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Some results connected 
with Brennan's conjecture 

Lennar t  Carleson and Nikolai G. Makarov(1) 

1. Introduction and r e s u l t s  

1.1.  A n  e s t i m a t e  o f  h a r m o n i c  m e a s u r e  

In this paper  we shall s tudy  some problems concerning large values of harmonic  

measure on the bounda ry  of a simply connected domain in the  complex plane. It  

is well-known that ,  under  a proper  normalizat ion,  harmonic  measure  of any disc of 

radius • does not  exceed vf~, and so the  value of harmonic  measure  is considered 

large if it is close to this bound.  The  following theorem provides an est imate of the 

number  of discs with large harmonic  measure. 

T h e o r e m  1. There exist absolute constants K and A such that for every sim- 
ply connected domain f~ satisfying 

o c E ~ ,  d i a m 0 f ~ = l  

and any numbers c > 0  and ~>0 ,  the maximal number of disjoint discs of radius Q 
and harmonic measure (evaluated at oc) greater than ~1/2+~ is at most AQ -g~. 

This result has some consequences for univalent functions and conformal  map-  

pings. We will indicate a couple of applications. 

1.2. Integral m e a n s  

Let f be a univalent funct ion in the unit  disc D and t be a real number.  

(1) This material is based upon work supported by the National Science Foundation under 
grant No. DMS-9207071. The US Government has certain rights in this material. 
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A classical problem is to find a bound for the integral means of the derivative: 

It(r, f ' )  = rOD If'(rC)l*ldCI, 0 < r < 1. 

C o r o l l a r y  1. There exists a number to < 0 such that for every univalent func- 
tion f and t<_to, 

It(r, f ' )  = \ \ l - r ]  ] as r -~  l. 

_ _  1 (One can actually take t o - - ~ K ,  where K is the constant of Theorem 1). 
Let us denote 

B(t) --inf{f~ : It(r, f ' )  = O ( ( 1 - r )  -~)  for every univalent function f} .  

In other words, B(t) is the exact universal bound for the rate of growth of integral 
means of order t. The example of the Koebe function z ( 1 - z )  -2 shows that B(t)>_ 
I t l -  1, and so our result implies 

B(t) =_ Itl- 1 for t_< to. 

Previously it has been known (cf. [Br]) that  the trivial bound B(t)<l t  I is never 
sharp (for negative t's). On the other hand, we shall show in Section 5 that for 
every t E ( - 2 ,  0) there is a domain with a fractal boundary such that  

log It (r, f ' )  
lim inf > It[- 1. 

r---+ 1 I l og (1 - r ) l  

Thus the situation can be described as follows. Let to be the best constant for the 
statement of Corollary 1. Then for to < t < 0 ,  the extremal growth of It corresponds 
to some sort of "stochastic" distribution of singularities on the boundary, while for 
t<to, the extremal growth corresponds to the case of "isolated" singularities. In a 
sense, to is a "phase transition" point for the universal spectrum B(t): the function 
B(t) is linear on {t_<to} and strictly convex on [to, 0]. 

1.3. Boundary  distort ion 

Let f :D--* ~t be a conformal map onto a Jordan domain. Another well-known 
problem is to compare the Hausdorff dimensions of the sets on 0D and their images 
on 0~.  
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C o r o l l a r y  2. Let E C O D  and d imE=d .  Then 

d d d 2 
dim fE>-  2 - 2 K - l d  (d--.o) -2 + 2-K+ .. . .  

The estimate dim f E > d / 2  has been long known, and in [M1] it was shown that  
one can always improve upon this estimate. 

In the class of close-to-convex (in particular, starlike) functions, one has the 
following sharp bound: 

d d d 2 
dim fE_> 2 - d  - 2 +-4-+""  ' 

but  for general domains there are examples with 

d d 2 
d im/E<_  ~ + - ~ - +  . . . .  

The proof of the results in [Br], [M1] mentioned above is based on an argument 
from the paper [C] in which the question about the dimension of harmonic measure 
(the case d=  1 in Corollary 2) was studied. A more careful analysis leads in fact to 
the following estimates: 

(number of discs) < ~-C~logl/~, (in Theorem 1), 

B(t)  ~ [ t] - l  +e -GIrl, (in Corollary 1), 

which are quite close to the present results but fall short of revealing the phase 
transition phenomenon. 

1.4. Brennan's conjecture 

Our proof of Theorem 1 also relies on the method of [C]. We use more intricate 
combinatorics but the way we estimate harmonic measure remains the same--i t  is 
based on a bound for the extremal length in terms of the Ahlfors-Beurling integral. 
Since the latter involves only the angles and does not reflect the whole geometry 
of a domain, it is almost certain that  this method cannot be further improved to 
produce the best constants. 

Determining the best values of the constants K and to is an interesting and 
perhaps difficult problem. As was mentioned, we must have 

K_>4, t0_<-2.  



36  L e n n a r t  C a r l e s o n  a n d  N i k o l a i  G .  M a k a r o v  

The question of whether we can actually take 

K =4 ,  to = - 2  

is more or less equivalent to a well-known conjecture of J. Brennan. 
In the second part of the paper we are trying to better  understand the shape 

of the boundary with the extremal behavior of harmonic measure at the points in 
a given finite set. 

1.5. Reduced  extremal  length 

For a simply connected domain [t and any pair of points a, bE(7 we consider 
the following conformal invariant. 

For e > 0  let F~ denote the family of all curves joining the e-neighborhoods of 
a and b in ~t, and F~ the corresponding family in C. (The e-neighborhood of oo is 
{[z[>e-1}.)  Define 

fl = fl(f~; a, b) = lim exp{2rt[A(F~)- A(F~)]}, 
~--+0 

where A denotes extremal length; the existence of the limit is a standard property 
of A. 

Let us now fix one of the points, say b, and consider m distinct points al,  ..., am 

on Of~. Denote 
9j = ~(~;  aj ,  b). 

We will show in Section 4 that  the best constant in Theorem 1 is exactly twice 
the minimal value of p such that  

m 

j = l  

for any m and every configuration (f~; {aj}, b). In particular, Brennan's conjecture 
is equivalent to the statement 

m 

(*) E ~ _ <  1. 
j = l  

The advantage of this new approach is that (*) looks more like a standard 
problem in the classical geometric function theory. So far we have been able to 
prove (*) only for m=2 .  

T h e o r e m  2. Let ~ be a simply connected domain and let al, a2, bEO~, 13j= 
/3(gt; aj,  b), ( j - - l ,  2). 

Then 
+ < 1. 
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2. T w o  l e m m a s  

In this section we establish some facts which will be used in the proof of Theo- 
rem 1. We refer to [B] and [O] for the definition and properties of extremal length. 

2.1 N o t a t i o n  

First we fix a sufficiently large number A>0 .  For z E C  and v c N  denote 

1 - v A  2e(1-~)A}.  R (z) = g :  < K - z l  < 

Then 

)~ = (27r) -1 (A+log  4) 

is the extremal  distance between the boundary of the annulus. 

Next we fix a simply connected domain 9t, oc C fl, and let w denote the harmonic 
measure at oc. For technical reasons we assume that  diam O~t=5. 

For zEO~ and u E N  we define Xv(z), the "excess" of the extremal length in 
~NR~(z), by the equalities 

X~(z) = ~ v ( z ) - ~ ,  

)w (z) = inf{dn (l+, l_) :  l=~ arcs on 0• n ~}, 

where 0+ denote the inner and outer boundaries of R,(z) and dn the extremal  
distance in ft. Thus X~(z)>O and is zero if and only if the part  of 0fl in R,(z) lies 
on a segment with endpoint z. 

2.2. L e m m a .  Let ~>0,  6=e -hA,  n>_no=no(~). If 

wB(z, 6) >- 61/2+~, 

then 
n--1 

E X,(z)  <_ C1Aen, 
v--J_ 

where C1 is an absolute constant. (In fact, we can take any C l > r r - 1 . )  

Proof. Let L denote a circle of radius 10 centered at some point of Of~. Then the 
inequality wB(z, 6)>_ 61/2+~ implies that  there is an arc I on Of~NOB(z, 6) satisfying 

6 
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(cf. [C], [M1, Corollary 1.4]). Consider the annuli 

ill(Z) = {~: 6 -(3/2)A ~ ]Z--s < 2} 

~4 ( Z ) = { r : e -(~+1/2)A <_ Iz--4] <_ e - ( ~ -  3/2)A } , ( 2 < v < n - - 1 ) ,  

and define A~(z) , ) ( . (z)  with respect to R~(z) as in Section 2.1. Then 

~(vVdd ) n--1 5 1 - n - ~  
1+4-"---~r - _ ~,(z)+ E ~ ->~EX~(z)+~-~-~ A' 

even  -- v -- 1 

where the second inequality follows from the subaddit ivity property of the extremal 
lengths. It  remains to note that  X~(z)>Xv(z). [] 

2.3. L e m m a .  There are absolute constants cr>0 and U>0 such that if zEO~, 
k > 2  and 

Xl(z )  <_ e -~kA, 

then for any ztEOf~NRl(z) we have 

X2 (z'), ..., Xk(z') >_ ,A. 

Proof. Since diam 0f~=5 and zEOf~, the curve 0f~ intersects both  boundaries 
of R~(z). Let 9 be the minimal angle of a sector of R~(z) containing O~tNR~(z). 
Then an easy extremal length estimate shows that  

c 3 Xl  (z) >_ -Ao , 

where c is an absolute constant, A as in Section 2.1. Hence i f  Xl(Z)~e -hkA with 
~>3,  and if A is sufficiently large, then we have 

~ e -kA, 

which means tha t  the curve 0f~ passes through a very narrow corridor in Rl(Z). 
This gives the lemma with ~2/37c-1/2~r=1/67c (consider the "worst" case: z 'E  

O~nORl(Z)). 

Remark. In fact the lemma is true for every 5>2.  This follows from an argu- 
ment in [BJ]. Also we can consider y essentially equal to 1/27r, disregarding the rare 
cases when the point z t is very close to OR~(z). 
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3. P r o o f  o f  T h e o r e m  1 

3.1. N o t a t i o n  a nd  c l a im 

For a simply connected domain fl, integer n and x>0 ,  we define N(~;  n, x) to 
be the maximal number of points zj EDNaf l  satisfying 

(i) I z i - ~ l > e  -'~A, 
(ii) n--1  )-~=1 X ~ ( z j ) < x  for all j .  

We will also define 
N(n,  x) = sup n, x), 

the supremum being taken over all domains ~ with diam ~_> 5. 

C la im.  There are constants C2, C3>0 depending only on A such that 

N(n ,  x) <_ Cae c2x. 

This inequality together with Lemma 2.2 implies Theorem 1 with the constant 

K = C1 C2, 

We shall prove the claim by induction. It is clear that  

N < c o n s t  e 2hA, 

therefore the statement is true for n----l,2 by the choice of C3. Assume now that  
n >  3, and that  the inequality is true for n :=  1, 2 .... , n - 1  and any x. Given ~ and 
the points zl, ..., zn satisfying (i), (ii), we consider the following three cases: 

> r  , 

rain_ X1 (z) < r ",  
zCf~ND 

E (T n, T 2) 

where r = e  -aA (a is the constant in Lemma 2.3). 

3.2.  Case:  m i n > r  2 

Observe that  for any zj we have 

Z <_ x - ,  
v~2 

Cover the set 0 f lAD with • 2A discs :D of radius e -A.  Fix one of these discs 
and assume that  it contains no points ~1, .-., ~m from the family {zj}. By rescaling 
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we can view l)  as the unit disc, so the points (1, ..., (m satisfy (i) 
parameters ( n - l )  and (X--T2). By the inductive hypothesis, 

m < N(n--l,x--T 2) < C3e C2(~-~-2), 

and hence 
~2A~--C2"r 2 ~ ~C2x N(fl ;  n, x) _< const ~ ~ ~3~ _< C3e c2~, 

provided that  C2 is greater than some constant depending on A. 

and (ii) with 

3 . 3 .  C a s e :  m i n < ' r  n 

Let zEDMOf~ satisfy XI(Z)<T'L By Lemma 2.3, 

X2,...,X,~> A~] on O~MRI(z). 

Therefore, if x<A~?(n-1), all points zj lie in D\RI(z)CB(z,e-A). By rescaling, 
we have N(f~;n,x)<N(n-l,x)<_C3e C~. On the other hand, if x>_Ar](n-1), then 

N(~;  n, x) <cons t  e 2hA ~ const e 2nx/~(n-1) ~ C3 eC2x 

provided that  C2 and C3 are greater than some absolute constant. 

3.4. Case:  r n < : m i n < r  2 

Assume that  the minimum is attained at a point zcDM0f~, and 

XI(Z) E(Tk+I,Tk), 2 < k < n .  

By Lemma 2.3, 

X1,...,Xk >_A~] on OgtMRl(z). 

We can cover DM0f~ with the disc B(z, e - A )  and ~ e  kA discs of radius e - k A  lying 
in R1 (z). By rescaling and the inductive hypothesis, we have 

N(f~: n, x) < N(n -  1, X--Tk+I)+ekAN(n - k, x - ( k -  1)A~]) 

__ f'~ ~ C 2 x  ~ ~ C 2 x  [ 1 ~ _ k g - 1  ~ k A - - C 2 ( k - - 1 ) A ~ I ' ]  
< w3c --w3v L ~ 2 J  --v j 

= ] 
C 3 e ,  C 2 x  , 

provided C2 is greater than some absolute constant. 
This completes the proof of Theorem 1. 
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3.5.  P r o o f  o f  C o r o l l a r y  1 

Let f be a univalent function on the unit disc. Fix a small number y > 0 and let 
r=l-y. Subdivide the circle {Izl=r} into disjoint intervals I of length •  Denote 
the center of I by zi. For c~>0 we define N(c~) as the number of I ' s  satisfying 

< 

Observe that  diamfI<~Q=yl+% Applying the theorem to the domain f ( r D ) ,  we 

have N(o~) <~ ( ~ ~(1/(l+a)-l/2) =_ ( ~ ; (1-a)/2. 

Since, for negative t, 

rOD If'(r~)ltld~l = const folyl+~tdN(c~)+O(1), 

we have 

[K ] B(t)<_m~_x -~(1-a)-l-at = - t - l ,  provided t +  K_<O. [] 

3.6. P r o o f  o f  C o r o l l a r y  2 

From the previous result on integral means it follows that  for any univalent 

function f and any dE(0,  1), 

lim If'(r~)l 
t-~l ( l - r )  ~ = cc 

except for a set of ~ of dimension (1-c~)K/2  (cf. [M1, Lemma 5.1]). Applying 
[M1, Theorem 0.5] we have 

d 
d i m E = d  ~ d i m f E < _ 2 _ 2 K _ l  d. [] 

4. R e d u c e d  e x t r e m a l  l e n g t h s  a n d  d a n d e l i o n s  

4 .1 .  / 3 - n u m b e r s  

Let fl be a simply connected domain and b, al, ..., am EC~. The quantities 

= a t ,  b) 
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were defined in Section 1.5. We emphasize that  they are M6bius-invariant. These 
numbers can be expressed in terms of conformal mappings. 

(i) Suppose b=c~ and let f j  be a conformal map from C \ { x : x < 0 }  onto f~ 
satisfying 

f~ (~ )  = ~ ,  f A O ) = a j .  

Suppose also that  f has angular derivatives at 0 and c~. Then 

If~(O)l 

~3 = if,(c~) I �9 

In such a form,/~-numbers appeared "n [Ba]. 
(ii) Let again b=c~ and let f map the upper halfplane onto f~ and satisfy 

f ( z )  ,~ Z 2 as z ----> 00. 

Suppose the points x j E R  are such that  

f ( x j ) = a j ,  f ' ( x j ) = O ,  3 f " ( x j ) .  

Then 
2 

If"(xj)l 
Indeed, if r is small, the preimage of {Iw-a~l=r is like a semicircle of radius 

If, ,(xj) I ' 

and the preimage of {Iwl= 1/r like a semicircle of radius r Therefore, we have 

and 

1 1 
A(F~) ~ ~ log - -  ~2 

l l o g  1 ~ ~  

= l ime 2'r(a(~')-a(r`)) = 2 
~-~o [f"(z~)l" 

(iii) Let aj and b be finite, and let f be a conformal map from the unit disc 
onto fL Suppose the points (j,  ~0 E aD are such that  

f((0) = b, f ( ( j )  = aj,  
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f ' ( ( o )  = f ' ( ( j )  = O, 

~f"(r 3f"(r 
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41a j - b l  2 1 

~J - IC~-Co] 4 If"(Co)l ]f"(Cj)l" 

Proof. Applying the transformation w H  (w-b)  -1, we compute 

1 laj-512 
~(~) ~ ~ log s2 

To compute )~(F~) we observe that  the preimages of the e-neighborhoods of aj have 
"radius" 

rj ~ ]f, ,((y)[. 

Applying the symmetry principle for extremal lengths, we have 

~(r~) ~ 2. ~ log 
ICj ~ ~0 ~ 2 

ro  r j  ' ~7F 

1 21a j - b  I ~(~)- ~(r~) ~ - log 
Ir -r162162 1 / 2  

and 

4.2. D a n d e l i o n s  

We describe now a class of fractal sets relevant to our study (cf. [Ba D. 
Let ~o be a simply connected domain such that  c~C~0 and the boundary 

Fo=0~o  consists of a finite number of straight line segments. Let b, al,  . . . ,  am be 
the extreme points of F0, i.e. the points at which ~0 makes the full angle. We 
assume that  b=0, {x:x<O}C~o, and that  the segment L of F0 with the endpoint b 
lies on the real axis. Then for every sufficiently small x > 0  we can construct a 
fractal set, a dandelion, F(x) as follows. 

For j = l ,  ..., m let lj denote the segment of length x lying on F0 and having aj 
as an endpoint. Define the polygon F I = F I ( ~ )  by replacing each lj by a rescaled 
copy of Fo so that  under rescaling the segment L corresponds to lj. The polygon F1 
has m 2 extreme points other than b. 
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Fo 

b L 

al F1 

a2 

Figure 1. 

To obtain F2=F2(~)  we repeat the above procedure with the scale ~2. Pro- 
ceeding with this construction we define polygons F3, F4, ... which converge to some 
fractal set F = F ( x ) .  (Observe that  if x is small enough, then no intersections occur 
at any step of the construction.) We will call the polygon Fo the initiator of the 
fractal set F. 

There is some relationship between the properties of the harmonic measure 
on F and the ~-numbers of the initiator. For a domain ~ and E > 0 let us denote 

T ~ ( s )  = lim sup log N(e  , s) 
e--*o [log ~o I 

where N(Q, s) is the maximal number of disjoint discs of radius e and harmonic 
measure at least 01/2+~. By Theorem 1 we have 

Tn(s)  < Ks. 

P r o p o s i t i o n .  (1) Let {F~}~>0 be the family of dandelions with initiator Fo, 
~ t ~ = C \ F ~ ,  and {~j} be the ~-numbers of Fo. If  

E / 3 ~  >-1 

for some p>O, then 
lim inf sup s - l T n ~  (s) > 2p. 

~---+ 0 e>0 

(2) In the opposite direction, let 

Tn(s) > Ks 

for some simply connected domain f~ and s>0 .  

satisfying 
E [~K/2 > 1. 

Then there exists a polygon Fo 
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C o r o l l a r y  3. There exists an absolute constant p such that 

E ~ -  < 1  

45 

satisfying 

nj = # { ~  : x .  -- j},  

and consider only those X ' s  for which 

nj def ~P 
- -  ~ O / j  - -  

n 

By assumption, c U <~?.  The total  number  of such segments is 

N _  
- - O ~ "  rb 

nl! ...nm! 

Now we estimate the harmonic measure of X.  Since similar estimates have 
been made many  times, we will only outline the idea. For a detailed proof one may 
use, for instance, the argument from [M2, w 

Consider the conformal mapping 

v x :  -- ,  1] 

~x(oc)----oc, ~x(b)=O, (px (ax )=l .  

Then, assuming x small, we have 

n 

j = l  

for every configuration (~; b, {aj}).  

The best value of this constant is exactly one-half of the best constant in 
Theorem 1. 

4.3. Proof of Proposition. (1) At the ( n - 1 ) t h  step of the construction, we get 
a polygon Fn-1 with m '~ extreme points other than b. Let us code these points 
in a natural  manner  with the sequences X = ( X l  ... xn) of the symbols 1, . . . ,m, and 
denote them by az.  Also let us use X to denote the segment on Fn-1 of length 
Q ( X ) = x  ~ with endpoint ax. For X = ( X l  ... x~) and j = l ,  ..., m define 



46 Lennart  Carleson and Nikolai G. Makarov 

and 
! 

~(x) ~ 41Q(x) [ I  z:J = ~(xl 1/~§ 
j = l  

where r  does not depend on n and has the order of I log x I-1. Hence 

2E l~ I-[ a j ~ j  >2r l ogN 
T~ (r _> limn_~oosup i log Q(x) I ~-~0 log H/3j - ~  - 

(2) We will again only indicate the idea (cf. [C J], Section 6, for the details). 
Suppose, for a given harmonic measure ~ and some K'>K, that we have N_> 
(1/~) K'r disjoint discs Bj =B(zj; 8) satisfying w(Bj)~Q 1/2+~. Then we modify the 
boundary inside each Bj by replacing it by a suitable radius of Bj. Denote the new 
harmonic measure by ~. Then for ~<<~, we have 

~B(z j ,  ~) ,-~ ~(Bj)~/~ ,~ Q%/~. 

Hence flj,,~ Q2~ for the obtained polygon, and 

~-~/2,.~ N.(o2~)K/2. [] 

4.4. Remark. There is a natural version of fl-numbers based on the interior 
choice of the point b. Let 

b C ~  and al,...,anEOfl. 

Then we can define ~-numbers by the same formula: 

~j --fl(fl; aj,  b), (see Section 1.5). 

Let, for example, b=coEf l ,  and f be a conformal map from the unit disc onto 
such that 

y(0) =co,  

y(~)=aj, y % ) = o ,  3y"(r 

for some points ffj C OD. Then 

2 cap 0fl 
3~ = If"(Cj)l 
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Corol lary 4. There exist an absolute constant p (same as in Theorem 1) and 
an absolute constant C such that 

Proof. Consider the numbers ~j --2/If"(r defined for some univalent function 

1 
g = - + . . .  (at co), 

z 

and points Cj EOD. At the expense of C, we can assume that all Cj lie on a semicircle, 
say 0Dn{Re~<0}.  Let ~ be a conformal map from D onto the slit disc D \  [�89 1], 
and ~(0)=0. Consider the domain (fo~)(D) and the points b=f(�89 and aj=f(~j) 
on its boundary. Let f~j denote the corresponding f~-numbers. Comparing the 
expressions for ~j and ~j (cf. (iii) in Section 4.1), and applying some elementary 
distortion results, we see that 

~j > (abs. constant)/3j. 

The assertion now follows from Theorem 1. [] 

5. Examples  

In this section we indicate some examples of explicit computation and also 
describe some further applications of H-numbers. 

5.1. Explicit  computa t ions  
(i) Consider the generalized Koebe function 

f ( z ) = z - l ( 1 - D )  2/'~, z e D .  

The boundary of the domain 12=fD is the union of n straight line segments [0, aj], 
where 

aj=221nexp{2~ri.J}, ( 0 < j  < n - l ) .  

If we take b=ao, we have ( n - l )  ~3-numbers flj=~(~;aj,ao), l < j < n - 1 ,  and the 
application of the formula (iii) of Section 4.1 gives 

1611 - 
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In particular, 
1, n = 2 ,  

E f t 2  (8) 3, n=3 ,  

16 ~ ,  n=oo.  

We see that adding new branches at a given branch point only decreases the amount 
of EZ]. 

If we take b=ooef~, then we get n fl-numbers flj--j3(ft; aj, oo) all equal to 

4 2 - 2 / n  ' 
n 

see Section 4.4. It follows that 

1, n - -  1, 

E f l ~ =  2s,2_1/3 n=2 ,  
- > 2 ,  n = 3 ,  

which shows that in contrast to the case of j3-numbers, there is no obvious conjecture 
about the constant C in Corollary 4. 

(ii) Let {tk}, 0 < k < n ,  be any set of real numbers and let positive numbers C~k 
satisfy 

E c ~ k  =2 .  

Then the function 
n 

k=O 

is univalent in the upper halfplane and maps it to the domain ~ whose boundary 
consists of the positive real axis and n straight line segments emanating from the 
origin. Apart from oo, there are n points aj EO~ at which the domain makes a full 
angle. Applying (ii) of Section 4.1, we have )1 

~k 
/3y = / 3 ( ~ ;  ay ,  oo)  = 2If"(xy)1-1 = 2 I z y - t k l  ~ ixy_~el e , 

- -  k = 0  

where the points x j - - f - l a j  E R, 1 <j  <_n, are the roots of the equation 

n 

x k 
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as 

a 

al 

a2 

a3 
b 

Figure 2. 

This equation, as well as the expression for/3a, is "real variable", but this fact does 
not seem to be of much help. We were unable to prove the inequality ~ /32  < 1 for 
this particular example. 

On the other hand, some special cases are easy to compute. For instance, in 
the symmetric, n=2 case (see Figure 2a), we have 

1 (  c~ "~ 1-~ 1 
/31 =/32 = ~ \ 1--L--~] _< 0.660 ... < ~ .  

In the rectangular, symmetric, n=3 case (see Figure 2b), we have 

for some tE(O, 1), and 

1 1 - t  2 
/31 = / 3 a  - 2 l + t  2' 

2t 
/32 - l + t  2' 

but  for any p < 2  we have 

2PtP + 21-P(1-t2)P = l + 2 1 - p ( 1 - t ) P - p 2 ( 1 - t ) 2  + . . .  > 1 
E / 3 p =  (l+t2)P 

provided t is close to one. Together with the Proposition in Section 4.2 this proves 
that  the constant K in Theorem 1 must be at least 4. This example also provides 
a partial motivation for Brennan's conjecture: if p<2 ,  then we can always increase 
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the amount of ~ / 5  p by adding a short perpendicular segment at a regular point of 
the boundary while this is no longer true for p>2 .  

Proof. 

Consider also the mappings 

5.2. Variation of logarithmic capacity, Schwarz d e r i v a t i v e  

It is sometimes useful to look at ~-numbers as the derivative of logarithmic 
capacity with respect to the arclength. More precisely, let E be a connected compact 
set, aEE, and assume that  near a, E represents a smooth slit with the endpoint a. 
Let us now extend this slit beyond the endpoint by adding length l and keeping 
the slit smooth. Denote the new set by E(l). (We can as well define E(l) for small 
negative l by cutting off the slit.) 

Proposition. 

d l=ocapE(1)= ~(EC;a, co). 

Let g(z)=cz-l+.., map D onto the complement of E and g(r  Then 

21cl 
Ig"(r 

Then 

gz(z) = c(l) +. . . :  D ~ C\E(l). 
Z 

gl _--go~, 

where ~o is a conformal map from the unit disc onto itself minus a short slit at the 
point r This slit is almost a straight line radial segment of length h, where h and 
1 are related by the equation 

l ~  l lg"(r  = ]clh 2 
2 

Without loss of generality, let ~ = - 1 .  Then 

~(z) ~ k-1 ( (1 - c )k (z ) )  = (1 -E)z+ . . .  , 

where k(z)=z(1-z) -2 is the Koebe function and 

1 2 c = ~ h  . 
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Therefore, 

and 

capE(l) = lc(1)l = l-eIc' ~ ,cl ( l +  ~_) = [cl+ ~ l  

dlc(1)l = l -  

dl  [] 

C o r o l l a r y  5. Let E be a connected compact set, ~/j be some curves of 
lengths Lj intersecting E, and 

.E = E u U . - , / j .  
J 

Then 
c a p e  <capE+C(E qN1/q Lj)  , 

where C > 0  and q > l  are some absolute constants. 

Proof. We can assume that  ~/j are smooth arcs with one of the endpoints, 
say aj, lying on E. For xC(0, 1) let ~/j(x) denote the subarc of ~j from aj to aj(x) 
such that ~/j(z) has length xLj. Denote 

E(x)= EuU~G(x),  

 j(x) 
c(x) = cap E(x). 

Thus by Corollary 4 we have 

1 1 ~ 1/p q 1/q )l/q 
c ' ( x ) = ~ E ~ j ( x ) L j < - ~ ( E ~ P ( x ) )  ( E L i )  -< const ( E  Lq 

J 

with q-l +p - l= l .  [] 

~-numbers, in contrast to/~, are more related to the Schwarz derivative than to 
capacity. Consider, for instance, a simply connected domain G, G C C + = {Im w > 0}, 
and assume that  G contains C+n{Iw I >R}  for some large R. Then there is a unique 
conformal map g: C+--*G such that  

T g ( x ) = z - - + . . .  
Z 

a t  (x). 
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The parameter  T is positive and equals one-sixth of the Schwarz derivative of the 
function (g(z-1))  - :  at the origin. 

Let now 
g(xj)--aj, g'(xj)=O, 3g"(xj) 

for some xj ER. Then we can define a-numbers  at the points aj by 

1 
at  - lasi ig,,(xj) I - Z(G2; a~, co), 

where G 2 is the t ransform of G under wHw 2. 
Let us now add some short slits ~/i to the boundary  of G at the points a t. 

Then we obtain new, smaller domains G(A1, A2, ...) which we parametrize with the 
quantities 

A3 = / I z ]  Idz]. 
% 

Consequently, we have a function 

T = ( ~ 1 , ~ 2 , . . . ) ,  

and reasoning as above we show that  

AI=O,A2 =0' ' '  o~j  = a j .  

C o r o l l a r y  6. 

T(A1,A2,...)<_T+(~_~.) 1/q 

for some absolute constant q > l .  [] 

Observe that  Brennan 's  conjecture D is equivalent to the s tatement  

IlVTll < 1, 

or to the s tatement  of Corollary 6 with q=2.  

5.3. Dir ich le t  n o r m  o f  t he  a r g u m e n t  

Let ~ be a simply connected domain and 0, cxDC0~. Let a rgz  denote any 
branch of the argument  which is continuous on O ~ \  {0}. Such a branch has to exist 
if ~(ft; 0, c~) >0. 
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Proposition. 

  :oxp( 
where gr'gz denotes the harmonic extension to f~ of the boundary function arg z, and 

D[u] = / ~  IVul 2 din2. 

Proof. By definition, 

/3= ~-~olim ~2 e-2~(~) , 

where A(r is the extremal distance between Izl=r and Izl=l/r in f~. On the other 
hand, 

)~(~) -- sup D[u]-l, 

the supremum being taken over all functions u satisfying 

u =  1 Izl= . 
Let us express u in the form 

u(z)--21ogl/r log +v  , 

where v=O on [z I=r 1/c. Then we have 

where 

D[u] = log i / r  1-t 4~r log l /eJ '  

X[v] = 2D [l~ ~zl 'V] +D[v] = -2 / /  OV drdO+ f Or Jo~ v OV 

(r, 0) are the polar coordinates and n denotes the inner normal. Consequently, 

21ogl / r  1 1 infX[v]+o(1) as ~ 0 ,  
2?rA(~) = sup. 1 + (X[u])/(4~r log l / e )  = 2 log ~ - 

and oxp{ iofxiv } 
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the infimum now is taken over all harmonic functions v in f~. 

To solve the latter variational problem we first apply Newton-Leibnitz to the 
double integral in the formula for X[v] and rewrite it as an integral over the bound- 
ary: 

where 

, IdOl 
(*) p(z) = ~-Idzl 

with + or - according as the angle between the inner normal at z and the direction 
[0, z] is less or greater than  1r/2. 

Thus we have 

X[v]= foaV(Z)[~nn+2p(v)J 'dz" 

Varying the function v in this integral, we find the following condition for the 
extremal case: 

0Vextr 
On = -p(z).  

Therefore, 

Z[vextr] =-D[vext r ]  = -D[vex t r ] ,  

where Vextr denotes the conjugate function. But for V~xtr we have 

0Vextr 0Vextr 
Os On 

- -  - p ( z )  

and comparing this with ( , )  we see that  Vextr]oa is a continuous branch of the 
argument.  [] 

Similarly, in the case of finite a, bEOf~, we get the expression 

/3(f~;a,b)=exp{-~---s }. 

Applying Theorem I we obtain the following inequality which slightly resembles 
the well-known Goluzin inequality in the theory of univalent functions. 

C o r o l l a r y  7. Let f be a univalent function in the upper halfplane and {xj} 
be distinct points on the real axis. Then 

~--~Aj log f ( z ) -  f (xj)  2 9 t 1 
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for some absolute constant p and for all collections of positive numbers {hi} satis- 
fying E AJ =1,  where I1" II~=(D[ �9 denotes the Dirichlet norm. 

Proof. We can assume that  f ( z )~cons t z  2 at co for otherwise the left hand 
side is infinite. If xj ER,  then 

f ( z ) - f ( x j )  
~ ' g ( f - f ( x j ) ) ( z ) = a x g  ( z_x j )  2 , z E C + ,  

and by the conformal invariance of the Dirichlet norm and the statement above, we 
have 

dj  - log  = log N,1 

where f~j=/~(fC+; f (x j ) ,  co). By Theorem 1, 

E e-dr E ~p -< 1, 

which is equivalent to the fact that  

6. P r o o f  o f  T h e o r e m  2 

In this section we shall prove the inequality 

/~2 +~2 < 1. 1 tJ2 - 

A natural guess would be to look for the extremal case in the class of "symmetric" 
domains satisfying/~1--/~2. But this turns out to be wrong. In fact we shall find 
the extremal configuration for the problem 

max{/~ : fl = f~l = ~2} 

and will show that  this maximum is equal to 

1 
8(3+2x/2)-v~ ~ 0.661... < ~ = 0.707... , 

(which is only slightly better  than what we had in example (ii), Section 5.1). 
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a l - -0  a2~1 

Figure 3. 

On the other hand, in the case/31<</32 we have/32+/32~1+c,  and it is clear 
that  if there is a domain satisfying/37 +/32 > 1, then there should exist an extremal 
configuration with respect to the quantity/32 +/3~. Our strategy will be to rule out 
the latter possibility. From now on, we will assume that  the extremal configuration 
(~ ;a l , a2 ,  b) exists and will eventually arrive at a contradiction. Let us fix the 
notation 

A =/3~-1/32 

for the extremal domain. Since/3-numbers are MSbius invariant, we can assume 
b - - a ,  a l - -0 ,  a 2= l .  We also assume that  the boundary 0 n  has at least one point 
in the upper halfplane C+. The first step will be to apply 

5.1.  Schif fer 's  v a r i a t i o n  

L e m m a  1. The boundary F - - 0 ~  of the extremal domain ~ is the union of the 
trajectories of the quadratic differential 

1 Q(w) dw 2-- - ~  ~ 

that join the points c~, O, 1 in C+. 

A2) 
(w_  1)2 dw2 

This provides a complete description of the domain: the boundary consists of 
three analytic arcs joining the triple point 

w * -  l+ iA  
I _ A  2' 

(a zero of Q in C+),  with the points 0, 1, c~ respectively, see Figure 3. 
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Proof of Lemma 1. Let f map 12+ onto [2, f ( x ) ~ z  2 at ec, and f (x j )=aj .  Then 

2 

~ -  If"(xj)l" 

Fix a point w0 C 0f~, w0 7tal, a2, and let T be some conformal mapping defined on 
the complement to the part of F lying in a small neighborhhod of Wo, and T(w) ~ w  
as w--*oe. Denote 

]=foT, 
fi = T(ft), h i - -  T(aj) ,  

~j = Z(5;  aj ,  ~ ) .  

Then 
2 2 __ ~j 

~J = I]"(xj) l  = IT'(aj)l  [f"(xj)l IT'(aj)---~l" 
Suppose now that we have a family of such mappings {T~}, r-~0 satisfying 

1 
T~(w) = w + ~ ( r ) + O ( r  3) 

( ~ - w o )  

uniformly on each set {[w-w0[ >e} as r--*0, where A(r)=O(r2). Then we have 

1 
Tl~(aj) = 1 - )~( r ) (a j -wo)  2 +O(r3) '  

ITtr(aj)1-2 = 1+2 Re 
~(~) 

(aj_wo)2 §176 

and 

-2 2 2 I 
0 _ > E D J - E D  J = E D j [ I T  (a j ) l -2-1]  

=2Re~(r)~ ~ ~O(r31. 
�9 (aj-wo) ~ 

3 

Since this is true for any choice of the family {Tr} and any point Wo, by Schiffer's 
theorem (see [D], p. 297) F is a union of analytic arcs w=w(t) satisfying 

Q(w(t)) \ dt ] > O. 
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The differential Q(w)dw 2 has three poles of order two and two simple zeros 

in {2; so the structure of the trajectories is easily described and simple considerations 

complete the proof of the lemma. [] 

6.2. C o n f o r m a l  m a p  

Our next step is to find an explicit expression for the conformal map f :  C + - + f L  
Since F is almost a straight line in a neighborhood of c~, we can normalize f 

so that  

(1) f(z)=cz2+co+.., as z--+oo. 

Let xl ,  x 2 E R  be the points such tha t  

f ( x j )  = 

Without  loss of generality we can choose 

(2) x2 ---- - 1 ,  

and this choice, together with (1), determines f completely. 

L e m m a  2. If f satisfies (1), (2), then 

Xl ---- A 2 

and 
1 + A 2 ] 4 4A 2 

[f'(z)]2 ~ ( f ( z ) L 1 )  2 - (z_A2)2 ~- (z+l)-------- ~ .  

Proof. Denote 

W(z )  = [f' (z)]2Q(f(z)  ). 

This function is defined in C+,  continuous and positive on the real line except, 

probably, at the points xl ,  x2 and also at the points Yl, Y2, Y3 which f takes to w*, a 
zero of Q and the branch point of F. Extending W to the whole plane by symmetry;  

: W(z ) ,  

we obtain an analytic function on 

C\  {(x),xl,x2,yl,y2,y3}. 
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where 

Let us study the behavior of W at the singular points. 
The singularities at yj are removable. The quadratic differential Q(w)dw 2 is, 

indeed, conformally equivalent to wdw 2 in a neighborhood of w*. Therefore, 

If(z)-w*l • Iz-yjl 2/3, 

If'(z)l • Iz-yj1-1/3 
as z---*yj, and hence W is bounded at yj. 

The infinity point is also removable. In fact we have 

(3) W(z)=(2cz+O(z-2))  2 1+A2 ~ ( ~ )  
C 2 z 4 @ O ( z 2 )  - -  4 ( l + A  2) + O  as z --* c~. 

Finally, we check that  the points xj are second order poles. It follows from the 
local structure of trajectories that  f is infinitely differentiable at xj, and therefore 

f "  {X �9 ~ f (z)  = a j W L - - ~ ( z - x j ) 2 + . . .  as z--*xj. 

Hence 

(1) 
- ( z - z y  ~ o  

where A I = I ,  A2=A. 
From all the above it follows that  

4 4A 2 6 5 
(4) W(z) - (Z_Xl)---------------- ~ ~- (z_x2) ~ -~ z - x 1  z - x 2  

for some 5ER. (Recall that  W should have zero of order two at c~.) Comparing 
the development of the right hand side of (4) with (3), we have 

O=5(Xl--X2) ~-5(x~--x2~) . ^Zl+x2A 2 
z 2 z 3 '~-~ ~-~ 

and hence 5=0 and 
X 1 = - x 2 A  2 = A 2. [] 

Observe also that  f must take the zero zo of W lying in C+ to the zero wo of 
Q(w) other than w*. Thus we have the following formula for the conformal map 
w=f(z):  

/~  V/(W-l)2+A2w2 ~ V/(Z+l)2+A2(z-A2) 
o w(w-1 )  dw=2 (z_A2)(z+l)  dz, 

o 

1 - i A  
zo = A 2 - 1 +iA. w0 = 1+A2, 
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6.3. C o m p u t a t i o n  

L e m m a  3. 

(5) 

I > A 
1 

Figure 4. 

fix1/(1+ )  ( l+A2) 2' 

(6) ]f"(x2)l=(A+ l ~ / ~ )  ~ / A 1  
A(I+A2) 2' 

~ - l / v ff TA-~ 
lim f(z) 2 1 -A/ lv/Y~II+~WAZ ) 

(7) ICl=z_~ z2 - A I + A 2 ( A + ~ )  

This gives the values of the numbers 3j =21c[/[f"(xj) ], and we have 

/ 1"~21 . ~ 1 + / ~ ~ \ - 2 / ~ / A  1 ~ - 2 / ~  /32+~2=16~A+~) [A+Vl+A ' )  ~ - + ~ )  

F ~ ~ \ - - 2 ~ - + A  - 2  • ) +A-2(A-I~-~)-2~]. 
The right hand side, as a function of A, is obviously invariant under the substitution 
A--~A -1. The minimal value corresponds to the case A = I  and is equal to 

128(1+ ----.8747898 . . . ,  

(which implic~ (1)). The fimetion is increasing on [1; c~) and tends to 1 as A--+c~ 
(see Figure 4). It follows that  for all A ,~2+~2<1 .  
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It remains to check (5)-(7). This is done by direct computation of the integrals. 
With an appropriate choice of the square root branches, we have (using the notation 
R(w)=(w-1)2 + A2w 2) 

T ( w ) = f ~  R(w) i (v/~+A2v/-~+A~w+w_l) w(w-1-""-~ dw = 1 ~  log 
o ' z t \  

1 1 ( A 2 w + A v ' ~  1 1 1-w-v/-R 
- Z  o g ~ ,  w - 1  ) -  og~-~ w ; 

and, (using the notation S(z)=(z+l)2+A2(z-A2)), 

P ~ v ~ + ( z +  l)+ A2(z- A 2) 
�9 (z) = ]. dz = ~ log o (z-A2)(z+l) iA(l+A2) 

�9 i ( z + l + v / ~ ) .  -AI~176 A(z -A  2) 

Now as z--*xl=A 2 and w--+al=0, we have 

1 + ~  2 
Re kV(z)=log I z - A 2 1 + ~  log log ~( l+A2)+o(1) ,  

A 

Since 

1+ l v T j ~  
Re T(w)=log I w [ + ~  log A 

T(f(z))  = 2k~(z), 

A 
Flog ~- +o(1). 

we have 

log If(z)-all =2log I z - w ~ l + l v q T ~  log 1+ VT-~2 A A {-log 2(1+A2)2 +o(1), 

which implies (5). 
The relations (6) and (7) are derived in an analogous way. 
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