ASYMPTOTIC PARTITION FORMULAE. III. PARTITIONS INTO
kth POWERS."
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Introduetion.

1. 1. In a wellknown memoir® Hardy and Ramanujan obtained the asymp-
totic expansion of p(n), the number of unrestricted partitions of n, by applying
Cauchy’s Theorem to the generating function

W

Hl—x 1—~I+Zp (1.11)

1=1 n=1

My object here is to find the asymptotic expansion of pi(n), the number of
partitions of % into %-th powers.® The result is to some extent a generalisation
of theirs, and part of this paper consists of an application of their method to
the new generating function

o] e
:H x”” 1*1+Zpk
n=1

=1

! The previous papers of this series are

1. Plane partitions. Quart. J. of Math. (Oxford series), 2 (1931), 177—189.

II. Weighted partitions. Proc. London Math. Soc. (2), 36 (1933), 117—141.

The present paper may be read independently of these.

2 Proc. London Math. Soc. (2), 17 (1918), 75—115. The reader will find it interesting to
compare the methods and results of this paper with my work here.

% The problem was suggested to me by Professor Hardy, to whom my thanks are also due
for much valuable advice in the course of the investigation.
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Before we can use this method, however, we have to solve two subsidiary
problems which are much more complicated for general % than in the particular
case k=1 considered by Hardy and Ramanujan. It is obvious that f(x) is
regular for |x| <1 and that every point of the circumference |z|=1 is an
essential singularity of the function. We must know the nature of the singul-
arities of f(x) at the rational points

2pmi
r=¢e 1
or, what is the same thing, the behaviour of f(x) as 2 approaches such a point.
This information is contained in a certain transformation formula.

When k=1, f(x) is, apart from a trivial factor, the reciprocal of an elliptic
modular function, and the transformation theory follows at once from the pro-
perties of such functions. For general % this is not the case, and we have to
develop the transformation theory of f(z) entirely afresh. This work takes up
the whole of Part I of this paper. We state the resulting formula as a theorem;
it is apparently new and possibly of some interest in itself, apart from the
application with which we are here chiefly concerned.

We find that as x approaches 1, f(x) behaves to a first approximation like

exp LA B (1.12)

where I'(f) and {(¢) are the ordinary Gamma and Riemann-zeta functions. This
brings us to our second subsidiary problem, namely the determination of an
auxiliary function with an isolated singularity of the type (1.12) at x=1. In
a recent note', I introduced a generalised Bessel function to enable me to

construct such an auxiliary function, and discussed its properties.

We write

1 I . .

a=-, b=, =j(k)=o0 k even
lﬂ, b+ ) /( ) ( )7
(—1 2E+1)
g=7(k)= e k+1)C(k+1) (kodd).?
b Journal London Math. Soc., 8 (1933), 71—79.
*If k=1, then j= — i Readers familiar with the memoir of Hardy and Ramanujan
referred to above will recollect the appearance of the number — X

24
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Then the appropriate generalised Bessel function here is

@

-3 i

= (Z+I)I’(Za—;);

145

and our simplest result, found by examining in detail the singularity of f(x)

at x =:1, is contained in the following theorem

Theorem 1. We have

pr(n) = (n + )~ 3(2 7r)_'1~)"'q) {(r +a) (1 + a)(n +5)°} + 04 "")
where

A=+ el (1 +a) L +a}, a=alk)>o0

Using the known asymptotic expansion® of ¢(z) we can deduce the expan
sion of p(») in terms of elementary functions of =

Theorem 2. We have

H—
_3 )
peln) = By(n + 52 stusiv |

—1) I),,L 1 1
o 6 l I+ lel mb 0(,”}1[;)] '
where

1

s A k2
By = Lik+1) 3
(27)2 (A + 1)z

)

and by is a function of k and m only, which may be calculated with sufficient
labour for any given values of k and m; in particula

b o 1A + 11k + 2
i 24k

Hardy and Ramanujan (loc. cit. p. 111) give the result

_3
pr(n) ~ Byn' "2 e

without proof.

This is equivalent to Theorem 2 with M
statement as to the order of the error term

1, but without any
I believe, new.

Apart from this, Theorem 2 is

Lemma 33.

19—34198. Acta mathematica. 63. Imprimé le 20 juin 1934
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1.2. We shall, however, go much further than Theorem 1. We have by

27rzf antl

where 1" is a circle with centre at x =0 and radius less than unity. We shall

Cauchy’s Theorem

take the radius of I" very nearly unity. Then the dominant term of pr(n) given -
in Theorem 1 arises from the integral along the portion of I' in the immediate
neighbourhood of = 1. Every point of the circumference of the unit circle is
an essential singularity of f(z), as we saw, but the singularity at z = 1 is the
»heaviest>. When we consider the next »heaviest» singularities, and also find
a better approximation than (i.12) for f(x) near z:=1, we can find for any
¢ >0 an expansion for pi(n) with error only O (e*").

The numbers k& and ¢ are positive integers. The number p is also an integer,
satisfying the conditions

1=<p<gq, (pg=1, (1.21)

except that, when ¢==1, p=o0 only. We use 2 to denote summation over
P
all such values of p for the particular value of ¢ in question. We write ¢,

for the least positive integer such that ¢|¢%¥. Then g¢,|¢ and we may write
g =q,q,. We define di by

pht=di(mod q), o=d,<y;
also

Wp, = 1 (% even),

W), q = exp ( Z hdy, — q qg))} (k odd),

h—=1

eoll) = exp (27;2[) v S = 2 eq(LhF),

h--1

K
I'tr+a) 8,
/I],’ q == ( ) Z Opm, q

)
a1t
q g M

k
al L ql_ w
D¢ T ), 4,
D¢ 27t JURA

Cq0=T1, Apygoz-Apy.

e -~
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For values of t>>o0, ¢, is a ¢-th root of unity, depending on %, ¢ and ¢, and
Ap,q,¢ is a function of %, p, ¢ and ¢. For any particular values of these para-
meters, c¢,: and ., 4: may be calculated, but the process is in general very
tedious. The method of calculation will be described later (see § 9.4). Then
our full result is N

Theorem 3. For any ¢ > o, there exist an integer @, = q,(k, &) and integers
Ty =TIk, q, &), such that

Tq,6
pe(n) =+ )72 2 2 Cpgal—pn) D Co,t @(Ap,o,e(n + ) + O(es™).
9=q p t=0 ’

When k= 1, that is, in the case of unrestricted partitions, we have

. 1 2
».7:“""411 q, Tg:=0, dpq,= 6q

pl2) = 5‘4 - d — é a {COSh (21)} .

If we write

27 1
D=—"= ¢ \n——) >

Ve & (" 24)

we have |
on d {e g } Lo o.b
Apqen)=—"735" + 0{n2 %),
q)( P,QQ) 27v%dn on
and so the expansion becomes
Doy

p,(n)=~(Zi 2 {e : }pr aeq(—pm) +0(en?).

27V 2 q<qod" On

Hardy and Ramanujan obtained the last result. In fact, they went further;

taking g, an appropriate function of %, they made the error term only O(n'—i).
If we attempt to make a similar improvement for pi(n), we find that we can
choose ¢, == q,(k, n) so that the error term is 0(e"), where d < b. This is not
8o good as the result for k= 1, and, in view of the heavy analysis required for
this further step, I am content to prove Theorem 3.
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Part I. Transformation of the Generating Funection.

2. 1. Qur first step is to find the transformation formula for f( ) for
o'eneral k, which will exhibit its behaviour mear the rational points on ‘the
circumference |z|=1. Our result includes that for k= 1, which may also be
deducéd from the theory of modular functions. For general £ no such deduec-
tion is possible.

Before stating the transformation formula, we must define certain symbols.

The numbers p, h, s and ! are integers. Of these, p satisfies the condi-
tions (1.22) and

I1=Sh=gq, 1=<s=<Fk I=o0.

)

If d, £ 0, we write

e = % (5 0dd), ne= 1" (s even).

If dn=0, we take up,=1. Hence always qu; = 1.
In connection with any particular values of p and ¢ we write

X=aze(—p)=c, Y=gy,

and we take y real and positive when X is real and o< X < 1. We write also

ts = (Z;)G exp {anz’ (s — i)} )

where Y* is that A-th root of Y which is real and positive when Y is real and

positive,

g(h’v l, S) == exp {Z”i(l + l‘h,S)a ts} 0«1(‘ h)

—ex {(27,)1+a(, F A i)
P ay* q
and finally

q k
Pp,q:HHH I“ghlé’

h=1s=1!=

We are now in a position to state our transformation theorem.
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Theorem 4. If R(y) > o, then P, , is convergent and

L A
S =Flevefp) = Cpggb v exp (422) 1y, fo.11)

In the case k=1, (2. 11) reduces to the modular function transformation
used by Hardy and Ramanujan.! These authors also stated Theorem 4 in the
particular case k:'z, q=1, p=0, without proof. ’

To prove Theorem 4 we need two lemmas.

Lemma 1. If C s any positeve number and if
Riy) > Clyl+, (2. 12)
then Py 4 7s uniformly convergent with respect to y.

Lemma 2. ‘If y 1s real and positive, then (2. 11) is true.

From these two lemmas it follows by the principle of analytic continuation
that (2. 11) is true when (2.12) is satisfied. But for any particular value of y
such that R(y) > o, we can choose C so that (2. 12) is satisfied. Hence Theorem

4 is an immediate consequence of Lemmas 1 and 2.

2.2.. Proof of Lemma 1.

Lemma 3. If
-—17t<w<£7t ~In(1+a)‘£’3£1n(3—a)
2 277 2 2. ’
then

cos (9 —ayp) < max{cos (én(l +a)— m,b), cos (— ;—ﬂ(l + a) _-alp)}

A

2a
— ~—cos .
- Y

! When k=1, my definition of wp, ¢ differs in form from that appearing in the transforma-

tion used by these authors. The latter definition does not involve the sum '

q—1

> hdn.

h=1
H. Rademacher (»Zur Theorie der Modulfunktionen», Journal fir Math., 167 (1932), 312—336)
obtained the modular function transformation for f{x) when k=1 with the form of wp, ¢ that I
use here. The same author showed (Jowrnal London Math, Soc., 7 (1932), 14—19) by an ele-
mentary method that the two definitions are equivalent, S
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‘We have

1 1 I 3
- “alda)—av =9 —avw < -3 —a) — aw < >
27r<27v(1 a)—ay =G .mpazn(3 a) — ay 7

cos{i;n(l +a)—atp}:cos{;n(1 —l—a)l’mp}

Scos{én(l+a)—a|w|}:fsin{a(;n-|tpl)}. | (2. 22)

Since

7T,

D | e

o<a(énﬂ|w|)£

we have

sin{a (én~ |1,U|)} = 24 (én — Il[)l) = %gsin (;n — |w|) = 2;dcos w. (2.23)

T

The lemma follows from (2. 21), (2. 22) and (2. 23).
Lemma 4. If (2. 12) is satisfied and if

4a O(2x)"
C=""

then -
|g(h, 1, s)] < e Cutin,
Let us write ¥ = |y|¢'%, where ¥ has its principal value. Since J(y) > o,
we have |y|< ;n, and since 1 <s =/, the number 0:éna(2s +k—1)
satisfies the condition of Lemma 3. Hence, when

Rly) = Cly[+e,

we have
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1 2a 2aR(y) 2aCly|
_ — —_— < — —_— = e T,
cos{2 wa({zs +k—1) qw} = cos Y o < "

and so

(270)'T%(L -+ un, 5)* cos {é mwa(2s + k—1) ——mp}

h,l,s)| =ex
g, 1, 9] p alyl

20 Oem 20 +
qr
= exp {—— Olqa(l_f_ ‘u/h’s)a} < g—ox(l“‘l)a’

= exp{—

since

qU+mns) =1+ qups =1+ 1.

To prove Lemma 1, it is sufficient to show that

AT
1=0

is uniformly convergent with respect to y. But this follows from Lemma 4,

since

o0
Z —Ci 1+1)"
=0

is convergent and the terms are independent of y.

Proof of Lemma 2.

3. 1. The remainder of Part I is devoted to the proof of Lemma 2. The
work is necessarily somewhat lengthy and complicated.
We take y real and positive and write

h .
T':’E/L:av v =, == exp (27w un, 1) = eo(dr) = ey (ph?),
) h¥
=1+ ) 3t
me==1
and, if % is odd,
Lk+1) ©
. ) —1)2 : eq(mh
io=vlan 8y = e e S0,

Op = 0g—h = (,uq—h,l — M, 1) (Tq—h - 1h),
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while, if £ is even,
jh =20, O0n=0.

We write also

Sy = Z log {1 —wyexp (— Y (L + ¥},

-0

k «©
Si= 2 2log {1t — g (h,1,8)},

§=11=10

where the logarithms have their principal values.

Now we have

k N Wk _y VR
1.(()[ [ ) L eq (})hl.) ‘\(:)H-h) s e Y{(l+zp) ,

and so

q

g »
—log f{z) = 2 Dlog (1 — ati+nf) = X5,

ho1l0 k=1

q

(x =—-eij- A‘k"
f() l.l 24 /;I.

-1
Also, by definition,

3
Py exp-l—ZSﬂJn

=1

" I
We take ¢ a small number, real, positive and less than 5 and » a large

positive integer. We use D to denote a positive number, not always the same
at each occurrence, depending at most on %, p,q and y. In Part I, the symbol
O( ) refers to the passage of ¢ to zero and of r to infinity, and the constant
implied is of the type ..

3.2. Certain differences arise between the cases k& odd and % even, but
we shall treat the two cases together. Most of the differences are covered by
the notation; thus, when % is odd, the functions j, j», 6, and w, , have various
more or less complicated values, while, when % is even, j, jr and o, all vanish
and w,,=1. We see that the transformation (2.11) has a slightly simpler
form when £ is even.

Apart from this, we have to consider three separate cases arising from

different values of h. These are:
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(i) If h=y¢q, we have 5, =1, =1, %=1, and
8, = Nlog (1 — e ¥,
=1

(i) 1f A*=o0 {(mnod ¢), but h < g, we have 0 <7, < I, tp,s=1, w, =1 and

o«

8= Dlog (1 — e~ Ti+ah),
=0

(iii) If A*= 0 (mod ¢), we have 0 < 7, <1, and », 7 1.

‘In cases (ii) and (iii) we shall treat S, and S,—, together. Since h*=o0
(mod ¢) implies that (¢ — h)* =0 (mod g), k and g — h appear in the same case.
Also, in these two cases,

T+ Te—n =1,
if & is even,
s == Ug—h s, Yh=Vg—h,
while if % is odd
Uhs = Hg—ns =1, mve—p =1 (case (ii)),

Uh, s + Wg—h,s = 1, VpVg—h—1 (case (111))

If =" denotes summation over those values of h for which A* = o (mod g¢),

we have, when £ is odd,

3" op = 3" (g—n,1— tn,1) (Tg—1n — )
=3"(1t — 2up,1) (1 — 27)
=3"1—23"w1—23"0 + 43" v
=3"1—3"(un 1+ tg—n1) — 3" (tn + 19—1) + 43 Thtt0,1
=43"mun1— 21

g—1
= i? Z hdy —(q— ¢s).
T =
Then, when % is odd or even, we have

wp ¢ = exp (ini)‘"oh). (3. 21)

20—34198. Acta mathematica. 63. Imprimé le 21 juin 1934.
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4.1. Case (i): h=q.
Lemma 5. We havel
S, — S, — Llog ¥ — Lk log 2w+ 2 1 ¥,
2 2 Yo
We. write
kYo'~ log (1 —ein™)

wl =TT

_ kYu " log (1 -:Qjﬂ’”'“) .

eYuk —_1

We shall define the value of the logarithms precisely at a later stage. The
singularities of x;(w) and of yy(u) in the w-plane are at the roots of the equa-

tions
eYuk =1, e?niu = 1.

The functions have simple poles at the points

w =1 (s=1,2,...2k;l=1,2,...),
and for a given value of s the poles lie along a semi-infinite straight line from
the origin inclined at an angle aﬁ(s—-;) to the positive direction of the real

axis. If % is odd, two of these lines coincide with the upper and lower halves
of the imaginary axis respectively. The only other singularities of y,(«) and of

%»(u) are logarithmic singularities at the points
u=1 (l=...—2,—1,1,2,...)

on the real axis, and a singularity at the origin of a slightly more complicated

character.
We shall take ¢ subject to the additional condition

o< _ltl,

so that the only singularity of y,(u) or of y,(u) for which |u| =< 20 is the omne

at the origin. We write B =17 + ; and choose L an integer such that

'If g=1, then p=o0, Y=y, h =g, and
Sq¢ = — log f (), S:] = — log Py, 1,

so that Theorem 4 follows at once from Lemma 5. This enables us to shorten our work consider-
ably if our only object is the proof of Theorem 2 (see § I12.2).
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k bd k
By o _RY

I

27t 27 2

This is always possible for » greater than some number D). Then we write
[2 7T

N i\,
Y (L - 2)]
We see that R < R’ < 2R.

We now define several contours. The contour ¢, is coincident with the

R

real axis from u=-¢ to «= R except mear u -=1,2,...7; near such a point a,
passes round a small semi-circle above the point. The contour B, consists of
the imaginary axis from = i¢ to w- iR’; if k is odd, y,(x) has poles on the
imaginary axis and §, is deformed so as to pass to the left of these poles.

The contour 7, has three parts 7., ¥/, 7,. On 7, we have wu=Re"

I 1 1 . e . .
and o< =< 4(”5; on 7., w=vex and R=<v<DR'; on 5|, u=R¢*? and

I(MrS@Séﬂ:. Finally, 4, is the quadrant of the circle |u|- -¢ on which

I . ..
o=60=< L7 and I7 is the closed contour formed by combining «, 3,7, and ;.

The contours a,, 8., 7., 0, and I, are the reflexions of «,, 8, 7,, 6, and I’ in
the real axis, except that, if % is odd, 8, passes to the right of the poles on
the real axis, so that I, excludes these poles.

We take the positive directions of «,, ¢,, 8, and 8, outwards from the
origin, of ¥,, 7., ¢, and J, counterclockwise round the origin and of I'| and I

counterclockwise. Then we have
I'y— ey—=8 + 7y —4d, (4. 11)

I'y+-—ay+ 8 + 7y — s ' (4.12)

Let us counsider the transformation z— ¢*7*. 8o long as « does not pass
outside Iy, 2z will not pass outside a contour in the z-plane consisting of the
circumference of the unit circle indented at z=:1, this indentation corresponding

to the indentations of @, at the points « ==1,2,... Then, if log (1 — 2) be taken

real at 2= —1 (corresponding to u= i), the logarithm will have its principal

value so long as ¢ remains within or on the contour. Hence, if we take
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log (1 —¢*™*) real at w- -, on I';, log (1 —*™%) has its principal value and
7.(¢) is one-valued at any point on or in the interior of I7.
9ni I . . )
If we take log (1 — ¢ 27" real at u = on I',, a similar argument shows

that this logarithin has its principal value at every point on or within Ij.
We write

I(r) :.fll("‘)d“ = ey — 1({?1) + Iy, — 1(4)),

I

I(ry) = j. Lol duw == — I(ay) + 1(3,) + L(y,) — I(3y).

ny

A little calculation shows that I'; includes the poles of y%,(«) at the points

w = [ (1<s< (k+1); ISZSL),
while I, includes the poles of y,(x) at the points

="y (;(A-+1)<ssk, ISZSL).

Then if % is even, by Cauchy's Theorem,

l&i—‘
=

I
I(I') = 27c¢ Z log {1 — exp (2milot,)},
=

—

8z

k L
I(Iy) = 272 Zlog i1 —exp (—2ail®tys)},
=

.\,...

while, if £ is odd,
TE+L

(1) - 2ai 3 Dlog{1 —exp (2milrt),

=1 {=—1
14 L

1(I,) = 2n: Z Zlocr {1 —eXp(——"”tllat1+a~)

8—-1(113\1 1

In either case, since f4+.= — ¢, we have
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k L
I(Iy) + I(T) = 27w ) Dy log {1 — exp (2mwiltt;))
§=11=1
k L—1
=271 2 Qlog {1 —g(g, 1, s)}. (4. 13)
§=11==0

All the above logarithms have their principal values.
4. 2.

Lemma 6. If | is any positive integer, and y any real number, then

U — IeQni.(l—i—%)eiw —1|>D.
‘We have

172 =1 — 28—n(2l+1) sinwcoS {7‘17(2Z + I) COS’lp} + e—2ﬂ(2l+1)sinw
> (I — (2141 sinw)2.

If
—y =sinY =1,
_ 2(20+ 1)2
then »
= (1 — —lnbrnte >
It
S <siny< ——
2{21 + 1)?
then
U2 = (e 2 D,
There remains the case
- ! - Zginy = ! -1
2(20+1)2 2(20 + 1)2
If cosy =o,
sin? ¥ .y I
J— = Y 2oy < — .
1 cosy I -+ cos st ‘P 4(21 +‘I)
If cosy = o,
sin® 1 . I
= o< 2 < .
bt cosy I —cosy sn-y 4(2l+1)
Hence, in either

case,
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[

osY - 1+ > y —1=E<

cosY —— 1 Azl 1) 1=E<1,
and so

cos {7z (20 + 1) cos Y} = cos {i a2l 1) 4 ign}
=3 - COS (I—§7r) < o.
4

Therefore

/72 =1 — 26—,—1(21-}-1) sin i cos {75(2Z 4 I)COS 'l/)} + 0—271(‘.!1(-1) siny — 1
Hence, for all values of siny, we have U*> 1), and so U > D.

Lemma 7. If »> D, we have

[ I(y)| < D) | I{)] < DePr. (4.21)

(i) Let « lie on #,, that is, let u = Re!?, o < < ian.- Then we have

N(Yu")- - YR cos k0 = Y R* cos ; x> D RF,

-
and, for R > D,
sk ok ok
e — 1| > B — 1 > DeP B,
By Lemma 6,

| 1-- e‘lm‘u.l . | I — e?.—n‘(r%- é)(;l'ol -

Hence
D<|1—e <2,
and
|log (1 —e**')| < D.
Then
| [21 (1) (lul < DRke—VE < Do D1, (4. 22)

(i1) Let = lie on 7, that is, let u = vel ““ R<v<R <2R. Then

N (Y ) = Yo cos ; 7= DRE
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Hence, for R > D,

-k ok 1 3
le)‘u. — 1 | > eI)IL —_1 > Dcl)l.. .

Also
9qi —oxrsinlax —Dr
| e2ie] e 18T g DR
and so
|log (1 — e2)| < De= V2,
Hence
S > ke Dy
I[xl('u)cl'u|<l)1f"c DR=DE® = [)e—0r, (4. 23)
‘l’/ll
. . ' io 1 _1
iii) Let « lie on that is, let w=R'¢’ and  anw <6 <> ;7. Then
1 ¥ 4 2
3 ) B : 1 e
eFik GV REHRTO e:m(m Detyr 1
1
where Y- : Z-O—én, and s¢ by Lemma 6
- k .
e -1|>D.
Also
|(,‘.2n1'11| < e—‘.’..’rlx" sin_}uﬂ < (5_1;1317
and
|10g(1 — e?,:riu)l < De— PR,
Hence
IJ 71 (20) (l'[l| < DRk e PE < Do, (4. 24)
7/[//

Since y, =y, + 5, + y', the first part of (4.21) follows from (4. 22), (4. 23)
and (4.24). The second part may be proved in the same way.

4.3. Lemma 8. We have

I1(6)= ;kyn' (logwr + logo — ;n) + O{olog o), (4. 31)
L(dy) =+ ;/1'761'(109;2” + log g + ;75) + O(ologo). (4. 32)

These results are a matter of simple calculation and we omit the proof.
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Lemma 9. We have

I(8) — 1(8) = 27ij ¥ + Ol¢*logg) + O(¢"%). (4.33)

We replace « in I(8,) by —u; then 8, becomes g,. If % is even, we have
at once :
I(8)=1(8), j=o,

so that (4. 33) is true, the right hand side being in fact zero:
If £ is odd, we have

k—1 i
W log (1 — e27!%)
%LV =AL !
Tg) = (= pay [ 1% du
. ¢ — 1
i)
k-1 Qi
. [ Tlog (1 — e
=k} Seee )(lu..
I — e—) ut
A
Since
i I
— e
1 — o vk e)'u"' — 1 ’
we have

1(83,)— 1(8) =k qu""‘ log (1 — e?*i%)dy
1

iR'.

= kY

i

W log (1 — 27 du,

Q\

for the integrand has no singularities on the imaginary axis between « = 7¢ and
w==7R’, and so 8, may be deformed into this portion of the imaginary axis.

It we put «=1:v, we have

R

IB)— I(8)=k Yz"‘fw"‘_l log (1 — e 27%)dv
: .
==k Y+ f " log (1 -~ e 27" dv
V]

+ Ofg¥log @) + O(¢="%). (4. 34)
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Also
k f v llog (1 - e ) dvy = — kz | ey
=
U 0
_ . TE+1)EE+T)
- (27[);; (4 35)

Then (4. 33) follows from (4. 34), (4. 35) and the definition of g.

4.4. Lemma 10. We have
I(al) - I(a:a) = 275?;6'(, + 271;@'],(1 Y«

+ 7wilog (Yo) + Ofelog o) + O(e="7), (4. 41)

where log S, and log (Yo%) are reul.

We take log (1 — ¢~ V) real on the positive half of the real axis and write

§ (l ) . 27T IOg (I - L-,i llk) . ( ) _ ?M “_V(Ly_ul)
! 1 — e—i!m'u y 52 e_z:”u )

Then we see that

7 Hlog (1 — e log (1 — ) — 1,(u) + & (u),

du
d . -
£ llog (1 =) log (1 — e=2714)) = 7,(u) + &, ().

I(a) - f x (W) du

[t

= — fé‘l(u)du + log 2log (1 — e~ VR — log (1 — ¢~V log (1 — ¢277¢)

= — f§,(u)du — {log (27w0) — ;nz} log (Yo%) + Ofelog o) + O (=YY,

Similarly

21--34198. Acto mathematica. 63. Tmprimé le 21 juin 1934,
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f§ (w)dw — [100 - ni} log (1 ¢*)

+ 0(e ") + 0 (o log 0);

Ie,) — Ile,) = fg udu—f&udu

+ 7t log ()' o") + Ofolog o) + O(c—YEY. (3. 42)

and so

Now

. r .
fgl(u)du—f (u)([u—anZloa 1 — e T

11
a @,

by Caﬁchy's Theorem. Since the logarithms have their principal value, we have

,
|S(, — >_‘, log (1 — ¢ ”k)|

i=-1

< dlog (1 —e <D D eV < De=Pr,

{-rt1 l=r2 1
Hence
] E(w)du — fg,(u)du =208, + O(eP7). (4. 43)
Also
f{§2(u) — &, (u)} d'u.-——-/ log (1 —- = V)
2 $ .
'———-j log (1 — ¢= V")
0
= / log (1 — ¢~ V™ du + O0(glog ) + O(e=77), (4. 44)
o
and

™

x
o
1 uk N [ _ Y
[log(l — e V") Ju = — 2, [e RILTRY
e m- -1 m :)

0
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®

= — Y—L(1 + a)j e~ du

0
=— YU (1+al(1+a)=—21Y » (4. 45)
Then (4. 41) follows from (4. 42) to (4. 435).

4.5. We can now prove Lemma 5. By (4.11) and (4. 12),

I(T1>+I(T2):,I(al)-—1((x?)+[(ﬁ?)—1(ﬁl) .
+ I(?’l) + 1(72) - I_(dl) - I(dz)-

If we substitute the results of Lemmas 7, 8, 9 and 10, we have

- I ) ', - ) .
%{I(IIH )} =8; + 4, Y 4,7

+ ;log Y — éklog 27t + Ofglog o) + O(e=P7).
Now let r—oe through positive integral values and let ¢ —>o0. Then L —co,

and, by (4. 13),
’ Sy= Sy + 2 Y™+ ¥ + [ log ¥ — Flog (2).

This is Lemma 5.
5.1. Case (ii): h 5 q, W* =0 (mod ¢). Here we"have h=0 (mod ¢,).
Lemma 11. If h ¢ and h*=o (mod g¢), we have
$+&ﬁ~&~qﬁim+hﬁyw+m+%ﬂy

— é k {log (2 sin 7, 77) +-log (2 sin 74— 77)} .

The result is symmetrical in h and ¢—h; it is therefore sufficient to prove

it when h S—;q. Then we have

O <L g=1)=

N

" 'Weé now take
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and choose L so that

k "\k
27 2

which is clearly possible for » > D. We write

et

"< R< R <2R"<2R.

Then

The contour ¢, is coincident with the real axis from ¢ to R, except that
it passes above the points ,
u=1+1 (l=0,1,2,...7),

while e, is coincident with the real axis from —¢ to — R”, except that it passes
above the points
u=—1+z1 {I=1,2,...7).

The contours ¢, and «, are the reflexions of ¢, and ¢, in the real axis.
We take f;, and B, as before, except for the change in the value of R’;
8; coincides with 8,, and 8, with 8,. The contours d,, d,, d;, J, are the quadrants
of the circle |u]—=¢ on which, if u = ge'?,
1 I

I 1
osﬁggn, ——2~7zS6£o, ~7v£0£—5n, Eﬂﬁﬂén‘

?

respectively. The contours y; and y, are defined as before in terms of the new

e

values of R and R’. The contour y, consists of the three parts y,, v,, 7, ; on

. . B I " . I
vy, u=R"¢% and —z <6< —ﬂ+;d7ﬂ, on ¢, u=R'¢"® and —7r+2a7vS

<< —; 7, and y, is the appropriate segment of the straight line
I
0=—nmn+-an.
4

Finally, y, is the reflexion of y; in the real axis.

The positive directions of the « and the 8 contours are outwards from
the origin, and of the y and the J contours counterclockwise about the origin.
Then we write
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Iy = 0’1‘—131“]”71_61,

Iy=—a, + 3, + yy — 0;, l (5. 11)
Ii=  ay—f + 73— 0y,

I'=—ea + 8 +y,— 0, ]

We now write

o kY u—1 log‘ (l __ e‘lnz‘(u~z))
o EYuk — 1

%1(w)

¥

- kYur—1 102," (I — e—2ni(w—-—z))
o eYuk — 1

X2 (“)

If % is even,

73(“) = X‘z(“), 14(“) = %1(“),
while, if % is odd,

k -
X)) = eV g (w),  xa(00) = ¥ 7, (w).
We take log (1 — e2**=7) real at u =1 + ; on I'y, and log (1 — e—271(v=7) real

at u=1 +-; on I,., We can then show that log (1 — ¢*7/(*—) has its principal

value on or within Iy and I',, and similarly for the other -logarithm and the
other contours. _
The y-functions have poles at the points

fs1¢ (1=s<2Fk 1l=1)
and at the origin, and logarithmic singularities at the points

u=rtc+1 (I=...—2,—1,0,1,2,...).
We write also

2 log (1 — e Y1)

§1(M) I — e—-zni(u——t) ’
. . k

£y (u) = 272 log(l —em ™)
e?nz(u——z) —1

where log (1 — e~ Y”k) is real on the positive half of the real axis. If % is even,
we take £,(u) and £,(u) of the same form as &(u) and & (u) respectively, but the
logarithm is now to be taken real on the negative half of the real axis. If %
is odd, we take
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20 log (1.7*—7—701’“14) '

" Eylu) = f"‘“ea;}ﬂ;;%): P
z2ailog (1 —
Sl == i

where the logarithm is real on the negative half of the real axis.

Further, we write

1) = [ o= 16e) — 16) + 162~ 1),
Iy .
and so on.
5. 2. Lemma 12. ZI'or r > D, we have

| ()| < De=?r,

and similarly for I(ys), I(ys), I(y,).

(5.21)

The method of proof of these results is clear from that of Lemma 7.

Lemma 13. We have
I(6) = ;—/wvi log (1 — ¢ %7i7) + 0(9),
1(0) = ki log (1 — &7 + 0(0),

I(8;) =~ ki log (1 — %)+ 0(g),

I1(3,) = ;/cni log (1 — 279+ O (o).

where the logarithms have their principal values.

(5. 22)

Since the singularity of every y(«) at the origin is now a simple pole,

these results are immediate consequences of well-known theorems in the theory

of residues.
Lemma 14. We have

I(lg-l) - [(131) = Zﬂz:ﬂ.q_h Y+ O (9") - ()((/,~I)7')7
and
IB,) — I(B)=2mijn Y + O + O(e=27),

(5. 23)

(5. 24)
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If & is even,
1 (54) = I(ﬁl)’ I(ﬁs) = 1(52), ].h :,iqfh =0,

and the result is obvious. If % is odd, We‘have

16)—106) = [ o in— [ 2t

B

Ba
~ [ =i
B

=k Yj w1 log (1 — 27w}y
B
:lch"’fv"_l log (1 — e 2mtetid)dy
0
+ 0" + O(e 2F).
Since

w

kfv"“l log (1 — e~ 2rlvtid)qy
[

~—2MmLT ’
€ - L(k—1 .
| plgtAm g ( _ 1)3( )Zn,]q_;h,

0

:‘—702

m—1 m

we have (5.23), and (5. 24) may be proved in the same way.

5.3. Lemma 15. We have
I(%) _ I(“z) + I(%) - I(%)
=22 { YA + Ag—1) + Sp + S} + Ofologe) + O(e=P7). (5.31)
We have

d

2~ flog (1 — e216—9) log {1 — =)} = 7,(u) + & (u),

and so on. Hence
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I{e,)=— f§l(u)du —log (1 —e¢27"9) log (Y¢") + E
I{a,) = f§2 (u)du — log (1 — €27'%) log (Y ¢") + E,,

I{a) = — j E(W)du —log (1 — £77%) log (Yo!) + E,

O3

I(e)= f& du ~—log (1 — e} log (Y ") +

where I, F,, E;, E, are numbers of the type

0(elog o) + O(e—P™).
Then we have :

I(ey) — I{a,) + I(ey) —

—fggdu+f§4du—f§1du—f§3du

+ Ofelogo) + O(eP7).

Now, as before, we find that

f§2du—f§1du

=2atSy+ 2 YT (1 +a){(1+a)
+ O(olog o) + O(e?7).
In the samé way, whether % is odd or even,
f@du—j Eidu= —2niSy—p— 270 Y °I'(1 +a){(1 + a)
‘ ' + Ofolog o) + O(eP).

Since h* = 0 (mod ¢), we have

eo(mpht) =1, eg(lmp(g—h)}) =1
]»h: Z.q_;L'—:T(I +a)§(1 +a),

and the lemma follows at once.



Asymptotic Partition Formulae. III. Partitions into %-th Powers. 169

5.4. By Cauchy’s Theorem,

lim —— {(I(I3) + I(Iy) + I(Iy) + I(r)}
0-—>0,r—>® 271
=S+ Sgn. (5. 41)
But by (5.11) and Lemmas 12, 13, 14 and 15, we see that this limit is equal to
Sy + Sq_h + (Zh + lq_h) Y + (jh -I-jq_h) Y
— é k{log (1 — €717 + log (1 — e—2719)}. (5. 42)
Now

Sk log ({1 — &%) (1 — ¢=77)} = “ L log (4 sin® rr)
= éic{log (2 sin mum) + log (2 sin %, 4 70)}, (5.43)

since 7,=7 and 7——1—7. Lemma 11 follows from (5.41), (5.42) and (5. 43).

5.5. Case (iii). We have still to consider the case h¥= 0 (mod g). We

take now

vk Yut " log (1 — e2mitu—))
Zl (u) = eYuk

)
— Y

_ vkYutlog (1 — e““““f?)

72 (1) -

2
ete’ ——y

If % is even, we write

x3(0) = Xe(“)» Lalt) = 11(“)7
but if £ is odd

* 22(“)7 %4(“) =1t 71(“)

Zs(u) = v—ter™
These functions have poles at the points
w=1t;( + un )" (1<s<2k;1=0)
and logarithmic singularities at the points

w=1+z (l=...—2,—1,0,1,2,...),

but the functions are regular at the origin.
2234198, Acta mathematica. 63. Imprimé le 22 juin 1934,
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We need not give the new forms of the § functions. We remark only
that in &, for example, we take that value of log (1 — »¢~ ¥ which tends to
zero as # — + o along the real axis.

The ¢ and B contours are the same as before, while the d contours are
unnecessary here; we may put ¢ =o0 at once, as the functions are all regular
at the origin. The y contours have to be modified to avoid the singularities of
the y-functions and to enable us to prove a result of the type of Lemmas 7 and 12.

The details of the work will be sufficiently clear from the foregoing, and

we content ourselves with stating Lemma 16.

Lemma 16. If h* 4s not a multiple of q, we have

’ ’ - . . ‘ I .
Sy + Sq—h — 8, — Sq_h =Y _“(lh ~+ lq._h) + Y(jh + jq-—»h) + Z’-ﬂl (O'h + O'q_h)‘
The term ini(o‘h + 04—p) arises from

f {20 () + & ()} du = —log (1 — ») log (1 — €**'7) + O (¢ PE)

and the three similar expressions. If % is even, the sum of the four is zero.

5.6. Proof of Lemma 2. We now combine Lemmas 5, 11 and 16. Let
3’ denote summation over those values of h for which h*=0 (mod ¢) and hs<gq,
and 3" summation over those values of & for which #*= 0 (mod ¢). We have

q q q q
D8 = D Sh= Y D+ ¥ D + élog Y
h=1

r=1 h=1 Th=1

I 1L, 1 )
- Eklogzn + inz)"a,, —-ElcE' log (2 sin 7, 7),

the logarithms on the right hand side being real.
Now

=1

[[ (2 Sin lit) = QZv
q

h=1 2

and so

Q1
3 log (2 sin ﬁqﬁ) = Z log (2 sin an) = log ¢,.

=1 2
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Also

Y‘“Z/’Lh_— I+a ZSp'mq Ap,q

1+a
h=—1 m——lm f'/

The value of the sum
q
Z (mh)

is ¢ or o according as m is, or is not, a multiple of ¢. Hence, if % is odd,

., (mh)
LZI Zilnfil - AZ"qtkﬂ k+ I)

m=1 h=1

and so

YZjh 1%( yF]c+ kZZe (m h)

(2 71;)/€+1

m=1 h=1

If % is even,

YZJh: 0=7y.

h=1

Also, by (3. 21),

log wy, ¢ = ;nz 3 ay.

Hence we have

. 1
log f(x) — log Pp ¢ = Ap oy + jy + Jlogy

+ log wp, ¢ + ; k(log ¢ — log ¢, — log 2 7).

Taking exponentials and noting that ¢= ¢, ¢,, we have (2. 11) for y real and
positive. This is Lemwa 2, and the proof of Theorem 4 is thus complete

Part II. The Asymptotic Expansion of p(n).

6. We now turn to the proof of Theorems 1, 2 and 3. We shall first
prove Theorem 3, from which the others may be readily deduced. We first

define the meaning of certain further symbols.
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We take & an arbitrary positive number, and d a positive number whose
choice is subsequent to that of % and ¢. N is a positive number which is
ultimately chosen as a function of %, % and ¢&. The numbers ¢ and J are to be
thought of as small, while » and N are to be thought of as large. We write

¢ = 2k

A and B are positive numbers, whose values varies from one occurrence to
another. In any particular occurrence, 4 without a suffix is an absolute constant,
while B depends at most on k. If, however, 4 and B depend on other para-

meters these are indicated explicitly by suffixes, for example,
As=A(9), B,.=Blk,q,¢).

The constant implied in the O( ) notation is henceforth of the type B., except
in Lemma 33.
In the complex z-plane, I' is the circle
_L
jz]=¢e .
We take the Farey dissection of order N'~? of this circle and consider two
kinds of arecs: — |
(i) Major arcs, M or MV, 4, such that ¢ < N°,
(ii) Minor ares, m or mi, ¢, such that N? < g < N'™?.
The restriction y real and positive is now removed and, in connection with

every pair of values of p and ¢, we write
: A . 1 .
)= exp () U0, X) = U, ) =g B L),

1
where y, 42, y° are real and positive for X real and o< X < 1. When z lies

on I', we write

“and for z on M, , or on myp 4 we have

, .
*0p’q£0£0p,q,

where

7T ’ 27 7T 27T
g N =0,,< gNh g NI =0p,q < gN—b
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Upper Bound for |log f(x)} on the Minor Arcs.

7.1. If k=1, then b:é: 1 — b and there are no minor arcs. Hence

we need only consider the case £ = 2 in this section.
We take log f(x) =0 at x =0. Then log f(x) is one-valued for every value

of x within the unit circle, for f(x) has no zeros within the unit circle.
Lemma 17. If y>0,k=2 and x lies on My q, then
llog f(@)| < B, Ne—te+, (7. 11)

We use [u] to denote the integral part of w and write

|

Po) =Wl p,qm= D elplm).

‘We have

log f(x) = — D log (1 — ) = 2} X 1mm

=1 =1 m=1

334 33433

m=Nb =1 m= N I=wp+1 m=Nb =1

—Z,+ Z, + Z,. | (7. 12)
7. 2. Lemma 18. On the whole circle r,

| Z,| < B,log N, | Z;| < BN°.

If £ > o, _
—ik —Luk — —a —uk — —a
Z _fes du=7{ fe du=B{™*.
0 0
1
Also, on I', || =¢ ¥, and so
[k
|Z,]< 2 - Ze “<BN“Z‘TI;’E
mx0 1= m>N0 "

< BNei—t = BNY,
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Again
. »
x *m _om uk
D e “'_<_1—‘rje ¥ du
l—my, +1 Opt1
x€X

A IA
— —_

- +
——— —
. .
g = 3 '~
S —— S

a b~
(8-
| —

[

— 3

ER> |

= =

> Ec
% o~
—
=
\ -~
®
o
=
=
b

Hence on I

(7] < Bs D) 5} < B,log N.

m=NO
Lemma 19. On « nunor arc m, 4, if k= 2,

|Zl I < »B_/;'\Trl—bc—i'y_
We write

pm _ DPm

) ('nu m) — 1.
7 g P )

Then

W)= 2 ey (pml),

where e, (pn) is a primitive ¢m-th root of unity. Now a = ¢; also
N < g = NP qu < g < mgm.

Hence, if v <mw} , we have'

! Landau, Vorlesungen iiber Zahlentheorie, 1, {leipzig, 1927), Satz 267.
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|#(v)| < Bswlf gl (0 + wng® + 0l Fge)
< BN+ 'f(Na (I A )
m® Qm
< B[),N k+2)ﬁ(l\Ta(l—c) + _Naq—c -+ Na—cqc)
< BﬁNa—bc+—(k+2)ﬂ_

On a minor are,

C\ 2b\ 1
|I—X|<B|?/|<B(+02)‘<§(1+£\7ﬁ;) <3,
q

N N
: B |1—X]| .
Now
Za:‘k = Zeq (mpl) X%,
=1 =1
mwk
= W) —Plw—1)} X¥
v=1
mwk——l
Z P(e) X0 (1 — X) + P (mek) X",
and so
Izmzkml = BﬁNa—bc+(k+2)(3(I + 1 —X|2|X|7)
=1 j=1
— a=bet(k+2)8 [ 1 1 _l,l-;Xl)
BﬁN (I I — | X|
< BﬁNa—bc+(k+2){f‘
Hence

| Z,| < By Neo—betiktag Z

m
m=nNb

< BﬁNa—bc+(k+3)(3 — BYN“_Z’C+7.

175

Now b <a—be, and so Lemma 17 follows at once from (7.12) and Lem-

mas 18 and 19.
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Upper Bound for |f(x)| on a Major Arc.

8.1. Lemma 20. If q> 2, we have

|/(@)| < exp (BN®g~log log ¢)
on My, 4.
Since ¢ < N°?, on M, ,,

. 1 I 472 8n?
ly [P = K +0° < N + g2 N21—b) < g2 N20—b) ’

and so

—\1+a 1+a '
fy|t+e _ (znVZ) N1—(1+a)(1-h) — (ﬂé) a. (8. 11)
Riy) q q

1+a .
Hence, if we write (= __(_1_) in Lemma 4, we see that, on I, 4,
27V 2

lg (R, 1, 8)| < e+t

where

and so

7 k
12,0l = ITTTIT {1 — emp0sn}

h=1s8=11=0

= Btk — oBq,

By Theorem 4, on M, 4,

since




Asymptotic Partition Formulae. III. Partitions into A-th Powers. 177
Now 3 < ¢ =< N°?, and so |
gttt < N*, g=< N << AN%“loglogyg.
Hence to complete the proof of Lemma 20 we have only to prove
Lemma 21. If ¢ > 2,
[ Ay, o] < Bg—loglog q.
8.2. Proof of Lemma 21. We require certain preliminary lemmas.
Lemma 22. If (p,q)=1 and (m, q) = rm, then
| Spm, ol = Bré g
If we write ¢ = rugm and pm = rups, we have (Pm, gn) =i and

Spm, ¢ = 7mSpm) Uy -
But!
lSpm7 QmI<BQ:)z_a
Hence
ISpm q|< B7 1*(1._B/' 1—(1.

Lemma 28.° If P denoles any prime number and q > 2, then

—1
H(I—%) < Bloglog g.

Pig

Lemma 24. We have

8

We know that

1
i+ a)= Zml+a_H(I+P1+a+P2l+a+“');

similarly, since any factor of #, must divide both ¢ and m, we have

! Landau, Vorlesungen I, Satz 267 (k= 2) and Satz 315 (k = 3).. For k = 1, the result is
trivial.
? Landau, Handbuch der Lehre von der Verteilung der Primzahlen 1, 216—219.

23—34198. Acta mathematica. 63. Imprimé le 23 juin 1934.
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Zzl+a<H(I+‘ﬁ+F2+ )H(I+ 1-La+P)I1+a+”')

Plq Piq

={(r+ a)H(I——;;)—l~

Plq

Lemma 21 follows at once from the last three lemmas, for

S[)m (] B i .7.gn
|AP '1|<qmzl n1+a q gml—Fu
< Bg~*log log q.

Approximation to f(z) on I, ,.

'9.1. We have now to replace Lemma 20 by a more precise result, which
will be used for the smaller values of g. We shall express Slx) on My, 4 as
the sum of a number of functions of the type U(4, X) plus an error term.
Our result is

Lemma 25. If x lies on My ¢ and d > o, we have

Tq, 0

lf(x) — Op,chq,t U(Ap, g1, X)l < B, se",
t=0

wherve Tq ¢ s a function of k,q and 0.

0.2. We first prove a series of lemmas with regard to the behaviour of
lg(h,1,s) | and | H ((e?)] on My, ,. If { =0, we write

K (§) = max {| H (Ges™ )|, | H (e

. (2 n)H—a a
n= K(kaql-i»za , Cy=exp rqaka

b

As before
y’:Iyle“/’=iN-i0,
' I I
where — << Y < -,
2 2
We write m=qlk + q(s— 1)+ h,

1<s=<k, 1=h=<gq, l=o0.
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Then there is a one-to-one correspondence between the positive integers m and
the sets of integers (h,1,s). Hence gu is uniquely defined by

In = g(h, l7 8)'

Lemma 26. If |z|<1,{=( >0, and

N

w(1+a) =9 = ;n(;;—a),
then
| H )] = KE) <exp - 245,92 2).

x|yl
We have

| H( )] = exp {ﬁ cos (& — m,u)},

and a corresponding expression for K({'). Then the lemma follows from Lemma 3.

Lemma 27. If |z| <1,

lgm | =< ™.
We put

19‘=é7f6l(k-|—26’—1),
(2”)1-!—(1(1 + Un, s)a
=2
q
, ‘(zﬂ)1+ama
g = q1+2aka

in Lemma 26. We have
Pl + pns) = qh(l + qund =gkl + 1) = m,

a

and
1<s=<k, ;n(I—I-a)S&Sén(?,—a).

The conditions of Lemma 26 are therefore satisfied. But
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|g"ll':lg(ha l,s)|=|H(§em)|,

and so the lemma follows.

Lemma 28. On gjep’q, (o] = ’)7 = 02.
On My, 4, by (8. 11),

Hence, by Lemma 26,

and so

7 = exp (—

_za(zn
7€ q

iatF)

K({) =",

0.

Tyl

Lemma 29. On My q, tf >0 and V > o0, then

[H{Ee?) | K (V) < exp

We have always

SR

o) < exp (| ).

and by Lemma 26

K (V)= exp (— e r;—)

On My, ¢, |y = Ncosy, and so

[H(Ce?)| K (V) < exp {Na cos ) (£ -

= exp{N"w 9%,

where

()~u(c—

((cos )

N
2V

A simple maximum argument shows that, when u = o,

1+a cOoS w

)

)

1.
J

Va )}
cos Y
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s (G5

Since (cos ¥)? > o, the lemma follows at once.

9.3. Lemma 30. For any W > o0, there exist an integer T = Bw and

Sfunctions Gy, Gy, ..., each a product of functions of the form g(h,1,s), such that
T
IPp,q—I—ZG‘tlﬁBq,W??W (9. 31)
=1
on Bty 4.
We can expand Pp , formally thus:
Pp,q:H(I —gm)“1=H(I + gn + gm + )
m=1 m=1
=1+ Q6G=25,

t==1
where G: is a product of functions of the form gn. If

Gi= Gmy Gms Img ~ Gmy. s
we write
v(t) =m? + md + -+ m?

repetitions of the numbers m may of course occur. It is clear that for any
positive A there are only a finite number of terms Gy such that v(f) < 4. We
may then suppose S arranged so that

vt + 1)=w()
for all ¢t =1.

By Lemmas 27 and 28,

a
|gm|S17"v" , 0= =0y <1
on M, 4, and so

©

2 g

m=1

and P, , are both absolutely convergent. The above expansion and rearrange-
ment are then justified and we have '

Pp,q:S.
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If we write S, for the result of replacing every gm in S by O, and P,
for the corresponding infinite product, the same argument shows that

1+ ZOg(t):SZ):P2§
t=1

and clearly

o0

p,=]l— oy =B,

m=1

If T is the least value of ¢ such that v(t)= W, we have v(f) = W for all
t=1T. Then T'= By, and on M, 4

T »
Pp,q—l"Zthzl Gt'
t=1 i=T+1

o = 2]
< Z 0 =gV 2 0=
t=T+1 t=T+1

7 N — 1 e
<" ZJ V=W < W 07V 8,

t=1T+1
= B, ]V’lyw.
This is Lemma 30.
Multiplying both sides of (9. 31) by
Cpvo 9t e H (y,,),

and using Theorem 4, we have on M, ,
T

Sflo) — Op,qy}“ el H(Ap, q) (1 + Z Gt)l
t=1

= B, W77W| H(Ap,q)l

= By, w| H(Ap,q)| K((zn)“" W) : (9. 32)

kaq1+2a

If we choose V and W so that

() (o) o worEr
1+a 2V ' (2m)tte

the expression on the right of (9. 32) becomes
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By, v| H(Ap, )| K(V) < By, s’ ™"
by Lemma 29.
On the other hand, by definition, g(k,[;s) is the product of a function
H(4) and the number ¢,(—h). Since

H(4)H(Ay) =H(A; + 4y +--)

)

we have
?/% eV H(Ap, o) Gy = Cq,t?/% eV H (Ayp,q,0) = ¢q,0 U(Ap g1, X),
where ¢, is a ¢-th root of unity.

9. 4. The calculation of cqt and Ap q¢. It is clear that, for any particular
values of the parameters %, p and ¢, the functions

Gy, Gy, . ..

may be calculated in succession. Hence the values of ¢,: and A, 4 may be
calculated. The amount of work may be shortened by various cousiderations.
Thus, if

éﬂ:(l +a)=arg dp ¢ = ;717(3—6{),

the corresponding terms may be omitted in Lemma 25 and hence in Theorem 3.
Again it is not difficult to prove that, when

sl + @) < arg 4y, < w(3—a),
then

x(3—a) (9. 41)

SR

;n(l +a) < arg A, g1 =

for all ¢t = o.b Hence in this case
|f(@)| < Byq

on M4, and the terms corresponding to p, ¢ may be omitted in Theorem 3.
The same result follows directly from Lemma 33 and the fact that, for suf-
ficiently large #,

‘ 7 ‘ | (A, q,e(n + 50| < 1,

when (9. 41) is satisfied.
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In addition, the work of expanding P, , may be shortened by various
combinations of the factors {1--g(h,l,s)}. Thus, if

[zt (1 + 1) e‘%”“"@Hk—l)}

2= exp l 7
we have
g(TQN Za 8) = Qe(](—TQI) = Qqu(—T),
and
[+ Q2
[LG—gra. 1,9 =TT {1 — Qe (—)
r=1 r=1 :
=1 — Q%

It seems, however, that no simple formulae can be found for 4 4 and

€q,+ in general.
When k=1, the calculations are simple, since 7, .= o0 and

7L'2

Ap,o,0:—4p,q:6_q'

The Generalised Bessel Function and the Auxiliary Function.

10. 1. We now introduce the integral function

in terms of which pi(n) will ultimately be expanded. This is a particular case
of the generalised Bessel function introduced in a recent paper.!
We shall use this function to construct an auxiliary function with a

singularity of the type of

Uld,z)=wx {log I—}} exp {Al
(e

lOg‘% J
I\2

5 a
at x=1. We take a7, (logx) and (log i) real and positive on the interval

v Jour. London Math. Soc., 8 (1933), 71—179.
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(0, 1) of the real axis in the z-plane. Let M be the least positive integer such
that M +j>1. When m =M, we take (m + j)%, (m + j) ¢ real and positive.
For |z| < 1, we write

L

Falz)=D(m + i tp(4(n + j))am,

m=M

Qualx) = Falx)— U(4,z).

Then Fy(x) is defined for |z| <1, and @Qu(x) and U (4, x) are defined precisely
for « real and o<z < 1. For other values of x, these functions are defined
by analytic continuation. '

The w-plane is cut from — o to o and from 1 to o along the real axis.
Then U(A, %) is one-valued and regular in and on the boundary of the region
so defined except at w=o0 and w=1. Iy is a contour in the w-plane, and

consists of the real axis from — oo to —i, the small circle |u| =i taken in a

. . . o e . 1
counterclockwise direction round the origin, and the real axis from 4 to — o,

5

I'; consists of the real axis from + o to v the small circle |u—1] :i taken

in a clockwise direction round # = 1, and the real axis from i to + oo.
We proved in the paper referred to above that

_xM (U(4,u)du
Fale) == 2mi |l (u—a)
Iy

ol (U (A, u)du

2mi | u¥(u—2)
I

Qalz) =

1
We take N sufficiently large to ensure that ¢ V¥ > é .

Lemma 31. If z=exp (-——lN—H'O), we have | F4(x)| < Ba when ;—nsﬁsgﬂ,

and | Qa(x)] < B4 when ——;n£0s 7.

N -

On I, and I; we have

2

24—34198. Acta mathematica. 63. Imprimé le 23 juin 1934.
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loo - >4, exp —4—17 < By,
T
log& < Blu [,
and so
| U(4,4)| < Ba|ul*.
If g T<=0=< gﬁ and » lies on Iy, we have

|u—z|> Alu], |z|"< B,
and so, by (10. 11),

. | d
|FA(x)|<BAf|uZ|<BA.
J

Similarly, if — ;ﬂs o< ;—n we have | Qu(z)] < B..

10. 2. Lemma 32. If

E(4)=(n+ .j)_%¢ {A(n+ j)*} eg(— pn) — *Iv'f U(A_X‘) dax

270 AR ’
then Yp.g
|BLa)| < Baesp [ + Clly)
We have

O, q
) — S [ x—ra0 — U, X)X—"dﬁ]

2m[ j
—§7 —0
1n
Ifl’ X_"dﬁ—I-fQA Y X" d6
T omi
1
g7
g ~bp g

+j U(A,X)X""d@-FfU(J,X)X_ndﬁl

J

9, q —lx

I 4 ’’ niid 111 v
=——(F + E'+ E”+ E"). (10, 21)

27
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On I,
» i I .
| X |- =e", 1ogj(:ﬁ*20,

and, when |6] < 4,
3 A

exp I
(‘N“”)

< Bexp | 46—¢].

|U(4,~X)|<B|Z‘V—m

On IM, 4, :
— 0, ,=0=<86,,,
where
T , 27 T 27
(N =0, < NP g N <y < TN
Let us write
T
O =i

" Then

[

T

|E" | < BeﬁfeM"’—a d6 < B exp (ﬁ + LAJ)

N 6
B
. X3 qaldl )
= Bexp (N-i- o N?), (10. 22)
and similarly
| E""| < B exp (% + Q—J;'I;I Nb) ) b(Io. 23)
But, by Lemma 31,

|E'| < Bsexp (%7) » | E”| < Baexp (;—\7) ; (10. 24)

and the lemma follows at once from (10.21) to (10.24).

10.3. Lemma 33. (dsymptotic expansion of ¢ (2)). If y >0 and |largz| =
<m—y, then

M—1

@(2) = (a2 e(k+l)(az)1—b{ i (=1 an + 0( 1 )}’

(@ 2= [z ro=o

m=0
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where the constant in the O() term is Bir,, and aw is the coefficient of v*™ in
the expansion of

(ST

v+(a+2)(a+3)

I .
F(m-l—i) 2k \"t3 L a+2
(1—ov)y 1+
"3 3.4

—
T
27 k+1 v f

in powers of v. In particular,

4 b“(w‘_/gm__é (1B A+ 11k + 2)a,
o o 24k(k + 1)

This is Theorem 5 of my paper referred to above. A proof will, I hope,
be published shortly in the Proceedings of the London Math. Soc.

Final Lemmas and Proof of Theorem 3.

11.1. We write
Tq, o

Jp, g =(n +L7.)_g Op,qz ¢q,e D@(Ap, g,t(n + 7)),

t=1

[T fla)da
pe=— | o

the integral being taken over the major arc M, , (¢ =< N’ or the minor
arc My, o (N° < ¢ < N7,

By Lemma 20, we have

and

| /()| < exp {Bg—*N*log log ¢}

on My, 4, provided that ¢ > 2. Hence there exists an integer g, = g, (%, d) = By
such that
Lf ()| < e/ (11.11)

on M, ; when ¢ > ¢q,. Taking this value of g, we write

o

Qo
J:ZZJI),% I1:ZZI1),(1’

=1 p =1 p

I, = Z Ly, Iy= Z ZIp,q-

q0<qs,Nb Nb<ggNI—D P
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Then

pen) —J =L, —J)+ I, + I. (11.12)

11.2. Lemma 34. We have

|,y —J| < Bsexp (dN“+ ;zf) .

If g =<q, and T'= T, 4, then

IP,Q - Jp,q
S d
: z
:;7@, {f(x)—OP,QECQ,tU(Ap’q’t’ X)}W
Bp, q ;
T
",Up,qz gt E(Ap, q,1)
=1
= JI”: q J})’, q-
By Lemma 23
| Jp, ¢l < Bsexp (% -+ 5Na) )
Also, by Lemma 32,
| E(Ap, 00| < By o exp (% LB, Nb) ‘

But t< 7= B4 and p < g = q, = Bs, so that By ¢: < Bs. Hence

| E(Ap,q,1)| < Bsexp (%-I— B,;Nb)

V

< Bsexp (N

+ dN“) ,
and so

| Iy, — Jp,¢| < Bsexp (%_‘_ 6N“).

Hence
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|I1 "Jl = Z Zle,q - Jp,fI|
1=qy P

< Bsq; exp (% + 5N“)

— Bsexp (Zzz‘r + aNa) .
Lemma 35. We have

| L1+ | L] < Bsexp (%+ dN“).

If we put y= ;b'c in Lemma 17, we have

log f(@)] < BN | f(#)] < Bse!™
=3

on my q. Also, by (11.11),

| /()] < ¥

on My 4, if q, < q=<N°. Hence

| L + L] < Z Z'Ip,Q|

qaﬁqél\'l-'b D
<B[ye‘“‘ﬂf|x|—"d0
¥

= Byexp (% + 61\7“) .

11.3. By (11.12) and Lemmas 34 and 33,

|pein) — J] < Byexp (% ; aNa) .

We now take

l1+a 1—b
6=(££) , N=2"

Then

i@_ @ — b —
N+ dN*=en’, By= B,,

and (11.31) leads at once to Theorem 3.

(11.31)
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Theorems 1 and 2.

12.1. Theorem 1 is clearly a particular case of Theorem 3. We apply
Lemma 33 to all the g-functions, except that for which p=o0,¢=1 and.f=o0.
We have '

|(“ + J)—1 @ (Ap, gtln + J)a)l < By, rexp {R(Ap, ¢,1170) n}, ‘

and it is not difficult to prove that there is a positive number ¢ = «(k) > o
such that
N(Ap, ¢ < Ao,1,0 @

for all values of p,q and ¢ except p=o0,¢=1, and t=o.
Theorem 1 is then proved and Theorem 2 is an immediate corollary of
Theorem 1 and Lemma 33.

12.2. It is possible to prove Theorem 1 directly with substantially less
analysis than that required to prove Theorem 3. Most of the proof is the same,
but the full Theorem 4 1is only needed for the case p =0 and ¢ = 1, that is,
for Mo, 1. In this case

log f{w) = — 8y,

and the whole of section 5 may be omitted. The proof of Lemma 20 by means
of Theorem 4 is replaced by a proof somewhat similar to that of Lemma 17.
By this means we can prove

Lemma 36. 0‘n ,S.D?p’q,

log f(x) _A;(;q < BN?Y,

From this we can find a suitable upper bound for the contribution of the
integral along My ; (¢>1) to the value of pi(n), and so prove Theorem 1 directly.



