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Let A, 4,, ..., 4;, ... be a countable sequence of infinite cycles and [T¥*4, denote
i=1

their unrestricted direct product. Then the following are well known theorems, due in

main to Specker [22]:

o0
THEOREM OF SPECKER. Every countable subgroup of []** As is a free abelian
i-1

group.

00
THEOREM OF SPECKER AND Los. Let y be a homomorphism of []7* 4, into a
i=1

free abelian group. Then there exists a positive integer m such that

ol 17 4) =1

Our aim is to investigate the corresponding situation in the case of the nilpotent
product of infinite cycles. In a similar way one can derive results for the unrestricted
soluble product and for the unrestricted third Burnside product both of infinite
cycles and of cycles of order three.

Before we can give an outline of our main results, we must first introduce the
following

Notation. Let v denote a typical power product of a set of power products of the
letters of some fixed alphabet and their formal inverses. These power products are
called words. The values of the words obtained by substituting elements from a group
G for the above letters of the alphabet, in all possible ways, generate a subgroup of
G—the verbal subgroup V(@) of G. The verbal subgroups corresponding to the words

([ . [®, 2], ... T, 2a],
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dn=[dn-1 (xp Lgy o s dn_1 (yl’ Yas » .)];  where dl (1'1, 702) = [%‘1, Z,)

and 2"

are of particular importance and their value in @ is denoted by "@, G and G" re-
spectively. They are known as the nth member of the lower central series of G, the
nth member of the derived series of G and the nth Burnside subgroup of G respectively.
If F denotes a free group, then F/V(F)is known as a relatively free group (cf. [6]).

In particular

FrF, F/F™ and F/F"

are known as a free nth nilpotent group, a free nth soluble group and a free nth
Burnside group respectively.
In Moran [16, 17] we studied the verbal product or V-product

LIV G =FI(V(F) n 16"

of the groups G, €M, where F denotes their free product and [G,]” is the cartesian
subgroup of F. In particular, we found that

V@ =11"4.,

where the cardinal of M is equal to the rank of the free group F, and A,, x€M, are
cyclic groups of order k. The number % is the exponent of the variety V and is given
by (cf. [6])

VF=F -V(FnF).

k is taken to be infinite if V(JF) is contained in the commutator subgroup F'. Our
interest will be confined to direct products, nilpotent products, soluble products, third
Burnside products and free products. The exponent of the corresponding verbal sub-
groups in all these cases is infinite, except in the third Burnside subgroup where the
exponent is three. We shall have cause to consider the third Burnside product both
of infinite cycles and of cycles of order three. The latter is a free third Burnside
group. It is easy to see that the former is also a relatively free group, namely, that
associated with the verbal subgroup (23)3~43. Thus in both cases it is possible to speak
of free generators.

Following G. Higman [8], we have in [18] defined the unrestricted verbal product

[1#7 4; as the projective limit of the verbal products
-1
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m m+1
A« A VA .. . <J]"4i< [['4i<...
i=1 i=1
under the natural homomorphisms as shown by the arrows.
In the case of the unrestricted free product the situation has been fully investi-

gated by G. Higman. In [9], he shows that every finitely generated subgroup of
iﬁH* A;, where as before A; are all infinite cycles, is a free group, while in [8] he
c_(:nstructs a countable subgroup which is not free. Further in {8] he shows that every
homomorphism of f[lH* A, into a free group maps the unrestricted free product of all

but a finite number of the factors A; onto the unit element.

The unrestricted nth nilpotent product of a countable number of infinite cycles
will, for the moment, be denoted by ¢. We show that every countable subgroup H
of G, for which H/[z(H) is finitely(!) generated, can be mapped isomorphically into a
free nth nilpotent group. It is not known to the author whether this is true for every
countable subgroup of G. However, we are able to state the following three results
concerning such subgroups. In [19](2) Theorems 3.4 and 3.7, we gave a partial char-
acterization of subgroups of free nth nilpotent groups. Every countable subgroup of
G satisfies this characterization. Associated with every torsion-free nilpotent group A,
Mal’cev has defined a torsion-free nilpotent group M(A4) of the same nilpotency class
as A, which has the following properties:

(a) M(4) is a divisible group,

(b) Some positive power of every element of M(A) is contained in 4.

M(4) is called the Mal'cev completion of A. For the existence and properties of Mal’cev
completions we refer the reader to the elegant paper of Lazard [11]. We show that
the Mal’cev completion of G' can be mapped isomorphically into the Mal’cev comple-
tion of a free nth nilpotent group. This is deduced from the result, which is of in-
dependent interest, that the unrestricted free Lie algebra over a field is a free Lie
algebra over the same field. Thirdly we note that if we proceed with a similar con-
struction in the unrestricted second nilpotent product, as G. Higman [8] did to eon-
struct a countable subgroup which is not free, then the resulting countable subgroup
is a free second nilpotent group.

Every homomorphism of an unrestricted nilpotent product of a countably infinite

number of infinite cycles into a free nilpotent group maps the unrestricted nilpotent

(Y) z(H) denotes the centre of H. ]
(2) The reader is assumed to have some acquaintance with the notation and results of this paper.
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product of all but a finite number of the factors onto the unit element.(!) A similar
result holds for a homomorphism of an unrestricted soluble product into a free soluble
group. As far as the countable subgroups of an unrestricted soluble product of infinite
cycles are cohcerned, we have only been able to prove that every countable abelian
subgroup is free abelian.

The unrestricted third Burnside product of cycles of order three can be mapped
isomorphically into a free third Burnside group. This follows from a Subgroup Theorem
for free third Burnside groups, similar to that given for free nilpotent groups in Mo-
ran [19]. On the other hand, in the unrestricted third Burnside product B of infinite
cycles, every countable subgroup can be mapped isomorphically into a third Burnside
product of infinite cyeles. This is also true for every abelian subgroup of B. For every
abelian subgroup of B is a subgroup of the direct product of an infinite cyecle with
an elementary abelian group of exponent three. An investigation into the nature of
the homomorphisms of B onto a nonabelian subgroup of a third Burnside product of
infinite cycles, shows that B cannot be isomorphic to such a subgroup.

Finally we note that our results extend to the unrestricted products of an arbi-
trary number of factors. The only exception to this is a curious one which occurs
even in the case of the unrestricted direct product. In the analogues of the Theorem
of Specker and Y.os, we must take the set of infinite cycles 4,, a€M, to be such that
the cardinal of M has measure zero. If the cardinal of M is not of measure zero,

then, as shown by F.os in [24], the Theorem of Specker and Y.os no longer holds for
HHX Au-

aeM
§ 1. Countable subgroups of unrestricted nth nilpotent product of infinite cycles

Let G be the unrestricted nth nilpotent product of infinite cyclic groups 4; with
generator a,(¢=1,2,...). By [18] Theorem 3.7,

2(G)=C("&)=C("F)[C(""'F),
where F is the unrestricted free product of the infinite cycles. Hence the upper central

series of @ is given by
2(G)=C("G)

for 1=1,2, ..., n. Now as a direct consequence of Hall’s Basis Theorem (see e.g. [7])

for free nilpotent groups and the procedure of [18] Theorem 3.7, we have

(1) In fact our result states a little more than this. Cf. Theorem 4.4 and the example following
Lemma 1.4.
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LemMa 1.1. Let Gy denote the free n-th nilpotent group ot rank k. Then

C(G)C('@)=IL('G.[' ' G
and hence clct6y= ﬁ”x HAVRGare)
i~1
where bi(l) (1=1,2,...) are the basic commutators of weight | on the elements a,, a,, ... .

CoroLLARY L.1.1. Every element of G can be represented uniquely as an ordered
product of the form

o0

b, (D)%
I ([T @),
where ay(i=1,2, ...;1=1,2, ..., n) takes any integer value or zero.
Note 1.2. For each [, [1(b, ()
i=1

is convergent. For from [19] Theorem 1.1 it follows that this element belongs to the

unrestricted ¢th nilpotent product

@},
where (1) t= [%] .

Let ®* denote the natural homomorphism of G onto G, which is obtained by
mapping

Ar+1y Ak12y «--

onto the unit element. We can now see, from the construction of the above infinite

product, that the basic products of weight ! can be so ordered that if
Db () =b:(1)
while O®WB, (1)) =1

for some positive integer k, then b,(l) appears before b;(I) in the above infinite prod-

uct. For convenience we often write 2™ instead of ®® (x).

(*) If r is a positive integer, then [r] denotes the integral part of r.

5 — 6229068 Acta mathematica. 108. Imprimé le 20 déecembre 1962.
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The following fundamental lemma was proved for the unrestricted second nil-

potent product in [18] Lemma 4.3.

Levma 1.3. Let by, hy, ..., hp (p=2) be elements of G, which are linearly indepen-
dent modulo z,_ 1(G). Then the subgroup H generated by these elements is a free n-th nil-

potent group and these elements are free generalors.

Proof. This is by induction on n. It is true for n =1, by Specker [22](}). Suppose
that the result holds for [J# 4, with m <n. By the induction hypothesis, H - 2(G)/z(G)
i=1
is isomorphic to

iﬁ(n_l){h’ -2(G)} = (ﬁl(n 1){;“}) - 2(G) /(@) (1)

in GJz(G). Also by Specker [22], there exist infinite cyclic subgroups Dfz, ; (i=
1,2,...,N) of Gfz,_; such that

00 N
EHX (i zp 1fza-1) = (llX(D,/z,, 1)) X (iI;INHX(A, 'zn—llzn—l)) (2)
and H-z, 3f20 <I_Iix(D¢/zn 1)=Dfzn_;. (3)

Because of (1), it is sufficient to show that
hiby, ...\ ks,

which denote the basic commutators of weight n in the elements kb, ..., 2y, are
linearly independent. Now suppose to the countrary that %, Z,, ..., A are linearly de-
pendent, then there exist integers g; (not all zero) such that
Wby Bs=1. (4)
Apply @ to (4) giving that
(RSO Ry (B =1, (5)
where N is given by (2), which is a relation between the basic commutators of weight

n in the elements A, RSV, ..., B, Hence AV, A5V, ..., B are not lincarly independent

modulo z, 1(@). For otherwise, by the Theorem of Mal’cev [14], they would freely

(1) Cf. also Fuchs [1] Theorem 47.1.
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generate a free mth nilpotent group and this contradicts (5). Hence there exist inte-

gers o; (not all zero) such that
(BE™) (B ... (BS)*2=1 modulo z,_,(G). (6)
We have shown that the element
hozn_1=(hy 2n_1)" (hy 2n_1)"...(hp *2n-1)"?

has the following properties:

(a) -z, ;1 is not the unit element, by assumption;

(b) A-2,_1 belongs to Dfz,_4, by (3);

(¢) h-z,_, belongs to iHHX(Ai-zn_l/zn_l), by (6).
>N

These facts, however, are inconsistent with the direct decomposition (2). Hence our as-

sumption that

are linearly dependent is false. Thus the required result follows from the induction

hypothesis (1).

CoRrOLLARY 1.3.1. Let hy, hy, ... be a countable sequence of elements of G which
ts linearly independent modulo 2,_1(G). Then the subgroup generated by these elements is a

free n-th nilpotent group and the elements h; are its free generators.

LemMma 1.4. Let by, hy, ... be a countable sequence of elements of C(G) which is
linearly independent modulo C('*'G). Then the subgroup generated by these elements is a free

t-th nilpotent group and the elements h; are its free generators, where

1)

Proof. Suppose that in the representation of the elements of @ in the form given

any fized 1=1,2, ..., n.

by Corollary 1.1.1, the element A, has the representation
by =hi(l) - b,

where h;(I) and %; belong to C('G) and C(**'G) respectively, and hi belongs to C('Q)

only if it is the unit element, for all <. Now using Hall’s commutator collecting pro-
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cess [5], it follows that the required result holds for the elements A; if and only if it

holds for the elements A, (), ky(l), ... . By [19] Theorem 1.1, the basic commutators of
weight | on the elements a,,a,, ..., namely, b,(l), by(J), ... are such that one can form
the group

oG =[1" v}

in G. Now the subgroup generated by the elements A, (), hy(), ... is a subgroup of C(Gy).
As b (D), hy(l)..., aré linearly independent modulo C("'@) they are also linearly in-
dependent modulo z; {(C(G;)). Hence the required result follows from Corollary 1.3.1.

G’ is not a closed subgroup in G, as the element

c=[ay, as] - [ag, a4]...[Aem—1, G2m]...

does not belong to G (cf. [8]). This implies that it is impossible to find elements

Xy, Xg, ..., &g of G, which are not contained in C'(G'), such that (for n>1)
q
{c} <1H(") {z}<@.
-1

This is in contrast to the case of the unrestricted direct product. However, in general

we can state the fdllowing

TurorEM 1.5. Let H be a finitely generated subgroup of G. Then there exists a
positive integer N such that the natural endomorphism O™ induces an isomorphism of H

onto a subgroup of the free n-th nilpotent group ®*(G) of rank N.
Proof. As H is finitely generated,

(HnC(@)-c('@je'a)

is a finitely generated subgroup of C('G)/C('"*'G). Hence, by Lemma 1.1 and Specker

[22], there exist positive integers N(I) and elements
dl(l)> d2 (l)? (RS} dN(l) (l)

of O('G) such that

NG

(Hnole)-ore) o< Hlx{di(l) 06}

i=



UNRESTRICTED NILPOTENT PRODUCTS 69

and ole) el (*1Q) = (HX{d o(e }) x( T1#%{b, (1) - O(ZHG)}) (7)

i>N()
for all {. Let N be the minimum positive integer such that
DVB;(1) =bi (1)

for all ¢<N(l) and all I=1, 2, ..., n. This exists by the ordering given in Note 1.2.
We now show that N will serve as the number given in the statement of our

theorem. Apply the natural endomorphism ®® to G. This induces an isomorphism of

N

HX{d H IG)} into IGN/I+1GN (8)

for all I, where Gy=®"(Q). For if

dy O™, dy ()P, ..., Ay P
are linearly dependent modulo 1@y, then

dy (D)™ dy (1)=... “N(l) C’(ZHG’)
belongs to HHX{b ot'an}

which contradicts the decomposition (7), where o, &, ..., &nq are integers (not all

zero). Now let
N(D)

di(1)

i=1

:1:

d=

1

Il
Ju

be an element of H which is mapped by ®“ onto the unit element. It follows from
repeated application of (8) for =1, 2, ...,n, that d=1. Hence ®™ induces a one-to-
one mapping of H onto a subgroup of ®™ (@) and hence is an isomorphism on H.

Thus @™ is the required endomorphism.

TuEorEeM 1.6. Let H be a countable subgroup of G such that H|z(H) is finitely

generated. Then H is isomorphic to a subgrowp of a free n-th nilpotent group.

Proof. Let hy, hy, ..., h, be a finite set of elements of H whose images form a set
of generators of H/z(H). Further let H (1) be the subgroup of H generated by hy, ks, ..., by
and H(l,n) be the subgroup of H generated by H(1) and the isolator (1) of H(1) N z(H)

(*) Also known as servicing subgroup (cf. Kuro8 [10] § 30).
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in z(H). Now H(l,n) is a finitely generated subgroup of G and

H=H(l,n)x 4,
where A is a countable subgroup of z(H). The required result will now follow from
the previous theorem if we can show that A4 is free abelian. In fact, we state

LEMMA 1.7. Every countable abelian subgroup of G is a free abelian group.

Proof. This by induction on the class n. For n =1, this is the content of Specker
[22] Theorem 1. Suppose that the result holds for all unrestricted kth nilpotent prod-
ucts of infinite cycles, where k<n. Let 4 be a countable subgroup of G. Now by
[18] Theorem 3.7,

G(@) =15 (4, 2]

and A-zfz is a countable subgroup of Gfz. Hence, by the induction hypothesis,
A-zlzxA|(AN2)

is a free abelian group. Further, by [18] Theorem 3.7, 4 Nz is a countable subgroup
of the unrestricted direct product of infinite cycles and hence, by Specker, is free
abelian. Finally we have that the abelian group A is the extension of a free abelian

group by a free abelian group and hence must itself be free abelian.

In general, we have the following information concerning the countable subgroups

of Q.

THEOREM 1.8. Let H be a countable subgroup of the unrestricted n-th nilpotent prod-
uct G of a countable number of infinite cycles. Then H has a set of subgroups H,, H,,

-.y Hu which generate H, where

(i) H, is a free nilpotent group of class [?] {I=1,2, ..., n);
(i) [H, HI1<{Hij, ..., Hy} if i +j<m, and

(111) Hl’{Hm+1,--~,Hn}/{Hm+1:---;Hn}

s a free nilpotent group of class [%2], freely generated by the images of the free gen-

erators of Hy, for m=1,1+1,...,n—~1land [=1,2, ...,n—1;
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(iv) There exists a set of free generators of H; (1 =1,2, ...,n—1) that has the following prop-
erties. A subsel of these free gemerators can be taken to be the maximal set of original
commutators of weight ¢ in H and. the images of the non-original commutators of

weight 1 form a basis of the vector space
UM H), M) i+7=1} - {M(Hyy), ..., M(H)}{M(Hy ), ..., M(H)}

forl=2, ..., n

Remarks. By [19] Theorem 3.4, every subgroup of a free nth nilpotent group has
the above properties. On the other hand, if a group H satisfies the above properties

and the torsion subgroup of
B{Bi 1, ..., B.}/({[By, Bjl; i+ =1} - {Bis1, ..., B,})

has finite exponent for I=2,3, ..., n, then, by [19] Theorem 3.7, H is isomorphic to a sub-
group of a free nth nilpotent group. Our use of the phrase “the torsion subgroup has finite
exponent” does not conform to the standard usage. Note that this is to mean that the
abelian group is the extension of an abelian group of bounded order by a free abelian
group (either or both of which may be trivial). M(H;)} denotes the Mal’cev completion
of H;. For the concepts of orginal and nonoriginal commutators see [19] Definition
3.2. However, we shall not explicity use these concepts here except the fact that they

give a basis for the above vector space.

Proof. (HnO('®)):-0('@)[C(*'G) is a countable subgroup of C('G)/C('*'@) and
hence, by Lemma 1.1 and the Theorem of Specker, is free abelian. Let 2,q, be a typi-
cal element of a set of elements of H N C('G) whose images form a basis for the free

abelian group
(Hn O(@) - oM@ o¢a).

Let H; be the subgroup of H generated by the elements h,;(I=1,2, ...,%), then, by

Lemma 1.4, H, satisfies condition (i). Obviously,

HnCO()=H,-(HnC(*'R))
for {=1,2,...,n. In particular, H is generated by the subgroups H,, H,, ..., Hn.
(ii) [H, H1<[C(®),C{)nHLSCHQ)nH

which gives the required result.
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(i) Hi{Hns1, oo, Hi}[{Hpsy, ..., Ho} = Hy - (H 0 C(" @) )(H 0 O("'@))
=H,/(H. 0 C(MtQ))y = H, - O(m-(-IG)/O(m+1G),

by repeated use of the Isomorphism theorem. Hence the latter subgroup is the image

of H; under the natural homomorphism which maps
[T7A4; onto J]#™A,.
i=1 i=1

For, by [18], the kernel of this homomorphism is
C("H[C("IF) =0(""@),

where F is the unvestricted free product of the infinite cycles 4;. Thus the required
result follows on using Lemma 1.4.

(iv) From the above constructed subgroup H,, we take a finite set of generators
which generate a subgroup HY of finite rank for each ¢ and satisfy the above condi-
tions (i), (i) and (iii). By Theorem 1.5 and [19] Theorem 3.4, there exists a set of free
generators of Hf (i=1,2,...,m—1) and a subset of the free generators of H, which
can be taken to be the original commutators of weight I, such that the non-original

commutators of weight [ from a basis for the vector space
{[M(HY), M(H})}; i+ =1} modulo {M(H}.y), ..., M(HR)}.
However, by [19] Lemma 3.6,
(M(H}), .., MUHD} = M({HE, HS, .., H3) 0 {M(Hyy), .., M(H,)} -

Hence it follows from the Isomorphism theorem that we can consider the above vector
space modulo {M(H,,), ..., M(H,)}.

We now consider our given system as the union of an ascending sequence of
systems whose generating free nilpotent subgroups all have finite ranks. B; is the
union of the corresponding Bf, for all <. This is, in fact, how our ascending sequence
is constructed, namely, by considering successively the cases ¢=1,2, ...,n. Thus, by
the above procedure, we have a subset of a set of free generators of H;(1=1,2, ...,n—1)
which can be taken to be the original commutators of weight less than =, such that
every finite subset of the set of non-original commutators of weight ! are linearly
independent modulo {M(H,.,), ..., M(H,)} over the rationals. Hence we have estab-
lished property (iv).

§ 2. Unrestricted {ree Lie algebra over a field
Let L, denote the free Lie algebra having the elements x;,,, ..., %; as its set

of free generators over the field Q (k=1,2,...). If m >k, then there exists a natural
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homomorphism of L, onto L;. We now form the projective limit L of these free Lie
algebras under the above homomorphisms, and call L the wunresiricted free Lie al-
gebra over ).

We proceed as in the case of the unrestricted nilpotent product and give a con-
venient unique representation for the elements of L. This is a direct consequence

of Hall’s Basis Theorem (see [4]) for a free Lie algebra. We first introduce the following

Notation. > and >* will denote restricted and unrestricted sums of elements re-
spectively. @® denotes the natural homomorphism of L onto L; which is obtained by
mapping g 1, Tr+e, ... onto the zero element of L,. The image of an element x of L
under ®*® is denoted by x®.

Lemma 2.1. Every element of L can be represented uniquely in the form

i (ig*ail - by (l)),

where oy €C) for all values of ¢ and . b;(l) runs through all the basic monomials of weight 1
on the free generators x,, %y, ... {for fized 1). In the unrestricted infinite sum the basic mono-

mials of weight | are so ordered that if
DPB (1) =bi(l)  while OV (1)=0,
for some positive integer k, then b;(1) appears before b;(l) in the unrestricted sum > *.

Notation. All the elements of L which involve only basic monomials of weight not

less than [ in the above representation form an ideal of L which we will denote by ,L.

We come now to the main result of this section which will show that L is a

free Lie algebra. We commence with

ConsTrUCTION 2.2, Firstly we notice that ;L/i,,L is a vector space over O, for all ¢,
and hence it is possible to construct the following sets 4;. Let 4, = C, be a set of elements
of L that is linearly independent modulo ,L. Suppose that the sets A4, and C, have
already been defined for all »<<m (where n>1) and the elements of the sets A,(y=
1,2,...,nm—1) have been ordered so that an element of 4, is greater than an ele-
ment of A4, if v>vf. ‘We define €, to be the set of all basic monomials on the ele-
ments of the sets A4,,4,,...,4,_; which belong to ,L but do not belong to ,;L.
Finally 4. is a set(') of elements of ,L which is linearly independent modulo the

subalgebra (2) generated by ,.,L and the set C,.

(*) In the language of our paper [19], A, is a set of original monomials of weight n while O, is
a set of non-original monomials of weight n.
(?) This subalgebra is easily seen to be an ideal.
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The following lemma is fundamental for our purposes:
Lemma 23. If Ay, A4y, ..., Au_1 are finite sets, then Cp is a set of linearly indepen-

dent elements of L modulo , 1L for n=1,2, ...

Proof. We proceed by induction on n. The result is true, by construction, when
n=1. Suppose that the result is true for C,,C,, ..., Cr_1. Now as these sets are finite,
for every m, where 1<m<n—1, there exist elements d;(m) of ,L and positive inte-
gers N(m) and g(m) such that

am .
L L= ( 3 {di(m) + L} )+ ( 3% {Bi(m) + i)
i=1 i>N(m)

and (O U Am) + miaL <i(zr: (s (m) + maiL}). )

In the above, 2 and >* denote restricted and unrestricted direct sums respectively,

while >* is to mean that those and only those basic monomials of weight m on
i>N(m)

Xy, ¥y, ... occur in the unrestricted direct sum which satisfy the condition
OHMD(p,(m)) =0.

Suppose that contrary to our lemma, the elements of C, are linearly dependent mo-

dulo 4L, then there exist scalars y,, (not all zero) such that
C="Yn,Cn, .o+ Pz Cny belongs to L.

Let N denote the maximum of N(1), N(2), ..., N(rn—1). Apply the homomorphism

O to ¢. Hence

M =y, i)+ . +y,,c) belongs to "Ly,
This implies that for some I(<n—1),

N, N,
oy 4,

where the superscripts have their obvious meaning, must be a set of linearly depen-
dent elements of ,L modulo ;.;L. For, otherwise, by the Theorem of Sirtov [217 (<f.
[19] Theorem 2.3), the elements of the set

AP VAP U . U AT
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freely generate a free Lie subalgebra of Ly and this contradicts the fact that ¢ be-

longs to "*'Ly. Hence there exist scalars e, e (not all zero) such that
enaP+ .. a4+ en ™4 4 eln e

belongs to ;.1L, where a;€4; and ¢; €C;. Thus the element
G=enan+ ... + et +encu+ ... + e cue

has the following properties:

(a) @ does not belong to ;;L, by the induction hypothesis and Construction 2.2;
(b) @ belongs ’ooiz* ({b;()) + 1+1L}) modulo ;,L;

>N

adl

)
(¢) @ belongs to > ({d;(l)+,41L}) modulo L.

i=1

The above three properties of the element @+ ;.,L contradict the direct decomposi-
tion (9) for ,Lj;.,L.

TarEorREM 24. L is a free Lie algebra over Q.

Proof. Let A, A4,, ..., 4,, ... be maximal sets satisfying the conditions of Con-
struction 2.2. The elements of C, are linearly independent modulo ,,,L. For, by
Lemma 2.3, every finite subset of C, is linearly independent modulo ,.;L. Hence the

elements of the set

are a set of free generators for L.

Notice that the above set of free generators for L does not coincide with the

set A,. For the element
(.’El, xz) + (xa, x4) + ...+ (xz,,,-l, xgm) + ...

is an element of ,L which is not contained in (L, L).

We can now see that the same situation holds for the wunresiricted free n-th nil-
potent Lie algebra £ over a field Q. The latter is defined as the projective limit of
the free n-th nilpotent Lie algebras L, on the free generators x, x,, ..., x;, (k=1, 2, ...)
under the natural homorphisms defined as above. Reducing L modulo ,.;L, we obtain

the following consequence of Theorem 2.4.

THEOREM 2.5. The unrestricted free n-th nilpotent Lie algebra over a field Q is

isomorphic to a subalgebra of a free n-th nilpotent Lie algebra over .
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§ 3. The Mal’cev completion of the unrestricted nth nilpotent product of a countable
number of infinite cycles

Levma 3.1. Let G, €M, be an inverse system of torsion-free nilpotent groups

under some set of homorphisms, such that their projective limit is a nilpotent group. Then
MIL(G®)) < IL{M(G*)).

Proof. Tirstly we need to show that the groups M(G™) form an inverse system
of groups under the appropriate homorphisms. Suppose m.s: @@ —G® is the given
homomorphism of G® into G, where o> 8. By Lazard [11] Theorem 4.10, there exists
a unique homomorphism m}s: M(G) - M(G?), which extends the homomorphism 7.
If «>p>yp, then mis 75, is a homomorphism of M(G) into M(G”’), which extends

Tup. As such a homomorphism is unique, it follows that
Mg Ty = Toy-

Let g=<¢™®> be an element of IL(G®) and n be any positive integer. Then
{g@)'™> is an element of IL(M(G®)), by the construction(l) of ;s from m,5. Hence

" =g
has a solution z={(g®)""> belonging to IL(M(G)),

which is unique as IL{(M(G)) is torsion-free. This shows that the Mal’cev comple-
tion of IL(G®) is contained in the inverse limit of the groups M(G®).
It is easy to see that, in general, it is not possible to turn the above inequality

into an equality even in the case when all the groups are abelian.

TuEOREM 3.2. The Mal'cev completion of ‘‘the unrestricted n-th nilpotent product
G of a countable number of infinite cycles” is isomorphic to the Mal’cev completion of

“a subgroup of a free n-th nilpotent group’.
Proof. Let G, denote the free nth nilpotent group of rank % and
ﬂk+1:Gk+1‘—>Gk (k=1,2, .H)

denote the natural homomorphism of G%., onto &;. By Lazard [11] Theorem 4.10,
there exists a unique homomorphism n¥,; of M(G4,,) onto M(Gy), which extends

7ix+1- By a similar argument as that given in the previous lemma, we have that

{1) Cf. construction of zt* from 7 in Lazard [11].
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ﬂ:+1:M(Gk+1)“—>M(Gk) (k=1,2, )

is an inverse system of groups and homomorphisms. By Lazard [11] §4 especially
Theorem 4.15 and the remark afterwards, sj,; is the natural homomorphism of the
free nth nilpotent Lie algebra M(Gy.1) of rank k+1 over the rationals onto the free
nth nilpotent free Lie algebra M(G,) of rank k over the rationals. Now

M(ILA(G)) < TLone(M(Gy)).-

by Lemma 3.1, and [L..«(M(G,)) is the unrestricted free nth nilpotent Lie algebra £
over the rationals. By Theorem 2.5, £ is isomomorphic to a subalgebra K of a free
nth nilpotent Lie algebra H over the rationals. By Lazard [11] § 4, H can also be
considered as the Mal'cev completion of a free nth nilpotent group. Further, by
Lazard [11] § 4, K is a divisible subgroup of the Mal’cev completion of a free nth

nilpotent group P.
K=MPnK)

and PN K is a subgroup of P. For
K>MPnK) as K=zPnK,
by Lazard [11] Theorem 4.10.

On the other hand, if % is an arbitrary element of K, then there exists a posi-
tive integer n such that %" belongs to P. Hence, by Lazard [11] Theorem 4.9,

K< M(PnK).

Thus we have that IL,.(M(G,)) is isomorphic to M(P N K). Similarly we obtain the
required result for the subalgebra M(IL.(G,)).
Because of the results of § 1, the following corollary to the above theorem is of

interest.

CororLLARY 32.1. The Mal’cev completion of “‘a countable subgroup of G is
isomorphic to the Mal’cev completion of “a countable subgroup of a free n-th nilpotent

group”.

§ 4. Homomorphisms of unrestricted nth nilpotent product of infinite cycles into a free
nilpetent group

We show that, as in the case of the unrestricted direct product, the only way
of obtaining a subgroup of a free nilpotent group from the unrestricted nilpotent

product of infinite cycles, by means of a homomorphism, is to map the unrestricted
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nilpotent product of most of the cycles onto the unit element. Throughout this sec-

tion 4,(:=1,2,...) denote infinite cycles.

Lemma 4.1. If pis a homomorphism of [[*™A, into a free nilpotent group such that
i1
S ICY A
u’(l:g 14{) 17
150 4,) = 1.
then w(ﬂ 1)
Proof. We proceed by induction on n. By the Theorem of Specker and Y.os
(cf. [1], Theorems 47.2-47.4), the result is true for n=1. Actually we also need to
use [19] Theorem 1.5, which states that every abelian subgroup of a free nilpotent

group is free abelian. Suppose that the result is true for all unrestricted mth nil-

potent products, where m <n. From
p([[74)=1
follows that (1) w(H‘" {b,(l)}) =1

for 1=1,2,...,n, where b;(l) (¢=1,2,...) are the basic commutators of weight ! on
the elements a,, a,, ..., by [19] Theorem 3.1. By Corollary 1.1.1 and [19] Theorem 3.1,

o= a={(f1% pa))s 1-1,2,.00)
i=1 fml
and C’([G,G])f{(H”“’{b,(l)}; l—zsn}

{=1
Hence, by the induction hypothesis, p(C([G, G])) — 1. Thus y defines a homomorphism
of G/C(G') into A, where A is an abelian subgroup of a free nilpotent group. How-
ever, by [19] Theorem 1.5, A is free abelian. By [18] Corollary 1.6.1,

6/06")= 1" 4,

Hence p maps G onto the unit element, by the Theorem of Specker and Los.

" ,=H_
l
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o0
LemMA 4.2. Let y be a homomorphism of G=iHH‘")Az into a free abelian group.
=1

Then there exists some positive integer m such that

g™ =1 emplies that p(g)=1
for all elements g of G.

Proof. We proceed by induction on n. The result is true for n=1, by the
Theorem of Specker and Los. Suppose that the result is true for all unrestricted mth
nilpotent products, where m<n. 7 defines a homomorphism of G/C(G') into a free
abelian group A. For G’ belongs to the kernel of y and this, by the argument given
in the previous proof, shows that C(G') also belongs to the kernel of y. Now, by

the Theorem of Specker and Los, there exists a positive integer m such that
g™ belongs to C(G') implies that y(g)=1,

which gives the required result. One has to use the fact that

[l

G’/O(G')—“——'iHHXAi.

=1
Before proving the main theorem of this section, we state the following simple conse-
quence of [19] Theorem 1.6.

Lemuwma 4.3. If B is a nonabelian subgroup of a free n-th nilpotent group A, then

where s is some positive integer less than (3n+1).

o
TuEOREM 4.4. Let y be a homomorphism of G=[17"A4, into a free nilpotent
f1

group. Then there exists a positive integer m such thot

g™ =1 implies that w(g)=1
for all elements g of C.
Proof. We proceed by induction on n. Let B denote the image of G under the
homomorphism . If B is abelian, then the required result follows from [19] Theorem

1.5 and Lemma 4.2. Hence we may assume that B is nonabelian. Then, by Lemma

4.3, there exists a positive integer s such that

Z(B) = zs(A) n B:
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where A is the free nilpotent group of which B is a subgroup. Thus
AN p<2Gy)=2zDB)=2(A4)NB
and y induces a homomorphism of G/z(G) onto
B/2(B) = B/(2.(4) N B)= B -z,(4)/2(A).
By [18] Theorems 2.2 and 3.7,
@/(6) %iljy(wl)Ai.

By a result of Witt [23], B:z,4)/2(4) is isomorphic to a subgroup of the free
nilpotent group 4/z,(A). Hence, by the induction hypothesis, there exists a positive
integer p such that

g‘® =1 implies that y(g) belongs to z,(4).

In particular, 1/)( HH(f)Ai) <z,(A4),
i=p+1
where z,(4) is free abelian. By Lemma 4.2, there exists a positive integer m (=p+1)

which has the following property:

g™ =1 implies that (g)=1

for all elements g of G.

§ 5. Unrestricted soluble produets of infinite cycles

Let G denote a free soluble group of derived length n, namely, F/F™, where F
is a free group. Then the last member G of the derived series of @ has been
characterized, by Mal’cev [15] Theorem 1, as the maximal normal abelian subgroup
of G. It can also be considered to be the set of all left Engel elements or alterna-
tively as the maximal normal locally nilpotent subgroup (!) of . For our purposes,
it is convenient to consider the set R(X) of all left Engel elements of the group X.
g is said to be a left Engel element of the group X if for each x of X there exists
a positive integer 2 such that

[, u] =1.
h

(1) These two subgroups, in fact, coincide in a soluble group. Cf. for instance Gruenberg [3].
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Note that R(X) is a normal subgroup of the soluble group X and
RX)OD<RXD)

for all homomorphisms @ of the soluble group X.

As in free nilpotent groups we have the following result.

LeMMA 5.1. Every abelian subgroup of a free soluble group is free abelian.

Proof. This proceeds by induction on the derived length n of the free soluble
group G. The result is true for n =1. Suppose that the result is true for all free soluble
groups of derived length less than n. If A is an abelian subgroup of @, then

A- G[n—l]/G[nAl]gA/(A n G[n—l])

is an abelian subgroup of G/G™ " and hence, by the induction hypothesis, is free
abelian. Thus 4 as an abelian group that is an extension of a free abelian group

by a free abelian group is itself free abelian.

THEOREM 5.2. The radical of the unrestricted n-th soluble product of a countable

number of infinite cycles is
CE"~1)/CE™),

which 1s the unrestricted direct product of a countable number of infinite cycles(?).

Proof. According to the above mentioned result of Mal'cev,
R(F,/Fy=F7"Y/F,

which is a free abelian group of countably infinite rank, for k=2, 3, ... . As previously
F, denotes the free group of rank k. The above system is an inverse system of
groups and homomorphisms (induced by the natural homomorphisms of the groups
F,/F). Tt is easy to see from the definition of left Engel elements, that

RUIL(F,/F{) = IL(R(F,/Fy) = IL{FY~1/F§) = CE™1) /C(F™)

by a similar argument to that given in [18] Theorem 3.7. The inverse limit is, in
fact, the unrestricted direct product of the infinite cycles.

Now using the fundamental Lemma 1 of A. W. Mostowski [20] one can establish
the following result by means of an induction argument on the derived length of a

free soluble group.

(*) F denotes the unrestricted free product of the cycles.

6 — 622906 Acta mathematica. 108, Imprimé le 6 novembre 1962.
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LEMMA 5.3. Let G be a free n-th soluble group. A set of elements of G which
is linearly independent modulo G™*1 freely gemerates a free suluble group of derived
length (n—m). ‘

The following subgroup theorem for free soluble groups is sufficient for our

purposes (1).

THEOREM 5.4. Every subgroup H of a free n-th soluble group is generated by a
set of subgroups ‘
H,H, H,, .. Hy.. H,,

which are free soluble groups of derived length

n,n—1,n—-2,...,n—m, ..., 1
respectively. Moreover
[Hi’ H]] < {Hk+1’ seey Hn—l}:
where k is the minimum of ¢ and §, if k+1<n—1. While [H;, H]=1 if ¢ and § both

exceed n— 1. Further
Hi'{Hm, Hy, .. Hn—l}/{Hm, Hpig, ooy Hn-l}

is a free (m—1i)-th soluble group with the images of the free generators of H; as a set

of free gemerators, for 1=0,1, ...,m—1 and m=1,2,...,n—1.

Proof. It is sufficient to make the following observation. If we take a set of

elements of H N G"" whose images form a basis for the free abelian group
(H n G[m]) . G[m+1]/g[m+1],

then, by Lemma 5.3, they freely generate a free (n —m)th soluble group H,, in G.
It is easy to see that the subgroups H,, Hy, H,, ..., H,_, satisfy the above conditions.
Of course, it is possible that some of these subgroups may have rank zero, that is,
are trivial subgroups.

It is not difficult to verify that there exists a unique representation for every
element of a free soluble group with free generators a; in terms of the obvious com-

plex commutators of the form (%)

a af ... [afi, afi Py .. [[alt, @}y, [ahF, afifurpue

() It is not difficult to verify that every countable subgroup of the unrestricted nth soluble
product of infinite cycles is a group of this type. This follows from a result corresponding to Lemma 1.4.
(2) The powers occurring in the form are integers and only a finite number of them are nonzero.
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Using this representation instead of representation by basic commutators and the
radical instead of the centre, we can establish as above the following results for

unrestricted soluble products.

THEOREM 5.5. Every countable abelian subgroup of iH”[’” A, is a free abelian group.
=1

THEOREM 5.6. If y is a homomorphism of iHH["] A; into a free soluble group so that
=1

W(ﬁ[n]At) =1,

i=1
then "/’(EH[n]Ai) —1.
THEOREM 5.7. Let y be a homomorphism of G=inH[”]Ai tnto a free soluble group.
Then there exists a positive integer m such that
g™ =1 implies that y(g)=1
for all elements g of G.

In order to prove the above theorem we need the following simple result cor-

responding to Lemma 4.3.
Lemma 5.8. If B is a nonabelian subgroup of a free n-th soluble group A, then

R(B)=R(4) n B.

§ 6. Unrestricted third Burnside product

The results in this section will only be briefly outlined as their proof proceeds
in a similar way to that previously given for unrestricted nilpotent products. We will
consider side by side the cases of the unrestricted third Burnside product of (a) in-

finite cycles (b) cycles of order three.

o0
Every element of []J*®4; can be represented uniquely as an ordered product of
i1
the form

fe

11 (T eor),

where b;(l) (:=1,2,...) are the basic commutators of weight I on the elements
@y, @y, .... If the factors A4; are infinite cycles, then oy; takes any integer value or
zero. If the factors A; are cycles of order three, then ay; takes values 0, 1, 2. For

1=2, 3, the values of «; range over 0, 1, 2.
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See Levi [12] for the unique representation of elements of a free third Burnside
group and [17] Theorem 6.6 gives the corresponding representation for the third

Burnside product of infinite cycles.

The upper central series of tH’BA, is given by
=1
&= EHX {6:(3)}
2= (T o@}) % (11 (0,(3)})
2N 21
and Zy = f[H?’A,-.
=1

z and z, are elementary abelian groups of exponent 3. Every finitely generated sub-
group of [[? 4, is isomorphic to a subgroup of [[>4,.
i=1 i

Every abelian subgroup of iﬁ’% A4; is a subgroup of the direct product of an
elementary abelian group of exponent 3 and an infinite cyelic group.

In order to distinguish more precisely between the cases when A; are cycles of
order three and when A4, are infinite cycles, we must now consider a subgroup theorem
for the third Burnside product in these two cases. It is obviously sufficient to con-
sider nonabelian subgroups.

However, we first prove the following

LeMMA 6.1. Let A be a free third Burnside group. Then any set of elements of
A, which is linearly independent modulo A’, freely generates a free third Burnside

subgroup of A.

Proof. As A/A’ is elementary abelian of exponent 3, the given set of linearly
independent elements can be expanded to a set S of elements of 4 whose images
form a basis for 4/4’. By Mal’cev [13] Theorem 5a, § is a set of free generators
for A, which gives the required result.

We also have the corresponding result for the third Burnside product of infinite

cycles

LeMma 6.2. Let A be the third Burnside product of infinite cycles. Then any set
of elements of A, which is linearly independent modulo A', freely generates o third

Burnside product of infinite cycles. (1)

(1) Cf. Introduction for the fact that this is a relatively free group.
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Proof. Let A,, a€M, be infinite cyclic groups and 4=]]4,.

aeM

Then A=(F/*F)/CF/*F)3,

where J is the free group on the generators of the cyclic groups 4,. Now the re-
quired result follows from the corresponding theorem of Mal’cev [14] for free nilpotent

groups.

THEOREM 6.3. The following conditions are mecessary and sufficient for a non-
abelian group B to be isomorphic to a subgroup of a free third Burnside group.

B is generated by subgroups B, B,, and B, where

(i) B, is a free third Burnside group, while B, and B, are elementary abelian
groups of exponent 3;

(i) If i+§<3, then [B,, B;]<{Bi;, By}, while [B;, B]]=1 4f i+j>3;

(ili) B, NB,=1;

(iv) Let dg be a typical element of a set of elements of By, whose images form a

basis for
B, 'B3/(B3 “[By, By)).

Then [By, B,] is freely generated by the basic commutators of weight three on the free

generators of B, and all commutators of the form [by, dgl, where b, and ds traverse all

the free generators of B, and all the above constructed elements of B, respectively.

Proof. First a few remarks about the necessity of the above conditions. Let B
be a subgroup of a free third Burnside group G. Then, as in the Subgroup Theorem
for free nilpotent groups, the subgroups B,, B, and B, are constructed from sets of

elements of B whose images form a basis for
B-&/G¢, (Bn@)-*G/*G and Bn*G

respectively. Conditions (i) to (iii) follow from the construction of the subgroups and

Lemma 6.1. Condition (iv) is a consequence of the fact that
By = ([ ()< [ (s

where b, runs over the basic commutators of weight two on' the free generators of B;.
Now in order to prove the sufficiency of our conditions, we proceed as in the Sub-

group Theorem for free nilpotent groups and consider the group

B/By= (B, - By/By)x (I;IX({dﬂ} * By/By)).
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From (ii) it follows that B,-B,/B, is the second nilpotent product of the subgroups
generated by the images of the free generators of B;. Take a free third Burnside
group G with a sufficient number of free generators. B/B; can obviously be mapped
isomorphically into G/2(@). It remains to show that, as in the case of free nilpotent
groups, this isomorphism can be extended to give an isomorphism of B into G. This
causes no difficulties.

We state, without any further comment, the corresponding result for the third

Burnside produet of infinite eycles.

THEOREM 64. The following conditions are necessary and éufficient for a non-
abelian group B to be isomorphic to a subgroup of the third Burnside product of infinite
cycles.

B is generated by subgroups B, B, and B, where

(i) B, ts the third Burnside product of infinite cycles, while B, and B, are ele-
mentary abelian groups of exponent 3;

(i) If i+§<3, then [B;, B1<{B.,;, By}, while [B;, B]=1 if i+j>3;

(ili) B,NB;=1;

(iv) Same as (iv) of Theorem 6.3 with the above given different interpretation of B;.

As in the case of the unrestricted nilpotent product we are able to prove the

following result for the unrestricted Burnside product.

LeMMA 6.5. Every finite set of elements of G=[]" A, (both when all the groups
t=1
A, are infinite cycles and when they are all cycles of order 3) which is linearly inde-

pendent modulo C(G’) freely generates a third Burnside product of cycles.

This enables us, with the help of the above Subgroup Theorems, to deduce the

following main results.

THEOREM 6.6. The unrestricted third Burnside product of @ countable number of

cycles of order three is isomorphic to o subgroup of a free third Burnside group.

THEOREM 6.7. Every countable subgroup of the unrestricted third Burnside product

of infinite cycles is isomorphic to a subgroup of a third Burnside product of infinite cycles.

The other main problem is solved by

THEOREM 6.8. Let y be a homomorphism of the unrestricted third Burnside product
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G of a countably infinite number of infinite cycles onto a nonabelian subgroup of a third

Burnside product A of infinite cycles. Then there exists a positive integer m such that

g™ =1 implies that y(g) belongs to z,(A)
for all g of G.
Proof. It is sufficient to point out the following facts. If B is the image of ¢

under 1, then
2o(G) p < 2(Gp) = 2,(B) = 2,(4) N B.
21 G P S 2(GY) =2, 2

Hence y induces a homomorphism of
G/zz(G)%iHHXAi,
-1

where A; are infinite cycles, onto

B/(zz(A) nB)=~B 'zz(A)/zz(A)-

CoroLLARY 6.8.1. The unrestricted third Burnside product of a countably infinite
number of infinite cycles is not isomorphic to a subgroup of a third Burnside product

of infintte cycles.

Generalizations. There is no difficulty in extending our above given results to
the unrestricted products of an “arbitrary” number of cycles. However, we make the
following relevant remarks. In the case of the above subgroup theorems, we use [18]
Theorem 2.2 which gives a representation for unrestricted verbal products in terms of
a factor group of the unrestricted free product of the same factors. For an arbitrary
verbal product we have been able to prove this result only when the product has a
countable number of factors. However, for unrestricted nilpotent soluble, and Burnside
products of the cycles considered above, we have a unique representation which
enables us to extend [18] Theorem 2.2 to an arbitrary number of factors. A similar
situation holds for the unrestricted free nth nilpotent Lie algebra. In the theorems
similar to the Theorem of Specker and Y.os, we must, as mentioned in the introduc-

tion, confine our attention to a set of cycles such that the set has measure zero.
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