A theorem concerning the least quadratic residue and non-residue

By Lars Fjellstedt

The purpose of this paper is to prove the following

Theorem: Denote by $\psi^*(p; 2)$ the least odd prime number which is quadratic non-residue modulo the prime p. Then for $p > p_0$

$$\psi^*(p; 2) < 6 \cdot \log p$$

Denote by $\pi^*(p; 2)$ the least odd prime number which is quadratic residue modulo the prime p. Then for $p > p_0$

$$\pi^*(p; 2) < 6 \cdot \log p$$
.

We shall require the following result which we do not prove:

Lemma. If the system

$$x \equiv b_1 \pmod{m_1}, \quad x \equiv b_2 \pmod{m_2}, \ldots, \quad x \equiv b_k \pmod{m_k}, \quad b_i \ge 0,$$

is solvable, its positive solutions are given by

$$x = b_1 + m_1 t_1 + \frac{m_1 m_2}{d_1} t_2 + \dots + \frac{m_1 m_2 \cdots m_{k-1}}{d_1 d_2 \cdots d_{k-2}} t_{k-1} + \frac{m_1 m_2 \cdots m_k}{d_1 d_2 \cdots d_{k-1}} t,$$

where

$$d_1 = (m_1, m_2), \quad d_i = \left(\frac{m_1 m_2 \cdots m_i}{d_1 \cdots d_{i-1}}, m_{i+1}\right), \quad i = 2, 3, \dots, k-1,$$

$$0 \leq t_i < \frac{m_{i+1}}{d_i}$$

and $t \ge 0$ an integer.

Proof of the theorem. If we assume $\psi^*(p; 2) = p_n$, p_m denoting the *m*th prime in the sequence 2, 3, 5, 7, ..., p satisfies

$$\left(\frac{3}{p}\right) = \left(\frac{5}{p}\right) = \dots = \left(\frac{p_{n-1}}{p}\right) = +1, \quad \left(\frac{p_n}{p}\right) = -1.$$
 (1)

L. FJELLSTEDT, The least quadratic residue and non-residue

Thus

$$p \equiv 1, 11 \pmod{12}$$
, $p \equiv 1, 4 \pmod{5}$, etc...

Putting $N = 3 \cdot 5 \cdot 7 \cdots p_n$, there exist $v = \varphi(N)/2^{n-1}$ integers a_i with

$$0 < a_i < 4N$$
, $(a_i, 4N) = 1$, $i = 1, 2, ..., \nu$

and with the property that every prime p satisfying (1) belongs to one of the arithmetical progressions

$$4Nt+a_1$$
, $4Nt+a_2$, ..., $4Nt+a_{\nu}$.

If we choose for each of the primes p_i , i=2,3,...,n, one of the possible congruence conditions modulo p_i or $4p_i$, we get exactly one residue class modulo 4N which is therefore one of the numbers a_k . Let us assume that we have chosen x_0 , $0 < x_0 < 4N$, such that

 $x_0 \equiv b_2 \pmod{p_2^*}, \quad x_0 \equiv b_3 \pmod{p_3^*}, \dots, \quad x_0 \equiv b_n \pmod{p_n^*}, \quad b_i > 0,$

where

$$p_i^* = \begin{cases} p_i \text{ for } p_i \equiv 1 \pmod{4}, \\ 4 p_i \text{ for } p_i \equiv 3 \pmod{4}. \end{cases}$$

We may of course assume that this system is solvable. Putting $b = \text{Min}(b_2, b_3, ..., b_n)$ and assuming that $b_{i_1}, b_{i_2}, ..., b_{i_k}$ are all the integers b_i for which

$$b_{i_1} = b_{i_2} = \cdots = b_{i_k} = b,$$

and putting also

$$P = p_{i_1} \cdot p_{i_2} \cdots p_{i_k}$$

and

$$P^* = \begin{cases} P & \text{if } p_{i_m} \equiv 1 \pmod{4}, \quad m = 1, 2, ..., k, \\ 4P & \text{otherwise,} \end{cases}$$

we have

$$x_0 \equiv b \pmod{P^*}$$
.

If we put $P \cdot Q = N$ when Q > 1, and define

$$Q^* = \begin{cases} Q & \text{if } p_j \equiv 1 \pmod{4} \text{ when } p_j/Q, \\ 4Q & \text{otherwise,} \end{cases}$$

we also have, according to the lemma,

$$x_0 \equiv a \pmod{Q^*}$$

where a is an integer such that $b < a < Q^*$. Using the lemma once more we get

$$\begin{cases} x_0 = b + P^* t_0, & 0 < t_0 < \frac{Q^*}{(P^*, Q^*)} \\ x_0 = a + Q^* t_1, & 0 \le t_1 < \frac{P^*}{(P^*, Q^*)} \end{cases}$$

If $t_1 > 0$ it follows from

$$PQ = 4N \cdot (P^*, Q^*)$$

that

$$x_0 > \sqrt{4 N}. \tag{2}$$

If $t_1 = 0$ we proceed in the following way. The number k of different prime factors in P is either $\geq n/3$ or it is < n/3. If $k \geq n/3$, we have for $s = \lfloor n/3 \rfloor$

$$x_0 > P^* \ge p_1 p_2 \cdots p_s. \tag{3}$$

Assuming next that k < n/3 we define for all possible combinations of r different prime factors $p_{i_{\mu_{\alpha}}}$, q = 1, 2, ..., r, of Q

$$Q\left(i_{\mu_{1}},i_{\mu_{2}},\ldots,i_{\mu_{r}}\right) = \frac{Q}{p_{i_{\mu_{1}}}\cdot p_{i_{\mu_{1}}}\cdots p_{i_{\mu_{r}}}}$$

 \mathbf{and}

$$Q^*(i_{\mu_1},\ldots,i_{\mu_r}) = egin{cases} Q(i_{\mu_1},\ldots,i_{\mu_r}) & ext{if this integer has only prime divisors} &\equiv 1 \ (\mod 4), \ 4\,Q(i_{\mu_1},\ldots,i_{\mu_r}) & ext{otherwise}. \end{cases}$$

For these integers $Q^*(i_{\mu_1}, \ldots, i_{\mu_r})$ we have the congruences

$$x_0 \equiv c(i_{\mu_1}, \ldots, i_{\mu_r}) \pmod{Q^*(i_{\mu_1}, \ldots, i_{\mu_r})}, \qquad 0 < c(i_{\mu_1}, \ldots, i_{\mu_r}) < Q^*(i_{\mu_1}, \ldots, i_{\mu_r})$$

and ask for the least integer r with the property that for one $c(i_{\mu_1}, ..., i_{\mu_p})$ at least

$$x_0 > c(i_{\mu_1}, \ldots, i_{\mu_n}).$$
 (4)

It is easy to see that $r \leq [(n-k)/2]$. In fact, suppose we have two congruences

$$\begin{cases} x \equiv a \pmod{A}, & 0 < a < A \\ x \equiv b \pmod{B}, & 0 < b < B \end{cases} \qquad a \neq b$$
 (5)

where A and B are products of different primes and (A, B) = 1, and suppose that

$$x \equiv c \pmod{AB}, \quad \max(a, b) < c < AB. \tag{6}$$

If the total number of prime factors in AB is m, one of the integers A and B contains $\leq \lfloor m/2 \rfloor$ prime factors. If we cancel, in all possible ways, $\lfloor m/2 \rfloor$ prime factors of AB, thus obtaining new integers A^* , B^* , $(A, B^*) = (A^*, B) = 1$, then for at least one such pair we cannot have

$$x \equiv c \pmod{A^*B^*}, \quad 0 < c < A^*B^*,$$

with the same integer c as in (6). Since we may assume $x_0 > p_n$ (otherwise we should have $p > x_0 + 4N$), this argument obviously applies in our case.

L. FJELLSTEDT, The least quadratic residue and non-residue

Thus it follows that for a modulus $Q^*(i_{\mu_1}, ..., i_{\mu_r}) = Q^{**}$ with the property (4) we have

$$x_1 = c^* + T \cdot Q^{**}, \quad T > 0.$$

Since the number of different prime factors in Q^{**} is at least

$$n-k-r>\frac{n}{3}-1$$

we have, for $s = \lfloor n/3 \rfloor$,

$$x_0 \ge p_1 \cdot p_2 \cdots p_s \tag{7}$$

It results from (2), (3) and (7) that in all cases

$$x_0 > R = p_1 \cdot p_2 \cdots p_s.$$

If we had Q=1, p would be >4N.

From

$$\log R = \vartheta(p_s) > \frac{2}{3} p_s > \frac{2}{3} s \log s > \frac{1}{5} n \log n > \frac{1}{6} p_n, \quad n > n_0,$$

we get

$$6 \cdot \log p > 6 \cdot \log x_0 > p_n$$
.

Hence the first part of our theorem is proved.

Starting from

$$\left(\frac{3}{p}\right) = \left(\frac{5}{p}\right) = \dots = \left(\frac{p_{n-1}}{p}\right) = -1, \quad \left(\frac{p_n}{p}\right) = +1$$

instead of starting from (1) the second part is obtained in exactly the same way.

The best results previously obtained concerning this question are the following:

$$\psi^*(p; 2) < p^{\lambda} (\log p)^2$$
, $\lambda = \frac{1}{2\sqrt{e}}$, $p \equiv \pm 1 \pmod{8}$ and $p > p_0$.

This was proved by Vinogradov [1] in 1927. A. Brauer [2] and T. Skolem [6] proved using elementary methods

$$\psi^*(p; 2) < C \cdot p^{2/5}, \quad p \equiv \pm 3, -1 \pmod{8}, \quad C \text{ a constant.}$$

In 1954 Ankeny [3] proved

$$\psi^*(p;2) < p^{\varepsilon}$$
, $\varepsilon > 0$, $p \equiv 3 \pmod{4}$ and $p > p_0$.

Using the extended Riemann hypothesis several authors, Linnik, Erdös, Ankeny etc., have obtained bounds for $\psi^*(p; 2)$. The best one of these results is, as far as I know, the following (Ankeny [4]):

$$\psi^*(p; 2) = 0 ((\log p)^2).$$

On the other hand it has been proved by Salié [5] and others that

$$\psi^*(p;2) > c \cdot \log p$$

$$\pi^*(p;2) > c \cdot \log p$$

for infinitely many primes p. Hence our result is in a sense the best possible. Actually Salié proves only the first inequality. It is however easy to see that the second one can be proved by the same method.

REFERENCES

- 1. VINOGRADOV, On the bound of the least non-residue of nth powers. Trans. Amer. Math.
- Soc. 29, 218-226 (1927).
 2. Brauer, A., Über den kleinsten quadratischen Nichrest. Math. Zeitschrift 33, 161-176 (1931).
- 3. ANKENY, N. C., Quadratic residues. Duke Math. J. 21, 107-112 (1954).
- The least quadratic non-residue. Ann. of Math. (2) 55, 65-72 (1952).
- SALIÉ, H., Über den kleinsten positiven quadratischen Nichtrest nach einer Primzahl. Math. Nachr. 3, 7-8 (1949).
 SKOLEM, T., On the least odd positive quadratic non-residue modulo p. Det Kongel. Norske Vid. Selsk. Forh. 27: 20 (1954).