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A theorem concerning the least quadratic residue and

non-residue

By Lars FJELLSTEDT

The purpose of this paper is to prove the following

Theorem: Denote by v*(p; 2) the least odd prime number which is quadralic
non-residue modulo the prime p. Then for p>p,

¥* (p; 2)<6-log p.

Denote by =n*(p; 2) the least odd prime number which is quadratic residue
modulo the prime p. Then for p>p,

¥ (p; 2)<6-log p.
We shall require the following result which we do not prove:
Lemma. If the system
z=b, (mod m,), =z=b, (mod m,),..., z=bx (mod m), bi=0,

is solvable, its positive solutions are given by

m, m My My = My_1 mlmzu-mk
x=b +m b+ 2ty + e+ 22 o1+ ¢
1 17 d, * dydy - dy_s k-1 dydy - dia
where
m. m ...m‘ .
dl=(m1s mz)s di‘:(—d_l——'zd_s mi+1): 7'=2, 3:-“’ k'_13
e diy
0t <t

o i
and t=0 an integer.

Proof of the theorem. If we assume y*(p; 2)=ps, Pm denoting the mth
prime in the sequence 2, 3, 5, 7, ..., p satisfies

B-(-el)n @
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Thus
p=1,11 (mod 12), p=1,4 (mod 5), ete....

Putting N=3-5-7 - p,, there exist y=¢(N)/2"" integers a; with
0<d{<4N, (ai,4N)=l, ’l:=1, 2,...,"1

and with the property that every prime p satisfying (1) belongs to one of the
arithmetical progressions

4Nt+aq, 4Ntta,..,4Nt+a,.

If we choose for each of the primes p;,72=2,3,...,n, one of the possible
congruence conditions modulo p; or 4p;, we get exactly one residue class mo-
dulo 4 ¥ which is therefore one of the numbers a,. Let us assume that we
have chosen z,, 0<z,<4N, such that

. 2y=b, (mod p3), xy=b; (mod p3),..., zy=b, (mod pz), b>0,
where

*

; =

{ p; for p;=1 (mod 4),
4p, for p;=3 (mod 4).
We may of course assume that this system is solvable. Putting &=Min
(bg by, ..., b;) and assuming that by, by,..., b;, are all the integers b; for which

by, =b,=---=b, =b,
and putting also

P=pi‘.pt' vee pik

and

. {P if p_ =1 (mod4), m=1,2,...,k

B 4 P otherwise,
we have
zy=b (mod P*).

If we put P-Q=N when Q>1, and define

Q*={Q if p;=1 (mod 4) when p,/Q,
4@ otherwise,
we also have, according to the lemma,

zo=a (mod @%),

where @ is an integer such that b <a<@*. Using the lemma once more we get

Q*
x0=b+P*to, 0<t0<m

P*
xo=a,+Q*t1, 0§t1<m
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If £,>0 it follows from
PQ=4N-(P*", @)
that

z,>V4N. @)

If {,=0 we proceed in the following way. The number %k of different prime
factors in P is either =n/3 or it is <n/3. If k=n/3, we have for s=[n/3]

x> P* 2 pypy -+ P (3)

Assuming next that k<n/3 we define for all possible combinations of r
different prime factors P, s g=1,2,...,r, of @
[

. . Q
Q("’ Xl ? RETETR )=__—
e o Piy " Py, Py,
and
@ (ins ---» %y,) if this integer has only prime divisors =1
Q* (iﬂ,’ e iﬂr) — (mod 4),
4Q (iy, ..., tu,) otherwise.
For these integers Q*(i,,...,%,) we have the congruences
Zo=c (i,u,’ sy i.u,) (mOd Q* (illu eees iﬂ,))? O<c (iyls ey iyr( < Q* (iﬂxi (223 1’111)

and ask for the least integer r with the property that for one c¢(iy,..., iu,)
at least

Bo> ¢ (s oves B,)- {4)
It is easy to see that r<[(n—Fk)/2]. In fact, suppose we have two congruences

{an (mod 4), O<a<Ad

*b 5
2=b (mod B),. 0<b<B ©
where 4 and B are products of different primes and (4, B) =1, and suppose thaf;

x=c(mod A4B), max (a,b)<c<AB. (6)
If the total number of prime féctors in AB is m, one of the integers 4 and
B contains =[m/2] prime factors. If we cancel, in all possible ways, [m/2]
prime factors of 4 B, thus obtaining new integers 4%, B*, (4, B*)=(4", B)=1,
then for at least one such pair we cannot have

z=c({mod 4* B*), 0<c<A*B*,

with the same integer ¢ as in (6). Since we may assume z,>p, (otherwise we
should have p>ux,+4N), this argument obviously applies in our case.
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Thus it follows that for a modulus @*(s,,..., z’,‘r)v= Q** with the property (4)

we have
z=c+T-Q**, T>0.

Since the number of different prime factors in Q** is at least

n
—h—r>——1
n—k r>3

we have, for s=[n/3],
ToZ Py Py Ps (7)

It results from (2), (3) and (7) that in all cases

Zg>R=p;-pp- - ps.

If we had @=1, p would be >4N.
From

2 2
logR=0(ps)>?—)ps > 38 log s>%n log n > %pn, n>ng,

we get
6-log p=>6-log z,> p,.

Hence the first part of our theorem is proved.

Starting from
-~ (5)-
p v p p

instead of starting from (1) the second part is obtained in exactly the same
way.
The best results previously obtained concerning this question are the following:

v* (p; 2) < p* (log p)?, l=i/—_, p=+1 (mod 8) and p>p,.
e

This was proved by Vinogradov [1] in 1927. A. Brauer [2] and T. Skolem [6]
proved using elementary methods

v (p;2)<C-p*®, p=+3, —~1 (mod 8), C a constant.
In 1954 Ankeny [3] proved
| v*(p;2)<p’, &>0, p=3 (mod 4) and p>p,.
Using the extended Riemann hypothesis several authors, Linnik, Erdés,

Ankeny etc., have obtained bounds for *(p;2). The best one of these results
is, as far as I know, the following (Ankeny [4]):

¥* (p; 2) =0((log p)?).
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On the other hand it has been proved by Sali¢ [5] and others that

v (p;2)>c-log p
a*(p;2)>c-log p

for infinitely many primes p. Hence our result is in a sense the best possible.
Actually Salié proves only the first inequality. It is however easy to see
that the second one can be proved by the same method.
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