local part directly, using the Lp(dx)-bound for S:

‖Slocalf‖pLp(wt,P) =
∑
P∈P

‖χpSlocal(χpf)‖pLp(wt,P)

6Cp
∑
P∈P

‖χpf‖pLp(wt,P) 6Cp‖f‖pLp(wt,P).

On the non-local part, we abandon cancellation, and only use the homogeneity of the
Beurling kernel. It is also convenient to pass to a combinatorial analog of the non-local
operator. To this end, let us say that a collection of (not necessarily dyadic) cubes Q is
a grid if and only if for all Q,Q′∈Q we have Q∩Q′∈{∅, Q,Q′}. One can construct a
collection of cubes Q̃ so that these conditions hold:

(1) Q̃ is a union of at most 9 grids;
(2) for each dyadic cube P there is a cube Q∈Q̃ with P⊂Q and |Q|6C|P |;
(3) for each pair of dyadic cubes P, P ′ with 3P∩3P ′=∅, there is a cube Q∈Q̃ with

P, P ′⊂Q and |Q|6C dist(P, P ′)2.

Here C is an absolute constant.
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Proof. We recall a standard notion used e.g. in [15, §5]. Define a shifted dyadic mesh
in two dimensions to be

Q̃=
{
2j(k+(0, 1)2+(−1)iα) : i∈{0, 1}, j ∈Z, k∈Z2 and α∈

{
0, 1

3 ,
2
3

}2}
.

Observe that for each cube Q⊂R2, there is a Q′∈Q̃ with Q⊂ 9
10Q

′ and `(Q′)69`(Q).
This is easier to check in one dimension.

Then, it follows that for all functions f supported on 
P , and for a point x∈P with
P∈P,

|Snonf(x)|6
∑
P ′∈P
P ′ 6=P

∫
P ′
|K(x, y)f(y)| dy6C

∑
P ′∈P
P ′ 6=P

∫
P ′
|f(y)| dy

dist(P, P ′)2
6C SQ̃ |f |(x),

where we define for any collection of cubes Q,

SQ f(x) =
∑
Q∈Q

Q non-local

χQ(x)
`(Q)2

∫
Q

f(y) dy. (4.2)

Here we say that an arbitrary cube Q (dyadic or not) with sides parallel to the
coordinate axes is non-local if there exist P1, P2∈P such that Pi∩Q 6=∅ for i=1, 2. It
follows (since 3P1∩3P2=∅) that if Q is non-local, then `(P )6`(Q) if P∈P and P∩Q 6=∅.

Given the collection of cubes P (which is fixed throughout this section), and given
a grid Q, there is a unique subcollection of cubes

Q′ = {non-local cubes of the underlying grid Q}.

Thus, for the proof of Lemma 4.1, it suffices to consider only collections of cubes
Q′ (and we restrict our attention to such collections of cubes for the rest of this section)
and to prove the following lemma.

Lemma 4.2. Under the assumptions of Lemma 4.1, for the collection of non-local
cubes Q′ associated with any grid Q, we have the inequality∫

G

[SQ′ χF ]wt,P dx6Cp,t|F |1/pwt,P
|G|1−1/p

wt,P
, 1<p<∞. (4.3)

For fixed p, Cp,t is an increasing function of t.

We turn to the proof. There are two points to observe. Consider the wt,P -maximal
function defined by

Mt g= sup
Q∈Q′

χQ
|Q|wt,P

∫
Q

g(y)wt,P(y) dy (4.4)
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This operator maps L1(wt,P) to L1,∞(wt,P), that is,

λ|{x :Mt g(x)>λ}|wt,P 6 ‖g‖L1(wt,P), 0<λ<∞. (4.5)

Indeed, this is a maximal inequality true for all weights, and follows immediately from
the usual covering lemma proof, which is quite simple in this context, as Q is a grid.

For F,G⊂
P , if 8|F |wt,P 6|G|wt,P , we take F ′=F . Otherwise we define

F ′ =F∩
{
x :Mt χG(x) 6

2wt,P(G)
wt,P(F )

}
. (4.6)

By the weak-L1(wt,P) inequality for Mt, we see that |F ′|wt,P > 1
2 |F |wt,P . (In the argument

of [15, §3], F ′ is a major subset of F .) We show that

∫
G

[SQ′ χF ′ ]wt,P dx6Ct min{wt,P(F ) , wt,P(G)}. (4.7)

Upon iteration of inequality (4.7), we see that we actually have inequality (4.7) with
F ′=F on the left-hand side and Ct replaced by

Ct log
(

2+
|F |wt,P

|G|wt,P

)
.

Indeed, with F=F0 and F ′=F1 we now apply (4.7) with F0 replaced by F0\F1, and F2

by the corresponding major subset of F0\F1. We continue the iteration until

8|Fn|wt,P 6 |G|wt,P ,

which occurs with

n. log
(

2+
|F |wt,P

|G|wt,P

)
.

From this inequality we immediately obtain (4.3):

∫
G

[SQ′ χF ]wt,P dx6Ct log
(

2+
|F |wt,P

|G|wt,P

)
min{wt,P(F ), wt,P(G)}

6Cp,t|F |1/pwt,P
|G|1−1/p

wt,P

(4.8)

for 1<p<∞, which reduces the proof of Lemma 4.2 to showing (4.7).



284 m. t. lacey, e. t. sawyer and i. uriarte-tuero

We now turn to the proof of (4.7):∫
G

[SQ′ χF ′ ]wt,P dx=
∑
Q∈Q′

|F ′∩Q|
`(Q)2

|G∩Q|wt,P

=
∑
Q∈Q′

|F ′∩Q|
`(Q)2−t

|G∩Q|wt,P

`(Q)t

6min
{

16‖P‖tt-pack, 32
wt,P(G)
wt,P(F )

}
︸ ︷︷ ︸

=:A

∑
Q∈Q′

|F ′∩Q|
`(Q)2−t

(4.9)

=A
∑
Q∈Q′

∑
P :P∩Q6=∅

|F ′∩P∩Q|
`(Q)2−t

6A
∑
P∈P

∑
Q∈Q′

Q∩P 6=∅

|F ′∩P | 1
`(Q)2−t

6ACt
∑
P∈P

|F ′∩P |
`(P )2−t

(4.10)

=ACt|F ′|wt,P

6C ′t min{wt,P(F ′), wt,P(G)}

6C ′t min{wt,P(F ), wt,P(G)}.

In passing to (4.9), we have used the packing condition (see (2.8)) and the definition
of F ′ in (4.6), to wit if |Q∩F ′| 6=0, then necessarily

|G∩Q|wt,P

`(Q)t
6 16

|G∩Q|wt,P

|Q|wt,P

6 32
|G|wt,P

|F |wt,P

.

In passing to (4.10), we have used that for any fixed scale 2−`, there are at most 4 cubes
Q∈Q′ such that Q∩P 6=∅ and `(Q)=2−`, and also that any such Q satisfies `(Q)>`(P ),
since Q is non-local. Note that Ct and C ′t are increasing functions of t.

5. The proof of Lemma 2.1

We use a familiar scheme, which we recall here. We have already seen how to approximate
the t-Hausdorff content of a set E by a finite union of cubes. We can therefore assume
that E is in fact a finite union of cubes, and we approximate the Hausdorff content
of the image of E. Applying Stoilow factorization methods, a normalized version of the
mapping φ is written as φ=φ1�h, where both h, φ1: C!C are principal K-quasiconformal
mappings, such that h is conformal in the complement of the set E and φ1 is conformal
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on the set F=h(E). One then studies the mapping properties of the two functions φ1

and h separately, referred to the ‘conformal inside’ and the ‘conformal outside’ parts,
respectively. Recall that a principal K-quasiconformal mapping is a K-quasiconformal
mapping that is conformal outside 	D and is normalized by φ(z)−z=O(1/|z|) as |z|!∞.

The conformal inside part has already been addressed, in [3], and we recall the
relevant result in Theorem 5.3 below. The conformal outside part is new, and the point
we turn to now.

The following lemma is often used in the theory of extrapolation of Ap weights, and
we use it in a similar way to the way it is used in that theory.

Lemma 5.1. Let f, g>0 be measurable functions. Then, if 0<p<1,∫
fg> ‖f‖p‖g‖p′ , (5.1)

where 1/p+1/p′=1 (and hence p′<0),

‖f‖p =
(∫

|f |p
)1/p

and ‖g‖p′ =
(∫

|g|p
′
)1/p′

=
1(∫

1
|g|−p′

)1/(−p′) .

As a consequence,

‖f‖p = inf
g:‖g‖p′=1

∫
fg. (5.2)

Proof. The inequality (5.1) follows easily from the usual Hölder’s inequality (i.e.
with p>1.) The case of equality in (5.2) is attained by taking g=fp−1/‖f‖p−1

p .

We will use the following notation. For a finite collection of pairwise disjoint dyadic
cubes P={Pj}Nj=1, let

βj =
(`(Pj)2)t/2−1(∑N

k=1(`(Pk)2)t/2
)(t/2−1)·2/t . (5.3)

(Compare with g in the proof of Lemma 5.1.) Also, let E=
P=
⋃n
j=1 Pj and let

w̃t,P(x) =
n∑
j=1

βjχPj (x), (5.4)

which is a constant multiple of wt,P , as defined in (2.6).
The conformal outside lemma states that the quasiconformal image of P has con-

trolled distortion, in the `t-quasinorm.
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Lemma 5.2. Let 0<t<2. There is a positive constant ε0 (which is a decreasing
function of t) so that the following holds.

Let P={Pj}Nj=1 be a finite collection of dyadic cubes which satisfy the t-Carleson
packing condition ‖P‖t-pack6C. Assume further that the cubes Pj are pairwise disjoint.

Let E=
P=
⋃n
j=1 Pj and let f : C!C be a principal K-quasiconformal mapping which

is conformal outside the compact set E, with

K−1
K+1

<ε0.

Then, there is a constant C(K, t) which depends only on K and t (which, for fixed
K, is an increasing function of t) such that

N∑
j=1

diam(f(Pj))t 6C(K, t)
N∑
j=1

`(Pj)t. (5.5)

Prause [19] proved results somewhat in the spirit of Lemma 5.2 above, but for differ-
ent Hausdorff measures, which give a weaker conclusion than the statement (1.3). Our
lemma, and in particular the hypothesis on t-packing, is informed by the counterexample
of Bishop [7].

Proof. By Lemma 5.1, with βj as in (5.3) and w̃t,P(x) as in (5.4), by quasi-symmetry
we get

( N∑
j=1

diam(f(Pj))t
)2/t

= inf
αj>0

1=‖{αj}‖
`(t/2)′

N∑
j=1

diam(f(Pj))2αj

6
N∑
j=1

diam(f(Pj))2βj

6C(K)
∫
E

J(z, f)w̃t,P(z) dA(z).

(5.6)

Here J(z, f) denotes the Jacobian (determinant) of f at z.

We follow Astala’s approach for his area distortion theorem [2, p. 50] (see also [4]),
equipped with the new results of this paper. The central role of the Beurling operator is
indicated by the identity

fz =1+S(fz̄). (5.7)
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Using the trivial inequality |2 Re a|62|a|6|a|2+1, and that J(z, f)=|fz|2−|fz̄|2 (see e.g.
(9) in [1, p. 6], or [4]), we can estimate∫

E

J(z, f)w̃t,P(z) dA(z) =
∫
E

(|fz|2−|fz̄|2)w̃t,P(z) dA(z)

=
∫
E

(1+2ReS(fz̄)+|S(fz̄)|2−|fz̄|2)w̃t,P(z) dA(z)

6 2
∫
E

(1+|S(fz̄)|2)w̃t,P(z) dA(z)

= 2
( ∫

E

w̃t,P(z) dA(z)︸ ︷︷ ︸
=:I1

+
∫
E

|S(fz̄)|2w̃t,P(z) dA(z)︸ ︷︷ ︸
=:I2

)
.

(5.8)

Notice that I1=
∑N
j=1 `(Pj)

2βj . We shall bound the other term by a multiple of I1.
Indeed, with respect to I2, since w̃t,P and wt,P only differ by a multiplicative constant
the Beurling operator has the same operator norm on L2(w̃t,P) and L2(wt,P). And so,
by Proposition 2.3,

I2 =
∫
E

|S(fz̄)|2w̃t,P(z) dA(z) 6C(t)
∫
E

|fz̄|2w̃t,P(z) dA(z)︸ ︷︷ ︸
=:I3

. (5.9)

Turning to I3, the Beurling operator is again decisive. Recall the representation of
fz̄ as a power series in the Beltrami coefficient µ. Namely,

fz̄ =µfz =µ+µS(µ)+µS(µS(µ))+... . (5.10)

This is obtained upon multiplying (5.7) by µ, writing fz̄=(Id−µS)−1(µ) and using the
standard Neumann series

(Id−µS)−1 =Id+µS+µSµS+µSµSµS+... . (5.11)

As we shall see, this series converges in L2(wt,P) for small (depending on t) ‖µ‖∞ by
Proposition 2.3.

Observe the two inequalities(∫
E

|µ|2w̃t,P(z) dA(z)
)1/2

6 ‖µ‖∞
(∫

E

χEw̃t,P(z) dA(z)
)1/2

= ‖µ‖∞I1/2
1 , (5.12)(∫

E

|µS(g)|2w̃t,P(z) dA(z)
)1/2

6 ‖µ‖∞‖S‖L2(w̃t,P)

(∫
E

|g|2w̃t,P(z) dA(z)
)1/2

. (5.13)
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The second inequality is applied to the sequence of functions

g=µ, g=µS(µ), g=µS(µS(µ))

and so on. Using the triangle inequality in (5.10) in the L2(w̃t,P) norm gives

I
1/2
3 6 ‖µ‖∞

( ∞∑
n=1

(‖µ‖∞‖S‖L2(w̃t,P))n
)
I
1/2
1 . (5.14)

The middle term on the right is bounded if we demand that

‖µ‖∞<ε0 =(2‖S‖L2(w̃t,P)!L2(w̃t,P))−1< 1. (5.15)

This is the ε0 required in the statement of Lemma 5.2 (and hence ε0 is a decreasing
function of t). It follows that

I3 6 I1. (5.16)

From (5.6), (5.8), (5.9) and (5.16), it follows that( N∑
j=1

diam(f(Pj))t
)2/t

6C(K)
∫
E

J(z, f)w̃t,P(z) dA(z) 6C ′(K, t)I1. (5.17)

It remains to bound I1 by the right-hand side of (5.5).
But it follows by construction (recall the parenthetical comment right after (5.3))

that

I1 =
N∑
j=1

`(Pj)2βj = ‖{`(Pj)2}Nj=1‖`t/2 =
( N∑
j=1

`(Pj)t
)2/t

. (5.18)

This completes the proof.

Recall that it is known how to deal with the quasiconformal map which is “conformal
inside”. Namely, we recall the following result.

Theorem 5.3. Let φ: C!C be a principal K-quasiconformal mapping which is con-
formal outside D. Let {Sj}Nj=1 be a finite family of pairwise disjoint quasi-disks in D,
such that Sj=f(Dj) for a single K-quasiconformal map f and for disks (or cubes) Dj ,
and assume that φ is conformal in Ω=

⋃
j Sj. Then for any t∈(0, 2] and

t′ =
2Kt

2+(K−1)t
,

we have ( N∑
j=1

diam(φ(Sj))t
′
)1/t′

6C(K)
( N∑
j=1

diam(Sj)t
)1/tK

. (5.19)
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Theorem 5.3 can be found in [3, (2.6)] stated for disks Dj , but the proof works for K-
quasi-disks (more precisely, we use it for “K-quasi-squares”, i.e. the image under a single
K-quasiconformal map—where K will be typically close to 1—of squares.) It should be
emphasized that for a general quasiconformal mapping φ we have J(z, φ)∈Lploc only for
p<K/(K−1). The improved integrability p=K/(K−1) under the extra assumption that
φ|Ω is conformal was shown in [6, Lemma 5.2]. This phenomenon is crucial for the proof
of Theorem 5.3, since we are studying Hausdorff measures rather than dimension. Note
that Theorem 5.3 is also implicit in [2] (see Corollary 2.3 and the variational principle
on p. 48).

At this point we prove Astala’s conjecture for the case of small dilatation, Lemma 2.1.

Proof of Lemma 2.1. We first give the argument that allows us to reduce to the
usual normalizations. It is a standard argument, but we give it for convenience.

Let τ be a Möbius transformation fixing ∞. The dilatation K of g, let us call it Kg,
is the same as that of g�τ , i.e. Kg=Kg�τ . Also,

Ht(E) = 0 if and only if Ht(τ(E))= 0.

Consequently, without loss of generality, we may assume that

E⊂
( 1
32
,

1
16

)2⊂ 1
8

D.

Let µg be the Beltrami coefficient for g. Let ϕ be the (unique) principal homeomor-
phic solution to the Beltrami equation

∂̄ϕ=(χDµg)∂ϕ.

Then, by Stoilow’s factorization, we have that g=ψ�ϕ, where Kg=Kψ=Kϕ, both ψ and
ϕ are K-quasiconformal maps, ϕ is principal and ψ is conformal in ϕ(D).

Since ψ is conformal in a neighbourhood of ϕ(E), by Koebe’s distortion theorem
(see e.g. [18]),

0<cψ 6 inf
ϕ(E)

|ψ′(z)|6 sup
ϕ(E)

|ψ′(z)|6Cψ <∞,

and hence ψ is bi-Lipschitz in ϕ(E). Therefore,

Ht′(S) = 0 if and only if Ht′(ψ(S))= 0,

for S⊂ϕ([ 1
32 ,

1
16 ]2). Consequently, without loss of generality, we may further assume that

g is a principal mapping.
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Consider ε>0 and use Proposition 2.2, with m=2, to obtain a collection of cubes
P={Pi} satisfying the conclusions of Proposition 2.2 with respect to the compact set E.
Write

Ω =
(⋃

i

Pi

)
�

.

Following [2], decompose g=φ�f , where φ and f are principal K-quasiconformal
mappings, f is conformal outside 	Ω, and φ is conformal in f(Ω)∪(C\D). Recall that
Lemma 5.2 only applies to quasiconformal mappings with dilatation (by which we mean
‖µ‖∞) at most ε0. If we assume that the dilatation of g is at most ε0, then the dilatation
of f satisfies the same bound, so that Lemma 5.2 applies to it.

Then, by quasi-symmetry, Theorem 5.3 and Lemma 5.2,

Ht′

∞(gE) 6Ht′

∞

(
g

(⋃
i

12Pi

))
6

∑
i

diam(g(12Pi))t
′

6C(K)
∑
i

diam(g(Pi))t
′

6C(K)
(∑

i

diam(f(Pi))t
)t′/tK

6C(K, t)
(∑

i

`(Pi)t
)t′/tK

6C(K, t)(Ht
∞(E)+ε)t

′/tK

6C(K, t)εt
′/tK .

The parameter ε>0 was arbitrary, so the proof of Lemma 2.1 is complete.

Remark 5.20. The proof of Lemma 2.1 actually gives the following quantitative
estimate for Hausdorff content. Let 0<t<2 and

t′ =
2Kt

2+(K−1)t
.

Assume that f is a principal K-quasiconformal mapping with

K−1
K+1

6�0(t),

and let E⊂
(

1
32 ,

1
16

)2 be compact. Then

Ht′

∞(fE) 6C(�0(t))Ht
∞(E)t

′/tK . (5.21)
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We claim that this can be rewritten in the following invariant form. Assume now that f
is a K-quasiconformal mapping with

K−1
K+1

6�0(t),

and let E be a compact set contained in a ball B. Let t and t′ be as in (5.21). Then

Ht′

∞(fE)
[diam fB]t′

6C(�0(t))
(
Ht
∞(E)

[diamB]t

)t′/tK
. (5.22)

Indeed this follows using the method of Corollary 10 in [5] (see also [4]). Finally, for
arbitrary K>1, iteration of (5.22) (with �0(t′) instead of �0(t)) shows that (5.22) holds
with C(�0(t)) replaced by C(K, t).
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