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Among the reasons why the study of the geometry of a net of quadrics
in four-dimensional space should prove interesting and attractive there are two
which immediately present themselves even before this study is commenced;
they are, first, that the base curve of the net, through which all the quadries
pass, is a canonical curve and, second, that the Jacobian curve of the net —
the locus of the vertices of the cones belonging to it — is birationally equiva-
lent to a plane quintie.

In space of any number n(>2) of dimensions a net of quadrics has a base
locus, of order eight, and a Jacobian curve; these must both figure prominently
in any account of the geometry of the net of quadrics. The polar primes® of
any point in regard to the quadrics of the net have in common an [n — 3] except
when the point lies on the Jacobian curve, when they have in common an [n— 2];

there is thus a singly-infinite family of [#—2]’s in (1, 1) correspondence with the
points of the Jacobian curve, and it is found that each [n — 2] has —;n(n-—— 1)
intersections with the Jacobian curve.? This is analogous to the well-known
result in (3] that, when a point lies on the twisted sextic which is the locus of

vertices of cones belonging to a net of quadric surfaces, the polar planes of the
point in regard to the quadrics all pass through a trisecant of the sextic. The

! When we are concerned with geometry in a linear space [#] of # dimensions the word
prime is used to denote a linear space of n— I dimensions; the word primal is used to denote
any locus, other than a linear space, of #— 1 dimensions. In [4] we also use the term solid to
denote a three-dimensional space.

* Cf. Edge: Proc. Edinburgh Math. Soc. (2), 3 (1933), 259—268.

24 —34472. Acta mathematica. 64, Imprimé le 1 novembre 1934.
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[n—2]'s may be called secant spaces of the Jacobian curve. Any two of the
secant spaces intersect in an {n—4] and, when % >4 and the net of quadrics is
perfectly general, there are no two secant spaces having an [z — 3] in common.
But, when n=4, it is found that, for a general net of quadries, a finite number
of pairs of secant planes of the Jacobian curve 9 do intersect in lines. It is
also found, further, that a line which is common to two secant planes of & also
lies in a third secant plane, that such a line is a trisecant of &, that, conversely,
any trisecant of J lies in three secant planes and that the trisecants of J are
associated in pairs (cf. § 10). These results give an added interest to the net
of quadrics in four-dimensional space, and bring the Jacobian curve into greater
prominence in the four-dimensional case than in any other.

The Jacobian curve of a net of quadrics in [n] is a particular example of
those curves in [n] which are generated by n + 1 projectively related doubly-

. . . I . .
infinite systems of primes; these curves are of order " (n + 1) and, being bi-

rationally equivalent to plane curves of order = + 1, are of genus ;n(n — 1).

1

Moreover such a curve has, like the Jacobian curve, ' secant spaces [n — 2]

each meeting it in én(n—— 1) points, these secant spaces being in (1, 1) cor-
respondence with the points of the curve and ;n(n— 1) of them passing through

each point of the curve.® We shall not however in this paper be concerned
with those curves which are not Jacobians of nets of guadries, and we shall
obtain the properties of the Jacobian curve 4 in [4] without further reference
to the more general type of curve.

It is to be understood throughout that the net of quadrics is perfectly
general. The ways in which it may be specialised are manifold: the base curve
or Jacobian curve may have multiple points or may break up into component
curves; the net may include one or more cones with line vertices; there may
be singular pencils of quadrics belonging to the net — 1i.e. pencils of quadrics
whose members are all cones. Many of these specialisations are of great interest,
but they will not be considered here.

The processes employed in obtaining the results below rest almost entirely
on two fundamental ideas — the idea of conjugacy of points in regard to quadrics
and the idea of the projective generation of loci. There is no need to elaborate

1 Cf. White: Proc. Camb. Phil. Soc. 22 (1924), 1—1I0.
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these ideas here as they are both very well known and have been very widely
used; the idea of conjugacy was first used in higher space by Segre in his
memoir on quadric loci', while that of projective generation, which is funda-
mental in the geometry of von Staudt and Reye, was extended to space of
higher dimensions by Veronese.® Nor is there anything novel in combining the
two ideas; they were both used freely by Segre in the above-mentioned paper
and, to mention only one other instance, by Reye in his Geometrie der Lage when,
for example, he studies the properties of a net of quadric surfaces.

A brief résumé of some of the results which are obtained may now be
given.

After one or two preliminary definitions the Jacobian curve 9, of order
ten and genus six, is introduced at once, and the cubic complex which is gene-
rated by the lines on the quadrics is also mentioned. 1t is then pointed out
that the polar solids of any point O in regard to all the quadrics of the net
have in common a line j, which is called the line conjugate to O; there is of
course an exception to this statement, since the polar solids of a point on %
have in common a plane which is a secant plane of &, meeting it in six points;
but the statement is always true so long as O is not a point of J. These lines
J form a system J of oo* lines. It is found that those lines which are conjugate
to the points of a line 1 generate a cubic scroll, the planes of the oo?® directrix
conics of the scroll being the polar planes of 4 in regard to the «?® quadrics
of the net; the scroll is a cone if 4 belongs to J. If however i meets < in a
point P the scroll consists of a quadric and the secant plane which is conjugate
to P, while if 1 is a chord of 4 the seroll is made up of the secant planes
conjugate to its two intersections with ¢ and of another plane. If A4 should
happen to be one of the trisecants of 4 it is found, in § 10, that the lines
conjugate to the points of A all coincide with a second trisecant of J; these
two trisecants are mutually related to each other, and are called a pair of con-
jugate trisecants.

The oo? lines which are conjugate to the points of a plane sz are found
to generate a six-nodal cubic primal IT; there is also 'a second mode of genera-
tion of IT, namely by means of the polar lines of = in regard to all the quadrics
of the net. The six nodes of I7 have as their conjugate lines six lines belonging

! »Studio sulle quadriche in uno spazio lineare ad un numero qualunque di dimensioni.»
Mem. Acc. Torino (2), 36 (1884), 3.
? Math. Annalen 19 (1882), 161.
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to the system J and lying in 7z, and these are the only lines of J which can
lie in w. It therefore follows that the lines of J which lie in an arbitrary solid
generate a congruence of order three and class six. The primal IT will be
specialised when s is not of general position; if # meets 9 then IT acquires
an extra node, so that there are primals with seven, eight, nine or ten nodes
associated with planes which meet ¢ in one, two, three or four points. When
7z i3 a secant plane of &, meeting it in six points, IT becomes a cubic cone
whose vertex is that point of ¢ to which the secant plane is conjugate. If =
contains a trisecant of 9 then IT has the conjugate trisecant of 4 as a double
line, having also three nodes not on this line; it has also a fourth isolated node
if 7 meets & in a further point. We thus obtain, corresponding to different
positions of = in regard to &, all the different types of cubic primals which
can be generated by means of three projectively related nets of solids.

The secant planes of 9 are studied in detail in §§ 5 efseq. They generate
a primal of order fifteen on which & is a sextuple curve, and the six secant
planes which pass through any point of ¢ are met by an arbitrary solid in six
lines forming one half of a double-six. The solid which joins a point P of &
to its conjugate secant plane is the common tangent solid at P of all those
quadrics of the mnet which pass through P; there thus arises a singly-infinite
family of solids, and it is found that through an arbitrary point there pass
twenty-five of them. A '

The properties of a pair of conjugate trisecants of ¥, some of which have
already been mentioned, are obtained in § 10; there are ten pairs of conjugate
trisecants, and the solid which contains a pair of conjugate trisecants is such
that there are four cones belonging to the net which meet it in plane-pairs.

The locus of the poles of an arbitrary solid S, in regard to the «? quadrics
of the net is a determinantal sextic surface, and the trisecants of the surface
are the lines which are conjugate to the points of S,. The line which is con-
jugate to any point of the surface lies in S; and, conversely, any line of the
system J which lies in S, is conjugate to a. point of the surface. We thus see
that the lines of the (3, 6) congruence which is generated by the «? lines of J
lying in S; can be represented by the points of a determinantal sextic surface
in [4]. The surface is particularised in various ways when S, occupies special
positions; if, for example, S; is the solid which joins a point P of 9 to its
conjugate secant plane, the surface has a triple point at P.

In § 16 the loci of lines which are conjugate to the points of a curve or
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of a surface are referred to, and it is found that of the secant planes of & there
are 120 which touch the curve. ‘

In § 17 the locus M, generated by the chords of C, the base curve of
the net of quadrics, is considered; (' is a sextuple curve and ¢ a quadruple
curve on the locus, which has a double surface of order sixty. Tt is found
that every chord of % which meets C is a chord of C, and that there are 120
of these common chords of 9 and C, each of these chords being such that the
tangents of € at its two intersections with the chord meet each other.

The quadrics of the net can be represented, in Hesse’'s manner, by the
points of a plane o; the cones of the net are then represented by the points
of a quintic curve {, without multiple points.! From & 19 until the end of the
paper the work centres round the (1, 1) correspondence between 9 and {; several
features of this correspondence are of course exactly analogous to those of
Hesse’s correspondence between the Jacobian curve of a net of quadric surfaces
and a plane quartic; for example those quadrics of the net which touch an ar-
bitrary solid are represented in ¢ by the points of a contact quartic of the
quintic {, the ten points of contact not lying on a cubic curve; we thus obtain a
system of ! contact quartics of {, any two sets of contacts of two curves of
the system making up the complete intersection of { with a quartic curve. This
system of o* contact quartics is one of 2080 systems all of which have similar
properties and there are, beside these 2080 systems, 2015 systems of contact
quartics of { of a different kind.

There is thus associated with each solid of the [4] in which the net of
quadries lies a contact quartic of {; this contact quartic has special forms when
the solid has special positions. When, for example, the solid joins a point P
of & to its conjugate secant plane the contact quartic breaks up into the tangent
of { at that point which, in the correspondence between ¢ and {, corresponds
to P, and a cubic curve which passes through the remaining three intersections
of this tangent with { and touches { in six other points. When we consider
the solid containing a pair of conjugate trisecants of ¢ it is found that the
associated contact quartic breaks up into a pair of conics; the four intersections
of the two conics all lie on { while each conic is a tritangent conic of {, the

two sets of three contacts corresponding, in the correspondence between 4 and {,

! The existence of the (1, 1) correspondence between the locus of vertices of cones, belonging
to a net of quadrics in [4], and a plane quintic was pointed out by Wiman: Stock. Akad. Bihang
21 (1895), Afd. 1, No. 3.
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to the two sets of three points of & which lie on the two conjugate trisecants.
The configuration of points on  which is associated with a pair of conjugate
trisecants of 9 is studied in §§ 22 et seq, and a form is obtained for the equa-
tion of .

A set of ten points of % which correspond to the ten intersections of {
with a conic is a canonical set on &; it is shown in § 28 that these canonical
sets on & are cut out by quadrics passing through any one of the sets, and
also that all the quadrics which pass through nine of the points of a canonical
set on & also pass through the tenth point of the set. Every canonical set on
& is such that there is a guadric touching 9 at every point of the set; thus

there arises a set of o8

contact quadrics of %.

The quadrics of the net which are represented in ¢ by the points of a
conic have as their envelope a quartic primal on which C is a double curve;
a few properties of such primals are given in §§ 29—33; they are of class 28,
having no bispatial points on (. If the conic touches { the associated quartic
primal has a node at the corresponding point of -%; hence, associated with the
2015 contact conics of {, there are 2015 five-nodal quartic primals; of these 2015
primals g9z are such that their five nodes lie in a solid, such a solid meeting
the primal in a quartic surface with a double twisted cubic. Since the three
intersections of J with any one of its trisecants correspond to three points of
{ which are points of contact of { with a tritangent conic there is a quartic
primal, with C as a double curve, having nodes at the three intersections of %
with any one of its trisecants.

In conclusion a canonical form is obtained for the equations of the qua-
drics of the net.

1. We consider a doubly-infinite linear system, or nef, N say, of quadrics
in [4]. Algebraically, if @,, @, @, are three linearly independent homogeneous
quadratic funections of five variables, such a net is given by an equation

z@ +yQ t2@y=o0,
where x:y:z are varying parameters. Through two points of general position
there passes one and only one quadric of the system. Through an arbitrary
point of [4] there pass o' quadrics of the net; these guadrics have in common
a quartic surface, and such a quartic surface, the base surface of a pencil of

quadrics belonging to N, will be called a cyclide.’ A cyclide contains, in general,

! The term cyclide is already in use for the surface in [3] which is the projection of the
quartic surface of intersection of two quadrics in [4].
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sixteen lines. All the quadrics of N have in common a curve C, the base curve
of N, of order eight and genus five; C is met by any solid in a set of eight
associated points.

Among the quadrics of N there are ' which are cones; the locus of the
vertices of these cones is a curve 9 — the Jacobian curve of the net of quadrics.
Algebraically % is given by the vanishing of all the three-rowed determinants of a
matrix of three rows and five columns, the elements of the matrix being linear
in the five homogeneous coordinates of the space. Hence & is of order ten.'
It will naturally be expected to play a very important part in the geometry of
the net of quadrics. .

If we regard the parameters x:y:z as the homogeneous coordinates of a
point in a plane o then the quadrics of N are represented by the points of o,
and the cones of N must be represented by the points of some plane curve C..
Since the condition that a quadric should be a cone is that its discriminant
should vanish, the left hand side of the equation of { is a symmetrical deter-
minant, of five rows and columns, whose elements are homogeneous linear fune-
tions of x, y, #; thus { is a quintic curve. The two curves ¢ and { are in (1, 1)
correspondence; any point of & is the vertex of a cone of N which is repre-
sented by the corresponding point of {; any point of { represents a cone of N
whose vertex is the corresponding point of . This correspondence, which is
analogous to the (1,1) correspondence established by Hesse between a plane
quartic and a twisted sextic, will be considered in detail later (§§ 19 ef seq), for
the present it will suffice to remark that the two curves ¢ and [ have the same
genus. Since { is in fact without double points it is of genus 6; hence 3 is
also of genus 6.

An arbitrary line of [4] does not lie on a quadric of N; for three condi-
tions must be imposed on a quadric in order that it should contain a line and
the quadrics of N have only freedom 2. But each quadric of N has o?® lines
upon it, so that, of the oo® lines of [4], there are «® which do lie on quadrics
of N; the lines of [4] which lie on quadrics of N therefore form a complex 7.
V may also be defined as the complex of lines which are cut in involution by
the quadrics of N. Moreover, since the two double points of the involution are

* Salmon: Higher Algebra (Dublin, 1885), Lesson 19. The two statements that & is of order
ten and that it is birationally equivalent to a plane quintic also follow easily from the fact that
9 is the locus of points which are common to corresponding solids of five projectively related
doubly-infinite systems.
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conjugate points in regard to every quadric of N, we have a third definition
of V as the complex of lines which join pairs of points that are conjugate in
regard to every quadric of N. The lines of V which pass through any point O
of [4] are those lines which lie on guadrics of N and pass through O; but the
quadrics of N which pass through O form a pencil whose base surface is a cyclide
passing through O, so that, since a line through O lies on a quadric of N if
and only if it is a chord of this cyclide, the lines of ¥V which pass through O
are the chords of the cyclide which pass through O. Since these chords form
a three-dimensional cubic cone V is a cubic complex.

It has been remarked that an arbitrary line of [4] does not lie on a quadric
of N; but if a line meets C only two conditions need be imposed on a quadric
of N in order that it should contain the line, so that the line does lie on a
quadric of N. Hence all the lines which meet C belong to V. A chord of C
lies not merely on one quadric of N but on all the quadrics of N belonging to
a pencil, since a quadric of N only has to satisfy one linear condition in order
that it should contain the line, which already meets it in two fixed points.
Conversely: if a line lies on all the quadriecs of N which belong to a pencil it
must be one of the sixteen lines on the base cyclide of the pencil, and is a
chord of C. In particular the chord may be a tangent of C.

2. The o? polar solids of O in regard to the quadrics of N have a line
in common; since every point of this line is conjugate to O in regard to every
quadric of N we shall speak of the line as the line conjugate to O in regard
to N. There is thus associated with each point of [4], with certain exceptions
to be noted later (§ 5), a conjugate line; these conjugate lines are o* in aggre-
gate and form a system of lines which will be denoted by J. The o® polar
solids of O all pass through the line j conjugate to O and are related to the
quadrics of N in such a way that to each quadric of N there corresponds one
and only one solid through j and that to quadrics of N which belonging to
the same pencil there correspond solids containing the same plane through j,
and conversely; we may therefore say that the o® solids through j are related
projectively to the oo? quadrics of N. Associated with two arbitrary points O
and O are the conjugate lines ; and j'; the solids through j and the solids
through ;' form two doubly-infinite systems which are projectively related to each
other, solids of the two systems corresponding when they are the polar solids of
O and O respectively in regard to the same quadric of N.
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The lines which join a point O to the points of its conjugate line j all
belong to ¥V because each of them is the join of a pair of points which are
conjugate in regard to every quadric of N. The quadrics of N which pass
through O all contain a ceyclide passing through O; the plane which joins O to
J is common to the tangent solids of all these quadrics at O and is the tangent
plane of the cyclide at O.

The line conjugate to a point of C is the line common to the tangent
solids of all the quadrics at this point, and so is the tangent of C at the point.
Thus all the tangents of C belong to J; we have remarked already that they
belong to V. If the point O lies on a tangent of C the polar solids of O in
regard to the quadries of N all pass through the point of contact of the tangent
with C, so that the line conjugate to O must pass through this point. Hence
the lines which are conjugate to the points of a tangent of C all pass through
the point of contact of the tangent with C, forming a cone with vertex at that
point. Hence, since all these lines meet C, they belong not only to J but also
to V. Whence we can identify at once »? of the lines common to J and V,
namely the lines which are conjugate to the points of the surface formed by
the tangents of C.

3. The lines ; conjugate to the points of a line A generate a scroll 4.
Now the polar solid of any point of 1 in regard to a quadric contains the polar
plane of 1 in regard to that quadric; hence the «® polar planes of A in regard
to the ®® quadrics of N all meet all the generators of 4. If we take three
planes which are the polar planes of 1 in regard to three quadries of N which
do not belong to the same pencil, then the three pencils of solids which join
these planes to the generators of .4 are projectively related to each other, each
pencil being related projectively to the range of points on 4. The generators
of 4 may therefore be obtained as the intersections of corresponding solid¢ of
three projectively related pencils, so that® the lines which are conjugate to the
points of a line L generate a cubic scroll A, the polar planes of X in regard to the
quadrics of N betng the planes of the directriz conics of 4. The cubic seroll 4
has a directrix A’; the line conjugate to any point O of A therefore meets ',
say in O". The two points O and O are conjugate in regard to every quadric
of N, so that the line conjugate to O’ passes through O. Whence if the lines
which are conjugate to the points of a line L generate a cubic scroll whose directrix

! Cf. Veronese: Math. Annalen 19 (1882), 229—230.
25—34472. Acta mathematica. 64. Imprimé le 2 novembre 1934.
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is A, them the lines which are conjugate to the points of A’ generate a cubic scroll
whose directrixz is A. There is thus established, by means of the net N, an in-
volutory correspondence between the lines 4 and A’ of [4]. If 1 is a chord of
C then A’ coincides with it, for the line which is conjugate to a point O on a
chord of C meets this chord in the point O' which is ha,rmoniéally conjugate to
O in regard to the two intersections of the chord with C.

1 of its directrix conics, and

Through a general point L of 4 there pass oo
the planes of these conics are the polar planes of 4 in regard to the quadrics
of a pencil belonging to N; one of the planes is that which joins the generator
through L to the directrix A'. Conversely: the polar planes of A in regard to
the quadrics of any pencil belonging to N all pass through the same point L
.of ; so that each pencil of quadrics belonging to N includes a quadric such
that the polar plane of A in regard to it passes through 4. If, however, we
take a point on A’, the o' planes of the directrix conics of .4 passing through
the point are the planes which join A’ to the generators of .4; there is a parti-
cular pencil of quadrics belonging to N which is such that the polar planes of
A in regard to the quadrics of the pencil all pass through i’. Also the polar
planes of 1" in regard to the quadrics of the pencil all pass through 4.

The preceding arguments are not valid if A belongs to J, for then the
polar planes of 4 in regard to the quadrics of IV all pass through that point
to which 1 is conjugate. If j is the line conjugate to a point O the lines which
are conjugate to the points of j are determined as the intersections of cor-
responding solids of three projectively related pencils, but now the planes which
are the bases of the pencils all pass through 0. Hence the lines which are
conjugate to the points of a line of J generate a two-dimensional cubic cone,
the vertex of the cone being the point to which the line of .J is itself conjugate.
There can be no other lines which pass through the vertex of the cone and
belong to J; hence the lines of J which pass through an arbitrary point of [4]
form a two-dimensional cubic cone.

The lines conjugate to the points of a line A, generate a cubic scroll 4,
and the lines conjugate to the points of a line 4, generate a cubic scroll 4,;
A, and 4, have nine common points and the line conjugate to any one of
these points meets both 4, and 4,. Conversely, if a line of J meets both 1,
and A, the point to which it is conjugate lies on both 4, and .4,. Hence
there are nine lines of J meeting two arbitrar}; lines. This is equivalent to the
statement that the lines of J which meet an arbitrary line 4 and which lie in
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- a solid §; passing through 1 form a ruled surface of order nine. The line A
is a triple line on this ruled surface, three generators of the surface passing
through each point of it; for the lines of J which pass through any point of i

form a cubic cone, three of whose generators lie in §S;.

4. Take now an arbitrary plane m; we shall show that the o2 lines j5
which are conjugate to the points of 7 and the o?® lines # which are the polar
lines of = in regard to the quadrics of IV generate the same three dimensional
cubic locus IT. '

Let j be the line conjugate to a point O of = and £ the polar line of =
in regard to a quadric @; the solid j% is the polar solid of O in regard to @.
Corresponding to different points O in = we obtain different solids passing
through £%; to the points O which lie on a line in = there correspond the solids
which contain the polar plane of the line in regard to . Thus we may say
that the solids through £ are related projectively to the points of =. Suppose
now that we take the polar lines, %, &, £ of = in regard to three quadrics
Q, @, @’ which belong to N and which do not all belong to the same pencil;
then the lines j; which are conjugate to the points of = are determined as the
intersections of corresponding solids of three projectively related doubly-infinite
systems, so that they generate a cubic primal II. We know that the lines which
are conjugate to the points of a line A in = generate a cubic scroll 4; hence

* cubic scrolls on IT. Since any two lines in 7 have a

we have a system £ of oo
point of intersection any two scrolls of the system £ have a common generator.

Let j be the line conjugate to a point O of =, and let O' be any point
of j; then the line j° conjugate to O’ passes through O and the solid 7j is the
polar solid of O’ in regard to some quadric @ belonging to N; the polar line
of 7 in regard to ¢ therefore passes through O’. Hence any point of any line
which is conjugate to a point of = lies on the polar line of 7 in regard to some
quadric of N, and therefore the ? polar lines of = in regard to the quadrics
of N generate the same locus IT as do the o? lines which are conjugate to the
points of 7. _

If we take the lines j and j' which are conjugate to two points O and O’
of 7z then the polar solids of O in regard to the quadrics of N .all pass through
J while those of O all pass through j'; if solids through j and ;' correspond to
each other when they are the polar solids of O and O’ respectively in regard to
the same quadric of N then the two systems of solids are projectively related
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to each other. Hence, if we take the lines j, 5/, j/ which are conjugate to
three non-collinear points of =, the polar lines of = in regard to the quadries
of N are determined as the intersections of corresponding solids of three pro-
jectively related doubly-infinite systems. We thus obtain again the primal IT.
It contains two systems of lines; the first system consists of the ? lines j
conjugate to the points of = and the second system consists of the o? lines %
which are the polar lines of = in regard to the quadrics of N. There is a
system M of o«? cubic scrolls associated with this second generation' of II, just
as there was a system & of c? cubic scrolls associated with the first generation;
for the polar lines of = in regard to the quadrics of a pencil generate a cubic
scroll, and there are ®?® pencils of quadrics belonging to the net N. Since any
two pencils of quadrics belonging to the same net have a quadric in common,
any two scrolls of the system I have a common generator.

Since the polar line of a plane in regard to a cone passes through the
vertex of the cone the primal IT contains the curve . Moreover; since a
pencil of quadrics contains five cones each scroll of the system IR meets J in
five points.

We have already mentioned the fact that the line which is conjugate to
a point of C is the tangent of C at the point. Suppose now that the tangent
of C at a point 7 meets sr; then the line conjugate to its point of intersection
with = must pass through 7', so that 7' is an intersection of C and II. Con-
versely, if IT meets C in T the tangent of C at T must meet =, because the
only lines of J which pass through 7 are those which are conjugate to the
points of the tangent of C at T. Hence the tangents of C at its twenty-four
intersections with IT, and only these tangents, meet the plane .

Let p be an intersection of = and II; then through p there passes a line
k which is the polar line of = in regard to some quadric ¢ belonging to N.
The point p is therefore the pole, in regard to @, of some solid passing through
7t; this solid must then be the tangent solid of @ at p, and so meets @ in a
cone  vertex p. Hence & meets ¢ in a line-pair intersecting at p. The cubic
curve in which & meets IT is therefore the locus of points in which = is touched
by quadrics of N, and is the Jacobian curve of the net of conics in which the
quadrics meet 7.

‘The ecubic primal IT has six nodes; its properties are obtained in a paper
by Castelnuovo.® All the cubic scrolls of both systems £ and I pass through

U Atti del R. Istituto venelo (6) § (1887), 1249.
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all the nodes, and each system of scrolls includes six cones, the vertices of the
cones being the nodes of IT. Since the system £ contains six cubic cones whose
vertices are nodes of IT it follows that the lines which are conjugate to the six
nodes of IT lie in . Hence an arbitrary plane contains six lines which belong
to J. Those lines of J which lie in an arbitrary solid §; generate a congruence
of order 3 and class 6. It will be seen in § 6 that all the chords of & belong
to J; hence the ten intersections of §; with ¢ must be singular points of the
congruence, as there are at least nine lines of the congruence of order 3 passing
through any omne of them. .

Any scroll of the system € and any scroll of the system It form the complete
intersection of II with a quadric cone’; hence, since each scroll of the system
M meets F in five points, each scroll of the system & meets & in fifteen points.

The Secant Planes of 9.

5. Take an arbitrary point P of -%; we shall denote the cone of N whose
vertex is at P by (P), and similarly for any other point of ¢. The quadrics of
N which pass through P all have a common tangent solid @ at P and form a
pencil whose base cyclide has a node at P. The five cones which belong to the
pencil consist of three cones (4), (B), (O), whose vertices, 4, B, C lie in @, and
of the cone (P) counted twice. Any line lying in @ and passing through P is
a generator of a quadric of the pencil so that, whereas the lines of 7 which
pass through an arbitrary point of [4] form a cubic cone, if the point lies on &
the cubic cone consists of the cone of IV whose vertex is at the point and of
the lines which pass through the point and lie in the common tangent solid of
all the quadries of N which pass through the vpoint. If a line of V passes
through P and is not a generator of (P) then it must lie in w.

The solid @w meets J in the four points P, 4, B, C and in six other points
X X, X5, X, X, Xg. If X is any one of these last six points the line PX
belongs to ¥V and is therefore cut in involution by the quadrics of N; the two
double points of the involution must be P and X since the line is not a gene-
rator either of (P) or of (X). Hence P and X are conjugate in regdrd to every
quadric of N. The six points X are thus all conjugate to P in regard to évefyr
quadric of N, so that the polar solids of P in regard to the quadrics of N all
pass through the six points X, which must therefore be coplanar. In this Wayr

! Castelnuovo: loc. cit., 1261.



198 W. L. Edge.

we obtain o' planes each of which has six intersections with 9, the planes being
in (1, 1) correspondence with the points of & and therefore forming a family of
genus 6; we shall call them the secant planes of . A point P of 3 s conjugate
not to the points of a line j but to all the points of a secant plane of 9, which may
therefore be called the secant plane conjugate to P. All lines in a secant plane
of 9 belong to J. If the secant plane conjugate to P meets J in a point @
then P and ¢ are conjugate points in regard to every quadric of N and the
secant plane conjugate to ¢ passes through P; hence through each point of 9
there pass six secant planes. :

In general a curve in [4] has only a finite number of planes which meet
it in six points; the curve & is thus exceptional in this respect.

If five poinfs of 9 are the vertices of the five cones which belong to some
pencil of quadrics of N the polar solid of any one of the five points, in regard
to any quadric of the penucil, .is the solid which contains the other four. Hence,
if four points of 4 form, together with the point P of % a set of five points
which are the vertices of the five cones belonging to a pencil of quadrics of N,
the solid containing the four points must pass through the secant plane ¢ which
is conjugate to P. Conversely: any solid passing through ¢ meets % further in
four points not lying in «; these four points are vertices of cones of N which
all belong to the same pencil, the fifth cone of the pencil being (P).

The lines of V passing through an arbitrary point o of [4] form a cubic
cone, so that thirty of them meet J; five of these are generators of cones of
N — they join O to the vertices of the five cones which belong to the pencil of
quadries of N which pass through O. Hence there are twenty-five lines of ¥V
which meet &, pass through O and are not generators of cones of N; the solids
@ associated with the intersections of ¢ with these lines must therefore pass
through O, and they are the only solids & which can do so. Whence there are
twenty-five solids @ passing through an arbitrary point of [4).

6. The secant planes of 9 form a three-dimensional locus on which J is
a sextuple curve and whose section by an arbitrary plane is a curve of genus 6.
The order of this locus is the number of its intersections with an arbitrary line A.
But if O is a point of intersection of A with a secant plane of & the point of
& which is conjugate to this secant plane must lie on the line 7 which is con-
jugate to O; conversely, if the line j which is conjugate to O meets & in a point
P the secant plane conjugate to P must pass through 0. But we have seen
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that the lines which are conjugate to the points of A generate a cubic scroll 4
which meets 9 in fifteen points; hence the secant planes of 9 form a locus Ry*
of order fifteen.

The order of R,' can also be obtained as follows. The points of the curve
&, of order ten, are in (1, 1) correspondence with the secant planes; the solid
joining a point of & to the correspondidg secant plane is a solid @, and there-
fore the solids so obtained, by joining the points of J to the secant planes
which correspond to them, form a singly-infinite family of which there are
twenty-five members passing through an arbitrary point of [4]. Hence, if # is
the order of the locus formed by the secant planes, we have, since no point of
J lies in its conjugate secant plane,

10 + »n == 25;
we therefore again find that the locus is of order fifteen.

Yet a further remark may be made concerning the order of R,'®. A curve
in [4] is usually such that there is only a finite number of planes which meet
it in six points; but there are in general oo! planes which meet the curve in five
points. These o' five-secant planes form a three-dimensional locus M on which
the six-secant planes are sextuple planes. The order of M has been obtained
by Severi. Now in the particular case when the curve has o' six-secant planes
these form a locus which counts six times as part of the locus M, since each
six-secant plane must be regarded as six five-secant planes, each of its six inter-
sections being omitted in turn. Since the secant planes of ¢ form a locus of
order fifteen Severi’s formula should, when applied to a curve of order ten and
genus 6 in (4], give the value ninety, assuming that % has not got a family of
five-secant planes distinet from the six-secant planes we have been discussing;
and, in fact, the value ninety is actually obtained. A

Since any two secant planes of ¢ have a point of intersection there is a
double surface on R,'% the order of this double surface is the number of its
intersections with an arbitrary plane s, these intersections being double points
of the curve in which = meets R,®. But this curve, since it is of order 15 and
genus 6, has 85 double points, so that the double surface of R, is of order 8s.

* Memorie Torino, 51 (1902), 104. The ! planes which meet a curve of order # and genus
p in [4] each in five points generate a locus whose order is

3= ) = aP 1= — Sn=3 = (=3 p+ S (=) p(p=1).

Tn the particular case when n=p+4 this reduces to ;%pg(p—l)(p—z)(p——g,).
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If the secant planes which are conjugate to the two points P and @ of &
intersect in the point £ then, since the polar solids of P in regard to all the
quadrics of N pass through F and the polar solids of @ in regard to all the
quadrics of N also pass through E, the polar solids of E in regard to all the
quadrics of N pass both through P and through @, and therefore through the
line P¢. The line conjugate to £ is therefore P, and all the chords of 9
belong to J. The points of the double surface of R,'® are in (1, 1) correspondence
with the chords of %, and therefore also with the chords of a plane quintiec.

A prime section of R,' is a ruled surface whose double curve is met by
each of its generators in thirteen points; hence every secant plane of ¢ is met
by the other secant planes in the points of a curve of order thirteen. This curve
has quintuple points at each of the six points in which the plane meets J; since

it is of genus 6 it cannot have any other multiple points.

7. The cubic scroll generated by the lines which are conjugate to the
points of a line A which meets 4 in a point P contains as part of itself the
secant plane o which is conjugate to P. The polar planes of 1 in regard to the
quadrics of N all meet ¢ in lines; the pencils of solids whose bases are these
polar planes are projectively related to each other, but now the solids which
join the planes to « all correspond to each other. The locus of lines which are
conjugate to points of 1 is therefore, apart from the plane «, a regulus of which
one line lies in «. But if 4 belongs to J the lines in which e is met by the
polar planes of 2 all pass through the point O of « to which 4 is conjugate;
instead of a regulus we have a quadric cone with vertex O, one generator of
the cone lying in e.

The cubic cone generated by the lines which are conjugate to the points
of a chord P of 4 contains the secant planes ¢ and 8 conjugate to P and Q.
If E is the point of intersection of « and B the polar planes of P@ in regard
to all the quadrics of N pass through E, each of them meeting ¢ and § in lines
through E. The locus of the lines which are conjugate to points of P is,
apart from the planes « and B3, a plane passing through F and meeting both «
and @ in lines through E.

8. Consider now the cubic primal II associated with a plane = which
meets ¢ in a point P. When IT is regarded as the locus of lines which are
conjugate to the points of = it is seen that it contains the secant plane « con-
jugate to P; when it is regarded as the locus of the polar lines of = in regard
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to the quadries of N it is seen that it contains the polar plane ¢ of = in regard
to the cone (P). The polar lines of = in regard to the quadrics of N all meet
o while the lines conjugate to the points of = all meet . When IT is generated
by means of three projectively related mnets of solids through the polar lines
k, ¥, £’ of m in regard to three quadrics of N not belonging to the same pencil
the three solids ak, ¢4’, ak” correspond to each other in the projectivity, being
the polar solids of P in regard to the three quadrics, and have as their inter-
section the plane «. Similarly, when IT is generated by means of three projec-
tively related nets of solids through the lines j, 5/, j/ conjugate to three non-
collinear points of s, the three solids ¢, ¢4, ¢j”, having in common the plane g,
correspond in the projectivity. The point of intersection of « and ¢ is a node
of II, in addition to the six nodes that the primal II in general possesses.

The primal IT thus possesses seven, eight, nine or ten nodes according as
7t meets ¢ in one, two, three or four points'. Suppose, in particular, that s is
a quadrisecant plane of &, meeting it in P;, P,, P;, P, ($ having «? quadrisecant
planes). Then IT is a Segre cubic primal with ten nodes. The polar lines of
7 in regard to the quadrics of N, which generate IT, meet the secant planes
o, oy, 0, o, conjugate to the points P, P, P, P,; the lines conjugate to the
points of =, which also generate II, meet the polar planes ¢, ¢, 05, ¢, of = in
regard to the comes (P,), (Py), (Py), (P). The eight planes lie on II, and it is
known that IT also contains seven further planes. When arranged in the form

0y Oy O3 Oy

Q1 92 03 04

the eight planes form a double-four, each plane meeting in lines the three planes
which are written in the other row and not in the same column; ¢, and g,, for
example, have a line in common because they both lie in the polar solid of P,
in regard to (P,).

None of the six nodes of the primal II which is associated with a plane
7t of general position lies on 3; but if = meets a secant plane ¢ in a line then
this line is ome of the six lines of J which lie in =, and the point of & to
which « is conjugate is one of the nodes of II. In particular: -the primal IT
associated with the plane of intersection of the two solids @ and @  has nodes

! Concerning the cubic primals with seven, eight, nine or ten nodes see Segre: Memorie
Torino (2), 39 (1889), pp. I5 ef seq.

26—34472. Acta mathematica. 64. Imprimé le 2 novembre 1934.
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at the points P and P’ on 9. Since there is one plane in [4] meeting each of
three given planes in lines there is a primal IT with nodes at three arbitrary
points of J.

9. Let us now take the secant plane o which is conjugate to a point P
of 9 and which meets & in the six points' X, X,, X;, X,, X, X,;. The lines
which are conjugate to the points of « all pass through P, as also do the polar
lines of o in regard to all the quadrics of N. These two sets of lines are in
fact the same. For let j be the line through P which is conjugate to the point
O of «; the lines which are conjugate to the points of j other than P generate
a quadric cone whose vertex is O. Let j be the generator of this cone which
is conjugate to any point O’ of j; the solids through ;* are the polar solids of
O in regard to the quadrics of N, so that there is one quadric of N in regard
to which the polar solid of O is the solid containing j/ and «. The polar plane
of 7 in regard to this quadric is therefore ¢ — the intersection of the polar solids
of 0" and P; this is the same as saying that the polar line of « in regard to
the quadric is j. Hence the line j which is conjugate to any point O of « is
the polar line of « in regard to some quadric of N. The converse is also true.

The lines through P which are conjugate to the points of ¢ and are the
polar lines of « in regard to the quadrics of N generate a cubic cone IIp; this
is the cubic primal associated with the secant plane «. It contains ¢ and meets
o in a cubic curve passing through the six points X. The chords of J passing
through P are all generators of IIp; they are conjugate to the points of the
curve of order thirteen and genus 6 in which ¢ is met by the other secant
planes.

Take any three generators of ITp which are the polar lines of « in regard
to three quadrics of N which do not all belong to the same pencil. The polar
solids of any point O of ¢ in regard to the three quadrics pass respectively
through these three lines and meet in the line j conjugate to O. The three
systems of solids passing respectively through the three lines are thus related
collinearly to the system of points of the plane «; there are six sets of three
corresponding solids which meet in planes, and these planes must be the six
secant planes «,, a,, ¢4, @,, @5, ¢z Which pass through P and are conjugate to the
six points X, X,, X, X,, X;, X;. Hence the siz secant planes which pass through
any pownt of I are met by any solid mnot passing through the point in six lines
Jorming one half of a double sz, and so any five of the six secant planes through
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P are such that there is a plane passing through P and meeting them all
in lines.

The cone IIp also contains the planes 3;, 8, 8, 8,, 85, 8 which are the polar
planes of « in regard to the comes (X)), (X,), (X,), (X,), (X;), (X,) whose vertices
lie in «. Since the polar solid of X, in regard to (X)) contains the secant plane
a, conjugate to X, and the polar plane 8y of ¢ in regard to (X,) the two planes
oy and B, meet in a line. Thus the twelve planes

Gy Gy G @y 05 O
Bi B: Bs Bu B5 Be

are met by any solid not passing through P in the twelve lines of a double-six.

The plane 8, being the polar plane of e in regard to (X,), contains X;;
but it cannot contain any point of ¢ other than X, and P. For if the point
Y of & does not coincide either with X, or with P and yet lies in 8, the polar
solid of Y in regard to (X;) must contain both « and the secant plane conjugate
to Y, which therefore meets ¢ in a line. But, if « is a general secant plane
of &, there are no other secant planes meeting it in lines. Hence we have the
following: each set of five of the six secant planes through a point P of F s such
that there is a plane which meets every plane of the set in a line through P; this
plane meets 9 in one point other than P, and this point s the point of 9 which s
conjugate to the sixth secant plane through P. We thus have a method of obtaining
the point of J which is conjugate to a given secant plane, and there are six
ways of passing from a given secant plane to the point to which it is con-
jugate.

In addition to the planes « and g the cone IIp contains fifteen further
planes y; the solid -8, where r and s are different, meets ITp in the two planes
o, and @ and in a third plane y,;. The plane y,; must meet 9 in three points
other than P, since a solid meets & in ten points altogether; thus the planes
yrs are fifteen of the quadrisecant planes of J which pass through P. The pro-
jection of & from P on to a solid is a curve of order nine and genus 6 lying
on a cubic surface. There is a doublesix on the cubic surface such that the
lines of one half of the double-six each meet the curve in five points while the
lines of the other half of the double-six each meet the curve in one point; the
remaining fifteen lines of the surface are trisecants of the curve. The trisecants

of a curve of order nine and genus 6 in (3] form a ruled surface of order se-
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venty'; since fifteen trisecants pass through any point of the curve the curve is
of multiplicity fifteen on the ruled surface. The ruled surface meets the cubic
surface on which the curve lies in a curve of order 210; this is made up of the
curve of order nine itself, counted fifteen times, of the six lines which meet the
curve in five points, each counted ten times, and of the fifteen trisecants of the

curve which lie on the cubic surface.

The Trisecants of 9.

10. We now suppose that there are two points P and ¢ of 3 such that
the secant planes ¢ and 8 which are conjugate to them meet in a line. The
polar solids of P in regard to the quadrics of N all pass through «; any one
of them — in particular «f — is the polar solid of P in regard to all the
quadrics of a pencil. Similarly «g is the polar solid of @ in regard to all the
quadrics of a second pencil. Hence, since any two pencils of quadrics which
belong to N have a quadric in common, there is a quadric of N in regard to
which «f is the polar solid both of P and of ¢, and therefore of every point
of the line P¢. This quadric can only be a cone whose vertex is the intersection
R of the line P with the solid «B; PQR s a trisecant of 9. The point R is
conjugate to a secant plane y. The polar solids of @ and R in regard to (P)
are, since ¢ and R are collinear with the vertex of (P), the same solid; this
solid contains the secant planes 8 and y which are conjugate to ¢ and R and
passes through P. Similarly the polar solid both of R and P in regard to (@)
contains ¥ and ¢ and passes through . The plane y is therefore the intersection
of the two solids P8 and e, and so passes through the line of intersection of
¢ and 8. Hence the supposition that two secant planes of F intersect in a line
leads to the conclusion that the points to which the secant planes are conjugate lie
on a trisecant of &, and that the secant plane which is conjugate to the third inter-
section of the trisecant with 9 passes through the line of intersection of the other two.

The solid containing any two of these three secant planes contains one of
the three points P, @, B and therefore nine, and only nine, further points of J.
It follows that the line of intersection of the three secant planes must also be a

tresecant of F, meeting in three points U, V, W; each of the secant planes

! The order of the scroll of trisecants of a curve of order # and genus p, without multiple

points, in [3] is é(n—l)(n—z) (n—3)—(m—2)p.
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@, 8, y meets & in U, ¥V, W and three other points. Since the secant planes
conjugate to P, ¢, R all pass through U, V and W the secant planes conjugate
to U, ¥V, W all pass through P, @, and R. We have a pair of trisecants, PQR
and UV W, of 4; the three secant planes conjugate to the three points on either
trisecant all pass through the other trisecant.

There is a pencil of quadrics belonging to N which contains the two cones
(P) and (@); we may denote the pencil by (P @), with similar symbols to denote
other pencils. Since ef is the polar solid of @ in regard to all the quadrics of
(QR), and ey is the polar solid of R in regard to the same quadrics, the plane
« is the polar plane of the line QR in regard to all the quadrics of (QR) and
therefore contains the vertices of the three cones, other than (§) and (R), which
belong to the pencil. Hence, apart from the three points U, ¥V, W, the plane
a meets & in the vertices of the three cones, other than (§) and (R), which
belong to (QR). Similarly # meets < in the vertices of the three comes, other
than (R) and (P), which belong to (RP) and y meets & in the vertices of the
three cones, other than (P) and (@), which belong to (PQ). There are similar
statements concerning the intersections of & with the three secant planes d, ¢, 7
which pass through the trisecant PQR and are conjugate to the points
uv,w.

The line which is conjugate to any point of PQR is the line of inter-
section of the polar solids of the point in regard to (P), (@) and (R); hence the
line UV W 4s conjugate to every point of PQR. Similarly the line PQR is con-
Jugate to every point of UV W. We may call PQR and UV W conjugate trise-
cants of 3.

The configuration of two conjugate trisecants of & and of six secant planes,
three of which pass through each trisecant, has been constructed from a pair of
secant planes with a line of intersection. It could also have been constructed
by assuming the existence of a trisecant of 4. For, if PQR is a trisecant of
%, the polar solids of P and ¢ irfregard to (R) are the same solid; this solid
passes through R and contains the secant planes « and § conjugate to P and @,
and so these two secant planes have a line of intersection. ‘

The curve & is known to have twenty trisecants!; these are therefore made

up of ten pairs of conjugate trisecants. We have thus ten configurations, such

! The number of trisecants of a curve of order » and genus p in [4] is

£ (n=2)(n—3)(n—4)— (1—4)p.
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as the above, of two trisecants and six secant planes conjugate to the inter-
sections of the two trisecants with 3. '

The existence of these ten configurations may be suspected on other grounds.
It has been shown that the secant planes of 9 generate a locus R,'%; the secant
planes are therefore dual to the generators of a ruled surface of order fifteen
and genus 6. Such a ruled surface has, in general, sixty double points!; it is
therefore to be expected that there are sixty pairs of secant planes of - which
have a line of intersection. But we have shown that any line which lies in a
pair of secant planes of % lies also in a third secant plane, so that there are
three pairs of secant planes passing through the line. We therefore expect that
there are twenty lines through each of which there pass three secant planes of
J, and this is actually what does happen. Again: consider the ruled surface
which is a prime section of R;'® and, in particular, the number of its triple
points. An arbitrary solid meets R,'® in a ruled surface of order fifteen and
genus 6; such a ruled surface has, in general, 220 triple points®. But the ruled
surface has sextuple points at the ten intersections of the solid with J; reckoning
each sextuple point as ®C;==20 ftriple points we account in this way for zo0
of the triple points of the ruled surface. The remaining twenty triple points,
which are not accounted for by the intersections of the solid with &, are the
intersections of the solid with the twenty trisecants of %; each of these points
is a triple point of the ruled surface because each trisecant of 9 is common to
three secant planes.

11. Let us denote by = the solid which contains the two conjugate trise-
cants PQR and UV W,; there are four points X, Y, Z, T of &, other than its
six intersections with the two trisecants, which lie in =, let 4, u, v, ¢ be the four
lines which meet both PQR and U V W and pass respectively through X, Y, Z, T.
Since each point of PQR is conjugate to each point of UV W in regard to
every quadric of N a line which meets both PQR and UV W belongs to V;
the quadrics of N cut the line in the pairs of points of an involution whose
two double points are the intersections of the line with PQR and UV W. 1In
particular the line A belongs to ¥ and, since the involution cut out on A by the

1
! A ruled surface of order » and genus p-in [4] has, in general, 5(%—2) (n—3)—3p double
points.
I, .
% A ruled surface of order n and genus p in [3] has, in general, g(n—z)(n—3)(n—-4)—

— (n—4)p triple points.
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quadrics of N cannot have more than two double points, the cone (X) must
contain A; (X) is that quadric of N of which 1 is a generator. Moreover: the
tangent solids, at the intersection of 4 and PQR, to all the quadrics of N which
pass through the point all contain the plane joining the point to UV W while
the tangent solids, at the intersection of 4 and UV W, to all the quadries of N
passing through this point all contain the plane joining the point to PQR.
But the tangent solids of (X) at the intersections of A with PQR and UV W
are the same solid. Hence the tangent solid of (X) along A is =, which therefore
meets X in a pair of planes through A. Similarly (Y) is met by X in a pair of
planes through g, (Z) in a pair of planes through » and (7') in a pair of planes
through ¢. The net of quadric surfaces in which the quadrics of N are met
by = includes four plane-pairs. )

Since the tangent solids of (¥) at all the points of u contain A, the polar
solid of any point of 1 in regard to (Y) contains the line g and so meets I in
a plane through g. The line which is conjugate to this point of 1 therefore
meets p and, similarly, it also meets » and ¢. Hence the regulus which is gene-
rated by the lines conjugate to the points of 1 (apart from the secant plane
conjugate to X) congists of the transversals of the three lines u, 7, 9. Similarly
the lines conjugate to the points of u generate a regulus and meet the lines
v, 0, 4; and similarly for the lines conjugate to the points of » or o.

12. Consider now the cubic primal IT associated with a plane = which
contains a trisecant PQR of 4. II must contain the secant planes «, 3, y which
are conjugate to P, ¢, R; hence an arbitrary solid meets IT in a cubic surface
on which there are three concurrent non-coplanar lines, the point of concurrence
of the lines being the intersection of the solid with that trisecant UV W of &
which is conjugate to PQR; this point must be a node on the cubic surface.
Hence UV W is a double line on IT. Since the polar plane of PQR in regard
to any quadric of N passes through U ¥V W, the polar lines of = in regard to
the quadrics of NV all meet UV W, these lines generate I1. We can also gene-
rate IT by means of three projectively related nets of solids, the bases of the
nets being the polar lines %, %y, £; of = in regard to any three quadries of N
not belonging to the same pencil; solids belonging to the three nets correspond
when they are the polar solids of the same point O of = in regard to the three
quadrics, and the line of intersection of three corresponding solids is the line j
conjugate to 0. Since the polar solids of all points of PQR in regard to all
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the quadrics of N contain UV W the relation between the three nets of solids
is such that the three planes which join the lines %,, k,, &5 to UV W correspond
to each other in the projectivity. IT has three nodes which do not lie on UV W?,
the three lines conjugate to these nodes are the only lines, other than PQR,
which belong to J and lie in =. II also contains o), 6,, 0;, the polar planes of
7 in regard to (P), (§), (R) respectively; o, lies in the solid 8y, o, in the solid
ye and o, in the solid «f. The lines conjugate to the points of 7 all meet the
three planes gy, 0,, 0;. v

If = joins the trisecant PQR to a further point § of J then it contains,
in addition to the planes enumerated above, the polar plane ¢ of = in regard to
(S) and the secant plane s conjugate to §. The polar lines of = in regard to
the quadrics of N all meet UV W and s, and II has four nodes which do not
lie on its double line U V' W, these four nodes all lying in the plane s.

13. The pole of a solid S; in regard to a quadric is the intersection of
the polar solids of any four non-coplanar points of S; in regard to that quadric.
Take then the four lines which are conjugate, in regard to N, to four non-
coplanar points of 'S;; if the solids through these respective lines correspond to
each other when they are the polar solids of the four points of S; in regard to
the same quadric of N, the four doubly-infinite systems of solids are related
projectively to each other. Hence the surface which is the locus of poles of S,
in regard to the quadrics of NV is generated by the intersections of corresponding
solids of four projectively related doubly-infinite systems. It is therefore® a sextic
surface F,% whose prime sections are of genus 3. This surface must contain
the vertices of all the cones belonging to N, so that it contains the curve 9.
There are ten lines on F.,° these being the polar lines of §; in regard to the
cones of N whose vertices are the ten intersections of S; with . The twisted
sextic of genus 3 in which S, meets F,° is the locus of points in which §; is
touched by quadrics of N, and is the Jacobian curve of the net of quadric sur-
faces in which the quadrics of N meet S;. _

Let j be the line which is conjugate to the point O of §;. The lines which
are conjugate to the points of j form a cubic cone whose vertex is O and of
which three generators lie in &, the points to which these three generators are
conjugate lie on j and are the poles of S; in regard to quadrics of N; hence

! Cf. Segre: Memorie Torino (2), 39 (1889), 31.
? Cf. Veronese: loc. cit., 232.
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the lines which are conjugate to the points of Sy are trisecants of Fy®. Conversely,
let ¢ be a trisecant of F,°. The lines conjugate to its three intersections with
F,® are generators of a cubic scroll and all lie in S;; hence they must be con-
current and the cubic scroll a cubic cone, { being conjugate to the vertex of
the cone. The trisecants of F,° all belong to J. Through an arbitrary point of
[4] there passes ome trisecant of F,® because the line conjugate to the point
meets S, in one point. Through a point of F,® itself there pass «! of its
trisecants, generating a cubic cone; they are the lines which are conjugate to
the points of that line of S; which is conjugate to the point of Fy°. .

We have seen that the lines of J which lie in §; form a congruence K
of order three and class six. If a line of J lies in S; the point to which it is
conjugate lies on F,°, and conversely. Hence we have a representation® of the
lines of the congruence K by means of the points of the surface F,%; the three
lines of the congruence which pass through a point O of §; are represented by
the three points of F,® on the trisecant j which is conjugate to 0. A point P
which is an intersection of & with S, is a singular point of K; for all the chords
of ¢ belong to J, so that there are at least nine lines of K passing through P,
namely those lines which join P to the other intersections of S; with &%; hence
there must be <! lines of K passing through P. There are in fact «? lines
of J pasgsing through P, these being the generators of the cubic cone Ilp asso-
ciated with the secant plane conjugate to P; S; meets ITp in an elliptic cubic
cone whose ! generators all belong to K. Bach intersection of S, with & is
thus the vertex of an elliptic cubic cone of lines belonging to K, and K has
therefore ten of these singular points. The points of F,® which represent the
lines of K passing through P must all lie in the secant plane conjugate to P;
in fact this secant plane meets F,° in a cubic curve, for if j is any line in the
secant plane the lines conjugate to the points of j form a cubic cone whose
vertex is P, three of whose generators lie in §;, so that 7 has three intersections
with F,5. Hence corresponding to the ten singular points of K there are ten
plane cubics on I,°.

Suppose P and @ are two intersections of S§; with %; then the secant plane
conjugate to P and the polar line of S, in regard to (@) both lie in the polar
solid of P in regard to (), and therefore meet each other. Thus we see that
the secant planes conjugate to the ten intersections of 9 with S; and the polar

1 Cf. Fano: Memorie Torino (2), 51 (1902), 70; Semple: Proc. London Math. Soc. (2), 35
(1933), 319.
27—34472. Acta mathematica. 64. Imprimé le 2 novembre 1934.
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lines of §; in regard to the cones whose vertices are at these ten intersections
form a double-ten of lines and planes in [4]. This is in accordance with the
well-known property of the ten lines and the planes of the ten cubic curves on

a determinantal sextic surface in [4].

14. The curve of intersection of S; and F,°, or the locus of points in
which S§; is touched by quadrics of N, will have special forms when S; has
special positions.

Suppose S; is the solid w associated with the point P of $; every quadric
of N which passes through P touches w at P. The three cones (4), (B), (O)
touch w along the lines P4, PB, PC respectively and meet @ in plane pairs
intersecting in these lines. The sextic curve in which @ meets the surface which
is the locus of poles of @ in regard to quadrics of N consists of the lines PA,
PB, PC and a cubic curve. This cubic curve lies in the secant plane o« con-
jugate to P, passing through the six points in which ¢ meets 9 and also through
the three intersections of « with PA, PB, P(C; the curve is in fact the inter-
section of « with the cubic cone IIp. Those quadrics of N which touch w at
points other than P do so at points of .

If S; is the solid = containing two conjugate trisecants, PQR and UV W,
of ¥, the sextic curve which is the locus of points in which §; is touched by
quadrics of N consists of the six lines PQR, UV W, A, u, », 0.

It is to be expected that the surface F,® associated with a solid & should
have a singularity at P; this singularity can be investigated by means of the
method of generating F,*. We take four non.coplanar points of @, three of
which are situated in the secant plane «; the lines conjugate to the last three
points all pass through P. Then we find that F,° lies on the cubic cone ITr and
has a triple point at P, the tangent cone at P of F,® being the cubic cone which
is generated by the polar lines of ¢ in regard to the quadrics of N which pass
through P. The generators of this cubic cone meet F,% each in four points at
P, and four of them lie entirely on the surface; these four lines are PA, PB,
P(C — the polar lines of ¢ in regard to the three cones (4), (B), (C) which pass
through P — and the polar line of « in regard to (P).

15. Since there are «?® solids which pass through an arbitrary point O of
[4] there are 3 sextic surfaces which have the line j conjugate to O as a trise-
cant. In fact there is just one sextic surface passing through three arbitrary
points on any line of J, for the lines which are conjugate to the points of this
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line of J generate a cubic cone, and any three generators of this cone deter-
mine a solid 8.

It follows immediately, from the definitions of F,* and IT, that the surface
F,% lies on all the oo® cubic primals IT associated with the o?® planes of S,.
Since any two solids have a plane of intersection in which there lie six lines
of J, any two surfaces F,® lie on a cubic primal II, the surfaces having in
common the curve 4 and the six nodes of II. The cubic primals IT, and II,
associated with the planes 7z; and 7z, of S, intersect in F,® and the cubic scroll
A associated with the line A in which =, and =, meet; the primals associated
with the planes which pass through 4 and lie in 9; form a pencil, the primal
of the pencil which passes through an arbitrary point O of [4] being associated
with the plane which joins 1 to the point of intersection of S, with the line
conjugate to O. Ten of the primals belonging to this pencil are seven-nodal,
they are associated with the planes which join 4 to the ten intersections of S,
and <. The primals IT which are associated with all the planes of [4] passing
through 4 all contain the cubic scroll 4 and form a net; the primal of the net
which passes through two arbitrary points O and O’ of [4] is associated with the
plane which passes through A and meets the lines conjugate to O and O’. Since
there are thirty chords of % which meet 4 there are thirty eight-nodal primals
IT belonging to the net.

16. The lines which are conjugate to the points of a curve generate a
ruled surface whose genus is equal to that of the curve. The number of points
in which the ruled surface is met by an arbitrary plane 7z is equal to the number
of points in which the curve is met by the cubic primal IT associated with 7;
hence the order of the ruled surface is three times the order of the curve. The
order of the ruled surface will however be reduced by one for each intersection
the curve may have with §. If a line of J should be a chord of the curve
then the point to which it is conjugate is a double point of the ruled surface.
In particular: the lines which are conjugate to the points of a conic y generate
a rational sextic scroll I,.. I3,% lies on the cubic primal IT associated with the
plane 7 in which y lies; there are two generators of I, belonging to each cubic
scroll of the system & on IT, and the six nodes of IT are double points of 1}6.

The lines which are conjugate to the points of a surface generate a primal,;
the number of intersections of the primal with an arbitrary line 4 is equal to
the number of intersections of the surface with the associated cubic scroll .4;
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hence the order of the primal is three times the order of the surface. In par-
ticular: the lines conjugate to the points of a quadric surface & generate a sextic
primal Z. The lines conjugate to the points of a generator of & form a cubic
scroll on &; hence there are two singly-infinite families of cubic scrolls on 5,
any two scrolls of different families having a generator in common. There are

% sextic scrolls I',% on 5 corresponding to the o® conics y on &; any two

also oo
of these sextic scrolls have two common generators, and each sextic scroll has
six nodes. The quadric surface & lies in a solid Sz, the locus of whose poles
in regard to the quadrics of N is a surface F,%; the lines on 5 which are con-
jugate to the points of & are all trisecants of F,*. Moreover the line conjugate
to any point of F,® lies in S, and meets § in two points; the lines conjugate
to these two points both pass through the point of F,°, so that F,® is a double
surface on 5.

The above reasoning seems to indicate that the lines conjugate to the points
of F,%, which we know all lie in the solid §,;, generate a primal of order 18.
But when it is remembered that IF,° contains 9 it is seen at once that the
primal R, forms part of this primal of order 18; the residual cubic primal is
the solid S, counted three times, since through each point of S; there pass lines
conjugate to three different points of F,°. The curve & is a multiple curve on
ény primal which is the locus of lines which are conjugate to the points of a
surface, the order of its mﬁltiplicity being, in general, equal to the order of the
surface; for any secant plane of 9 meets the surface in #» points, where » is
its order, and the lines conjugate to these % points all pass through that point
of & to which the secant plane is conjugate. If however a surface of order =
containg % the lines conjugate to the points of the surface generate, apart from
the locus R,'5, a primal of order 3»— 15 on which & is a curve of multiplicity
n— 6. There are similar statements concerned with surfaces on which J is a
multiple curve. Of the «* chords of a surface «? will belong to J; thus there
is, on the primal generated by the lines conjugate to the points of the surface,
a double surface.

The ruled surface in which R,;'® is met by an arbitrary solid is of order
fifteen and genus 6; hence it has, on its double curve, 50 pinch-points.’ = There
is therefore, on the double surface of R,'%, a pinch-curve of order 5o0; this curve

is the locus of intersection of pairs of 'consecutive’ secant planes, and the line

! The number of pinch points on the double curve of a ruled surface of order n and genus
p in [3] is, in general, 2(n + 2p —2).
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conjugate to any point of the pinch-curve is a tangent of J. Since the tangents
of 9 form a ruled surface of order 30, and since the lines which are conjugate
to the points of a curve of order 5o generate a ruled surface of order 150—7,
where ¢ is the number of intersections (if any) of the curve with -9, it follows
that the pinch-curve must meet % in 120 points. We should expect the two
curves to have a finite number of intersections since they both lie on the double
surface of R,*®. If G is an intersection of ¢ and the pinch-curve two of the six
secant planes which pass through G coincide; hence the secant plane conjugate
to G must meet ¢ in six points two of which coincide, or, in other words, it must
contain a tangent of 4. Of the o' secant planes of 3 there are 120 which touch 9.

17. Bach cone of N has two singly-infinite systems of generating planes,
and every plane which lies on a cone of N must be a quadrisecant plane of C
because the quadrics of the net N meet the plane in the conics of a pencel
whose four base points must be points of C. Conversely, every quadrisecant
plane of C lies on a quadric of N; hence this quadric must be a cone, and so
every quadrisecant plane of C meets ¢. The ®»® guadrisecant planes of C are
exactly the same system of planes as the generating planes of the cones of N.

‘When the curve (' is projected from a point of % on to a solid it becomes
a curve, of order eight and genus 5, which lies on a quadric surface and meets
every generator of that surface, of either system, in four points. Hence the
curve must have four double points?, so that through each point of & there pass
Jour chords of C. When C is projected from an arbitrary line on to a plane it
becomes a plane octavic of genus 5, and therefore has sixteen nodes; when it
is projected from a line which meets it in one point it becomes a plane septimic
of genus 5, and therefore has ten nodes. Hence the chords of C form a primal
M5, of order sixteen, on which C is a sextuple curve and 9 is a quadruple curve.
Every chord of C is met by five other chords, apart from those which pass
through its intersections with C; there is thus a double surface on M, Tt
can be shown? that this double surface is of order 6o.

! If a curve on a quadric surface in [3] meets all the generators of one system in & points
and all the generators of the other system in B points, its genus is (@ — 1){(#—1)—d, where d is
the number of its double points. This is easily seen by projecting the curve from a point of the
quadrie into a plane curve.

*If a point of C and a point of a general plane section €’ of M,*® correspond when the
line joining them is a chord of C, the correspondence is a (2, 7) correspondence, having 144 branch
points on C and 24 on ¢’. Then Zeuthen's formula shows that C’ is of genus 45 and so, being
a plane curve of order 16, it must have 60 double points.
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Since C is of order eight and the secant planes of & form a locus Ry
there are 120 secant planes of ¢ which meet C. Suppose that the secant plane
«, conjugate to the point P of &, meets C in a point H. The line conjugate
to H is the tangent of C at H; since it is conjugate to a point of « it passes
through P. Hence there are 120 tangents of C which meet J; their points of
contact with C are the intersections of C with secant planes of ¢ and their
intersections with - are the points to which these secant planes are conjugate.
We have seen that there are ! chords of C which meet J; we should then ex-
pect there to be a finite number of tangents of C among them.

Suppose now that the chord T, T, of & meets C; since it is a generator
both of (7,) and (T,) it lies on the cyclide which is the base surface of the
pencil (7, T,), and so meets C in two points. Hence every chord of 9 which meets
C is a chord of C. Let T,T, meet C in I and J. The tangent solid of (7))
.along the chord contains the tangents of ¢ at I and J, while the tangent solid
of (7,) along the chord also contains these two tangents of C; hence the tan-
gents of C at I and J lie in the plane of intersection of the two solids. That
the tangents of C at I and J are coplanar also follows from § 7; for these two '
tangents are the lines conjugate to I and .J, and the lines conjugate to the
points of 7,7, all pass through the point of intersection of the secant planes
conjugate to T, and T;. When 4 is projected from an arbitrary line on to a
plane it becomes a plane decimic of genus 6, having thirty double points; hence
the chords of & form a locus M,*° of order thirty. This locus must meet C in
240 points, so that there are 120 chords of & which are also chords of C. Inci-
dentally we have found 120 bitangent planes of C, and these are in fact the
only bitangent planes that C possesses.! The 120 chords IJ are on the double
surface of IM/,'°.

The line T, T, lies on all the quadrics of the pencil to which (7)) and (Z})
belong; the five cones which belong to this pencil consist of the cones (7)) and
(T,), each counted twice, and of one other cone. Let 7' be the vertex of this
last cone. Then 7 must lie in the bitangent plane of C, for it lies both in
the polar solid of 7, in regard to (7,) and in the polar solid of 7; in regard
to (T,); these two solids are the tangent solids of (T,) and (7)) respectively along
the line 7,T,, and we have seen that their plane of intersection is the bitangent
plane of . The cone (7) contains the plane I'T,7,. The conics in which the
quadrics of N meet any bitangent plane of € do not form a net of conics, but

1 Cf. Richmond: Proc. Camb. Phil. Soc. 28 (1932), 175—06.
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a pencil of conics having double contact; it therefore follows that there must
be a quadric of N which contains the plane and this quadrie, since it contains

a plane, must be a cone with its vertex in the plane.

18. If a plane & meets  in two points the line joining these points lies
on the cubic primal IT associated with . Suppose now that we take sz to be
a quadrisecant plane of C; then the cubic primal II must contain the plane =.
Moreover, since & meets % in a point P, IT is seven-nodal. TLet O, O,, O; be
the diagonal points of the quadrangle formed by the four intersections of =
with (; then the lines which are conjugate to the points O,, Oy, O; are 0,0,
0,0,, 0,0, respectively. Hence, since O, is an intersection of lines which are
conjugate to two different points of =, it must be a node of IT; thus Oy, O,, O,
are three of the seven nodes of If. There is also a fourth node of IT lying
in 7, namely the intersection of = with the secant plane conjugate to P. The
plane « lies on the cone (P), so that every line in 7 belongs to 7. The three
points 0, 0,, O, are on the double surface of ;% and the lines which are con-
jugate to them belong not only to J but also to V. '

3

Of the o* lines belonging to J there must be «? which belong also to
the complex V. Since the lines of J which pass through an arbitrary point O
of [4] form a two-dimensional cubic cone and the lines of ¥V which pass through
O form a three-dimensional cubic cone, there are nine lines common to J and V
passing through an arbitrary point O. If j is the line conjugate to O then there
are nine points of j such that their conjugate lines belong to V. In fact if A4
is an arbitrary line of [4], not necessarily belonging to J, there are nine points
of 4 whose conjugate lines belong to V; for the lines conjugate to the points
of A generate a cubic scroll 4, and there are nine generators of .4 belonging
to the cubic complex V. It follows that the points of [4] whose conjugate lines
belong to V jform a primal W,° of order mine. We have seen that the primal
contains the double surface of M,'®; any point which is the intersection of two
chords of C lies on W,’. We also saw previously, in § 2, that W,® contains
the surface (of order twenty-four) formed by the tangents of C; the complete
intersection of W,? and M,'® consists of the double surface (of order 60) counted
twice and of the surface formed by the tangents of . If a line meets J then
the lines which are conjugate to the points of it generate, apart from a secant
plane of &, a regulus; there are six lines of this regulus belonging to the cubic
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‘complex ¥, so that the line has only six intersections with W,? apart from its
intersection with &. Hence 9 is a triple curve on W,°.

Take a point O, and the line which is conjugate to it, and assume that
this line belongs to V; then the line is cut in involution by the quadrics of N.
Let O, and O; be the double points of the involution. The line conjugate to O,
passes both through O; and O,, and is therefore O;0,; similarly the line conju-
gate to O; is 0,0,. We thus have a triangle 0, 0,0, whose sides belong both to
J and to V; 0;0,, for example, belongs to V because O; and O; are conjugate
in regard to every quadric of N. We thus see that there is an involution of
triads of points on W3° a general point of W,® belonging to one and only one
triad. The quadrics of N meet the plane of a triad of points O,, 0., Oy in the
net of conics for which 0,0,0, is a selfconjugate triangle. The three sides of
this triangle make wup the intersection of the plane with its associated cubic
primal, and the vertices of the triangle are three of the six nodes of the primal.

The Birational Correspondence between ¢ and a Plane Quintic.

19. Just as Hesse® represented the members of a net of quadric surfaces in
[3] by the points of a plane, so we may represent the quadrics x €, +y @, +2 Q=0
of the net N in [4] by the points (x, y, #) of a plane ¢. The cones of N are
then represented by the points of a plane quintic enrve { without double points?2,
the left-hand side of the equation of { being a symmetrical determinant, of five
rows and columns, whose elements are homogeneous linear functions of the co-
ordinates of the representative point in ¢. There is thus established a (1, 1)
correspondence between the two curves & and £; any point of & is the vertex
of a cone of N which is represented in ¢ by the corresponding point of {, while
any point of [ represents a cone of N whose vertex is at the corresponding
point of 3.

Those quadriecs of N which are inpolar to an arbitrary quadric @ of [4]
are represented in ¢ by the points of a quartic curve, because the condition that
a quadric should be inpolar to @ is of the fourth degree in the coefficients of
its point equation. Since ¢ is outpolar to any cone whose vertex lies on it the
twenty intersections of @ and & correspond, in the (1, 1) correspondence between
9 and §, to the twenty intersections of { with the quartic curve. Conversely:

Y Journal fiir Math., 49 (1855), 279—332; Gesammelte Werke, 345.
? Cf. W. P. Milne: Journal London Math. Soc., 2 (1927), 8o.
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the points of a quartic curve in ¢ represent quadrics of N which are all inpolar
to the same quadric ¢. For suppose we take fourteen points of the quartic
curve; since there is a unique quadric outpolar to fourteen quadrics in [4], the
tangential equations of these fourteen quadrics being supposed to be linearly
independent, these fourteen points represent quadrics of N which are all inpolar
to a unique quadric ; the quartic curve in ¢ which represents ‘all the quadrics
of N which are inpolar to @ is the quartic curve from which we started, since
it has fourteen points in common with it, and there is only one quartic curve
passing through fourteen points of general position in a plane. The «* quadrics
of [4] are thus associated with the oo'* quartic curves of ¢. In the particular
case when ¢ belongs to NN the associated quartic curve in ¢ is the first polar,
in regard to {, of the point O of ¢ which represents @. For if @, which is
now supposed to belong to N, meets & in a point P, the cone (P) counts twice
among the five cones of the pencil to which @ and (P) belong; whence, if the
quartic curve associated with @ meets { in a point p the line Op touches { at p.
Hence the twenty intersections of the quartic curve with { are the points of
contact of { with its twenty tangents passing through O, so that the guartic
curve is the first polar of O in regard to .

In order that a quadric § should be inpolar to a pair of solids it is ne-
cessary and sufficient that the two solids should be conjugate (i.e. that each
solid should contain the pole of the other) in regard to @. Hence those quadrics
of N in regard to which two given solids are conjugate are represented in ¢ by
the points of a quartic curve, the twenty intersections of the quartic curve with
{ corresponding to the intersections of the two solids with 4. When the two
solids coincide we have the following fundamental result: those quadrics of N
which touch a solid Sy are represented in ¢ by the points of a quartic curve & which
touches { at each of the ten points corresponding to the ten intersections of 3 with S,.
There is thus associated with each solid of [4] a contact quartic of £, and the co*

4

solids of [4] give rise to a system $ of oo* contact quartics of {. The system $
is such that the two sets of contacts of any two of its members with { make
up the complete intersection of [ with a quartic curve; if d is the contact quartic
associated with S, and ¢ that associated with S, the ten contacts of ¢ and
the ten contacts of ¢’ all lie on that quartic curve whose points represent the
quadrics of N in regard to which S; and S3 are conjugate. Conversely: let ¢
be any contact quartic of the system $; then, if any quartic curve is taken

which passes through the ten contacts of d with { its ten remaining intersec-

28—34472. Acta mathematica. 64. Imprimé le 2 novembre 1934.
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tions with [ are the points of contact of another contact quartic d’, also be-
longing to $. For the points of the quartic curve through the ten contacts of
0 and  represent quadrics of N which are all inpolar to some quadric ¢, and
ten of the intersections of ¢ and ¢ are the intersections of & with §,, the
solid associated with J. Hence, since ten of the intersections of ¢ and 9 lie
in a solid §;, ¢ must be a pair of solids, and its ten remaining intersections
with ¢ must lie in a solid §,, the intersections of S; and 9 not lying, in gene-
ral, on a quadric surface. This solid §; is associated with the contact quartic ¢’

The points of contact of S, with those quadrics of N which touch it lie
on the sextic curve in which S; meets F,% the surface which is the locus of
the poles of S, in regard to the quadrics of N; this sextic curve is of genus 3
if S, is of general position. The quadrics of N meet S; in a net of quadric
surfaces whose base points are the eight intersections of S, with C; the ver-
tices of the cones belonging to this net of quadric surfaces are the points of
the sextic curve in which S§; meets F,°. The points of this sextic curve are
thus in (1, 1) correspondence, exactly ¢n Hesse’s manner, with the points of the
coutact quartic d.

If S; meets a quadric of IV in a plane-pair the point of ¢ which repre-
sents this quadric must be a double point of 0 because a plane-pair counts for
two among the four cones of any pencil of quadric surfaces to which it belongs.
Moreover, since a quadric of [4] cannot contain a plane unless it be a cone, this
double point of d must be on {; instead of having an ordinary contact with {
at the point the quartic curve J has a node there.

If a plane quartic is made to pass through twelve arbitrary points of a
plane cubic it must contain the cubic completely; hence those quadrics of N
which are represented in ¢ by the points of a cubic curve are such that any
quadric of [4] which is outpolar to twelve of them is outpolar to them all. The
fifteen points of & which correspond to the fifteen intersections of { with a
cubic curve therefore lie on o? quadrics, any quadric which contains twelve of
them containing them all. But if, of a set of fifteen points on &, ten are the
intersections of & with a solid, the fifteen points cannot lie on o® quadries;
whence the ten points of contact of { with a contact quartic of the system $ cannot
lie on a cubic curve.

20. Since the curve { is of odd order any contact curve of {, i.e., any

curve which has two intersections with { wherever it meets it, must be of even
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order. It is known that { possesses 2015 contact conics. The contact quartics
of { consist of various systems of curves; each system consists of c«o* guartics
and there is, in general, one and only one curve of each system touching { at
four arbitrary points; moreover the two sets of ten contacts with { of any two
curves belonging to the same system make up the complete intersection of
with a quartic curve and, conversely, if a quartic curve passes through the ten
points of contact of a contact quartic with { its ten remaining intersections
with { are the points of contact of a second contact quartic belonging to the
same system as the former. The sets of contacts of { with the quartics be-
longing to any one system are cut out by the quartic curves which pass through
any one of the sets; they form a g,,* on {. '

Suppose now that a contact quartic is such that its ten contacts lie on a
cubic curve 7°; denote for the moment by 7' that system of contact quartics to
which this particular quartic belongs. Then any quartic curve through the ten
contacts meets { further in ten points which are also the contacts of a quartic
belonging to I'; we may, in particular, suppose that the quartic curve through
the ten contacts consists of y® and any line of the plane. Thus the five remain-
ing intersections of y® with {, together with any five collinear points of £, make
up a set of ten contacts of a contact quartic belonging to 7'; but a contact
quartic five of whose contacts with { are collinear must contain the line, re-
peated, on which the five points lie, so that we conclude that the five remaining
intersections of y* with  are the five contacts of { with one of its 2015 contact
conics. Conversely: take any cubic curve y® through the five contacts of { with
any one of its contact conics ¢=o0. If we take any line /=0 then ¢l®*=o0 is
a contact quartic whose ten contacts with £ are the five contacts of { with
¢=0 and the five intersections of { with /= 0; the cubic »* and the linel=o0
form a quartic curve which passes through these ten points and whose ten other
intersections with { are the ten intersections, other than the five contacts of
¢=o0, of { with y*. These last ten points are therefore the ten points of con-
tact of { with a quartic curve which belongs to the same system as the con-

* cubic curves passing through the five

tact . quartic ¢l®=o0. Since there are

! The number of odd theta:characteristics associated with a curve of genus 6 is 2016, but
when the curve is a plane quintic one of these is special; the corresponding odd theta-function
not only vanishes for zero values of the argument, but all its first and second derivatives do so
too. This particular odd characteristic is associated with the co? degenerate contact conics which
consist of the lines of the plane, counted twice; the remaining 2015 odd characteristics are asso-
ciated with the proper contact conics.
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contacts of { with ¢=o0 we obtain the oo* contact quartics of the system in
this way.

It is now clear that there are two kinds of systems of contact quartics
of . If a system of contact quartics contains one curve whose ten contacts
lie on a cubic then all the curves of the system have this property, and the
cubic through the ten contacts of any one of them meets { again in the five
points of contact of one of its contact conics, the same contact conic being
obtained whichever contact quartic of the system is taken. A system of contact
quartics is either such that %o curve of the system has its ten contacts on a
cubic or else such that every curve of the system has its ten contacts on a cubic.
A system which is such that no curve belonging to it has its ten contacts on
a cubic we call a system of the first kind; the system $ that we have already
met with is of the first kind. A system which is such that every curve belong-
ing to it has its ten contacts on a cubic we call a system of the second kind.
The number of different systems of the second kind is 2015, the same as the
number of contact conics. The number of different systems of the first kind
is!, in fact, 2080.

The systems of the first kind all have similar properties, and those of the
second kind also have similar properties; but the properties possessed by the
systems of the first kind are different from those possessed by the systems of
the second kind. The very method of distinguishing between the two kinds of
systems gives an example of this difference. Another example is given by the
number of contact quartics of a system which break up into two contact conics;
whereas, of the «* contact quartics which belong to a system of the first kind,
there are 496 quartics which break up into two contact conics, of the «* con-
tact quartics which belong to a system of the second kind there are only 495
which break up into two contact conics. KEvery pair of contact conics of §
forms a contact quartic, this contact quartic belonging of course only to one

system. These statements are in accordance with the arithmetical relation

—21—(2015 X 2014) == 2080 X 496 + 2015 X 495.

If any contact conic C is given then, since each system of the first kind in-
cludes 2 X 496 = 992 contact conics, the number of contact quartics, belonging

! The number of even theta-characteristics of genus 6 is 2080; one of these is associated
with each of the systems of contact quartics of the first kind.
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to systems of the first kind, of which C forms a part is (992 X 2080)/2015 = 1024.
Similarly the number of contact quartics which belong to systems of the second
kind and of which C forms a part is (990 X 2015)/2015==9g0. Hence, given any
contact conic C, the remaining 2014 contact conics are such that 1024 of them,
when taken with C, make up contact quartics belonging to systems of the first
kind while the other ggo, when taken with C, make up contact quartics belong-
ing to systems of the second kind.

When a net of quadries in [4] is given, its Jacobian curve 9 can immedi-
ately be put into (1, 1) correspondence with a plane quintic; it is also true,
conversely, that a general plane quintic {, without nodes or cusps, can be put
into (1, 1) correspondence with the Jacobian curve of some net of quadrics in [4).
In fact, given the curve {, such a correspondence can be set up in 2080 dif-
ferent ways, each way of setting up the correspondence being associated with
a particular one of the 2080 systems of eontact quartics of the first kind.

21. We have seen that, associated with any solid S; of [4], there is a
contact quartic of { belonging to the system $; the points of the contact quartic
represent those quadries of N which touch S;. Let us now consider the contact
quartic associated in this way with a solid @; @ is the common tangent solid,
at the point P of &, of all the quadrics of N which pass through P. The five
cones of N which pass through P consist of the cone (P), counted twice, and
of three other cones (4), (B), (C); we have correspondingly on { a point p and
the three remaining intersections «, b, ¢ of [ with its tangent at p. Moreover,
since the points A, B, C all lie in @, the four points a, b, ¢, p are four of .
the points of contact of { with the contact quartic associated with @. But any
contact quartic of { which has a, b, ¢, p for four of its points of contact must
contain the line abep as part of itself; it therefore consists of this line and a
cubic curve which passes through a, b, ¢ and which touches { at six points.
The six remaining intersections, other than P, 4, B, C of % with @ are the
six points X,, X,, X;, X, X;, X; in which & is met by the secant plane «
which is conjugate to P; the six corresponding points x,, x,, %5, 2., X5, 2z ON
{ are therefore the six points of contact of the cubic curve. The contact quartic,
being made up of this cubic and the line pabe, has nodes at «, b, ¢; this is in
accordance with the fact that @ meets each of the cones (4), (B), (C) in a
plane-pair. The points of the line pabc represent quadrics of N which touch
w at P. We have seen that there is a quadric of N touching @ at any point
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common to ¢ and the cubic cone IlIp; the cubic curve in which «¢ meets ITp is
in (1, 1) correspondence with the cubic curve which touches { at the six points
x, the points of this last cubic representing quadrics of N which touch @ at
points of «.

There is, in general, one and only one contact quartic of the system $
which touches { at four arbitrary points; it is associated with the solid which
contains the four corresponding points of &. If the four arbitrary points of {
are taken to be any point p and the three remaining intersections of [ with its
tangent at p, then the corresponding solid in [4] is the solid @ associated with
the point P of & which corresponds to p; the contact quartic of $ which touches
{ at the four points breaks up into the tangent of { at p and a cubic curve.
Of the «® cubics which pass through the three intersections of { with any one
of its tangents there are 2080 which touch { in six points; these cubics, when
taken with the tangent of {, make up the 2080 contact quartics; belonging to
the different systems of the first kind, four of whose contacts with [ are the
point of contact and the three remaining intersections of the tangent with {.

The statement that there is one and only one contact quartic of the system
$ touching { at four arbitrary points is true in general; but it is no longer trne
when the four corresponding points of 4 are coplanar. In this case there are !
solids which contain the four points on &, so that there are ' contact quartics
belonging to $ and touching { at the four points. In particular, since the six
points x, x,, w3, x,, x5, 25 of { correspond to six points of & lying in a secant
plane- «, there are o' contact quartics of { belonging to the system $ and
touching { at the six points . We have remarked that if any solid is taken
which passes through «, its four remaining intersections with & are the vertices
of four cones belonging to a pencil, the fifth cone of the pencil being (P).
Hence, if we take any one of the o' contact quartics which belong to $ and
touch { at the six points x, the four remaining contacts of the quartic with {
are collinear, and the line on which they lie meets { again in p. Conversely:
if any line through p is taken its four remaining intersections with { form,
when taken with the six points x, a set of ten points which are the points of
contact with { of a contact quartic belonging to the system §.

22. Consider now the contact quartic of { which is associated with the
solid X containing two conjugate trisecants PQR and UV W of 9. This solid
meets « in four further points X, Y, Z, T and meets each of the four cones



The Geometry of a Net of Quadrics in Four-Dimensional Space. - 223

(X), (Y), (Z), (T) in a plane-pair. The associated contact quartic therefore
has double points at the four corresponding points z, y, 2, t of £, and so
breaks up into two conics intersecting in these four points. One of these conics
touches { at the three points p, ¢, » which correspond to the three points
P, ¢, B of J; the points of this conic represent those quadrics of N which
touch = at the points of the line PQR. The other conic touches { at the three
points w, v, w which correspond to the three points U, V, W of &, the peints
of this conic represent those quadries of N which touch = at the points of the
line UVW. Hence three points of § which correspond to three collinear points of
J are points of contact of § with a tritangent conic; the remaining four intersec-
tions of this comic with § are such that there is another tritangent conic passing
through them, the points of contact of this second tritangent conic corresponding to
the three intersections of 3 with the trisecant conjugate to the former. The system
$ of contact quartics therefore contains ten curves which break up in this way
into pairs of tritangent conics. Any other system of contact quartics of the
first kind will also contain ten such curves. Since the ten contacts of a quartic
belonging to a system of the second kind lie on a cubic curve a system of the
second kind cannot contain any contact quartics which break up in this way.
Hence there are in all 20800 contact quartics of § which break wup into pairs of

tritangent conics.

23. We now consider the configuration on  associated with a pair of
conjugate trisecants, say PQR and UV W, of 9. We suppose that

«, the secant plane conjugate to P, meets & in the six points
u, v, w, X, Y, Z;

@, the secant plane conjugate to ¢, meets ¢ in the six points
U, V, W, X, Y, Zy;

v, the secant plane conjugate to R, meets % in the six points
Ua V: Wr’ X37 Ir31 Z3'

When a point of % is denoted by a certain capital letter we shall always denote
the corresponding point of { by the corresponding small letter. It has already
been stated, in § 10, that the five cones

(Xl)a (Yl)’ (Zl)’ (Q)a (R)v
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belong to the same pencil; hence the five points

xl, Y1, &1, q, 7,

of { are collinear. The vertices of the triangle pgs lie on ; the side ¢ meets
{ again in =z, y,, &, the side rp meets { again in x,, y,, 2, and the side pgq
meets § again in x,, s, &;. There is a conic touching { at each of the points
pqr and another touching { at each of the points uvw.

Each of the two sets of points

UVWL Y1281 X Y3257, UVWXy Y3 &321Y121 9

is a set of ten points of { corresponding to ten intersections of ¢ with a solid,
the first set corresponding to the intersections of < with the solid «f8 and the
second to the intersections of & with the solid ye; hence each of the sets is a
set of contacts of { with a contact quartic of the system $. Wherefore (with

an obvious notation) the set of twenty points
2 (wveww, y; 2)) Ty Yy 23 Ty Y3 25 47

forms the complete intersection of { with a quartic curve. The points of this
quartic curve represent those quadrics of N in regard to which the two solids
af and yo are conjugate. But this set includes five collinear points x, ¥, 21,
q, r; the quartic must therefore consist of the line ¢r and a cubic, the set of

fifteen intersections of { with this cubic being
2 (Wvw) @y Y 2, Ty Yo 23 X3 Y3 73

Whence we have the following. Suppose we take any contact quartic of { which
breaks up into two tritangent conics. Then the points of contact of either of the
tritangent conics form a triangle each of whose sides has three other intersections
with §; the nine intersections so arising are mine assocated points, and one of the
cubic curves passing through them touches the other tritangent conic at each of <ts

three contacts with (.

24. We suppose now that the equations of the lines ¢r», rp, pg are & =o,
&, =0, & = 0 respectively, that the equation of the cubic curve obtained above

! This result follows easily also by considering residual and coresidual sets of points on .
The two sets 2 (pgr) and 2 (uvw) are co-residual, since each set is residual to the four intersections
of the two tritangent conics. Hence the set , y, 2, 5 Yy 23 Xy Yy 23, being residual to 2 (pgr), is
also residual to 2 (uv).
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is I'y=o0 and that the equation of the conic which touches { at u, v, w, is
I;=o0. Then I,=o0 is also a tritangent conic of I';—o0. The points of I';=0
represent quadrics of N in regard to which each of the three pairs of solids
By, ya, af is a pair of conjugate solids.

Since ¢ is the secant plane conjugate to P there is a cubic curve touching
{ at the six points w, v, w, z;, ¥;, &, and meeting { again in its three inter-
sections with its tangent at p; let these three intersections be called p,, ps, pq,
with similar notation for the intersections of [ with its tangents at ¢, », u, v, w.
Let this cubic curve have the equation Cp, =o0. Then the two cubics Cp,=o
and Iy = o0 intersect in nine points, the nine points consisting of three points
%y, Y1, 2, on the line £ =0 and of the set uvw counted twice, the conic I'n=0

touching both cubics at these three points. Hence we may write

Cp=T;+ & T,
and, similarly,

Co=Ty+ § Ty,
Cr

fl

Iy + &1,
Now the quartic & I'; =0 meets { in the set of twenty points
2 (uvewa, ¥, 2y) QT Xy Yy 25 T3 Yy 24
while the quartic & Cp, = 0 meets { in the set of twenty poinfs

2 (“’Uw Ty Yy Zl) TP Xy Y223 P1 P P3-

Hence the two quartics belong to a pencil whose sixteen base points are all on
£, being in fact the set 2 (uvwax, y,2,) 7% Y5 25. The quartic & I'; = 0 meets {
again in the four collinear points ¢, @, ¥;, 2; and the quartic & Cp, = 0 meets
{ again in the four collinear points p, p,, ps, ps; the lines on which these two
sets of four collinear points lie both meet { again in p, and the g,' cut out on
{ by the pencil of quartics is the same as that cut out by the pencil of lines
through p. One set of this g,* consists of the points 1, 2,5, ¥,, #; hence one
quartic curve of the pencil meets { in the set of twenty points.

2 (uvw @y Yy 2, T Yy 25 7),

and so is a contact quartic. It is in fact the contact quartic associated with

the solid «f. But, by precisely similar reasoning, this contact quartic also be-
29 —34472.  Acta mathematica. 64. Tmprimé le 2 novembre 1934.
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longs to the pencil determined by the two quartic curves 5,I'y=o0 and & C;=o,
this pencil of quartics cutting out on { the g,' given by the lines through q.
That there is a curve belonging to both the pencils of quartics is in accordance
with the identity

G+ 50 =5T,+§ C=(+ E)Iy + &, 5T,

Incidentally we have obtained the equation of the contact quartic associated
with the solid ef. The equations of the contact quartics associated with the
solids By, ya, af are therefore

(§o + E) Iy + £ 83 1, =0,
(gs + §1)113+ &8 Ty=o0,
G +E L+ 5T, =0,

respectively. We have already found that the quartic curve which meets { in
the points of contact of the second and third of these contact quartics is §; I';=o0;
the other two pairs give the quartics & Iy=o0 and §Iy=0. We have the
three identities

(G + B Iy + &5 LY {6 + &) Iy + § 6 Tt — 813

= {8 + 58 H EEI T+ 555 (I + § 1)
G+ &)+ §1 6T & +8) I+ 55T, — &I
(G + &E + 58T+ E 5T (I + & 1Y)
{(§2 + §3)F3 + §2§3F2} {(52 + §1)F3 + §3§1T2} _§§T§
W68 + &by + S8 I + 55T (I + & 13).

The equation of the quintic curve { us
(Co8s + B8 + 5 8) Ty + 5155 T, =o.

It follows from this equation, since neither the eubic I';==0 nor the conic I';=0
passes through any of the points p, ¢, », that the tangents of { at these points

are respectively ,
£ + & =0, & + & =o, £+ &=o.

Hence the equation of the conic which is tritangent to L at p, q, v s

E 8y + 58 + & & =0.
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Hence the curve
(56 + &8 H5E)I,=0

is a pair tritangent conics of {, making up a contact quartic belonging to the
system §.

25. If the equations of any two quartics belonging to the system § are
LIy =o0 and F,=o0, and if F, =0 is the equation of the quartic through these
points of contact, then there is always an identity of the form

P\ Iy + kFiy= O{(§2§3 + &6t &S + 5 55T,

where % is a constant and (=0 is a cubic curve; the form of the identity shows
that C'=o0 is a contact cubic both of F; =0 and F,==0. Moreover: if S is
the solid in [4] which is touched by the guadrics of N which are represented
by the points of F,=o0 and S{? that which is touched by the quadrics of N
which are represented by the points of Fy; =0, then the points of F,,=o0 re-
present the quadrics of N in regard to which S and S are conjugate, and
the points of (/=0 represent the quadrics of N which touch the plane of inter-
section of S’ and Si. - ‘

For example: taking the contact quartic associated with the solid By and
the contact quartic associated with the solid = we find the identity

{(§2 + 53) 1‘3 + §2§3 112} (§2§3 + §3§1 + gl §2)T2~§§§§I‘g
5(52 + §3)F2{(§2§3 + §3§1 + §1§2)F3+ §l§2§3r2}‘

Here the cubic C=o0 breaks up into the tangent of { at p and the conic I'y=o0;
hence those quadrics of N which touch the plane of intersection of the two
solids By and X, i.e. the plane PUV W, consist of the quadriecs which pass
through P and of the quadrics which touch = at the points of the line UV W.
Also the quartic F,,= o here breaks up into the two lines §;=o0, §, =0 and
the conic I, =o0; hence those quadrics of N in regard to which 8y and = are
conjugate solids are the quadrics of the pencil (R P), the quadrics of the pencil
(PQ) and the quadries which touch 3 at the points of the line U V'W. These
statements are all easily verified: take, for example, the statement that gy and
S are conjugate solids in regard to all quadrics of the pencil (RP). The
simplex RP X, Y, Z, is a common self-conjugate simplex for all the quadries of
(RP); hence, since 3 contains R and P, the poles of 3 in regard to all the
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quadrics of the pencil lie in the plane X, Y, Z,; but this is the plane 8, and so
lies in the solid By. ‘

If we now take the contact quartics associated with the solids Pe and =
we obtain

(8 + E)(Iy + & o) (B85 + 58y + 5 8) I — (5 + &) &I T3
’ E(§2 + §3)F2{(§2§3 + g%gl + §1§2)F3 + §1§2§3F2}'

This gives the same result as before as regards quadrics which touch the plane

PUV W, it shows in addition that those quadrics of N in regard to which the

solids Pe and I are conjugate are the quadrics passing through P, the quadrics

of the pencil (QR) and the quadrics which touch 3 at the points of UV W.
From the relations

(§3 + 51)(51 + §2)(F3 + §2F2)(F3 + §3F2)~=(_511"3-—— §2§3 r2)2

(§1 + ga)(;:? + gs)(rs + §3F2)(F3 + §1I"2)—(§21"3—§3§11“2)2
G + &G + ENL + & TN + & 1) — (5 I — 5 5: 1)
T+ G+ &+ S NHEGSL + 6+ LB+ LT,

it follows that the points of the cubic

i

li

l

i+ &G +&+&TI,=0

represent quadrics of N which touch the three planes of intersection of pairs
of the three solids P«, @B, Ry. The points in which this cubic curve meets
{ are seen at once from the identity

(52 §3+§3 ’gl + §1 §2) 113 + gl §2 53 1‘2 = (§2 §3+ §3 51 + §1 §2) {113+(§1 + §2 + §3) r2}
— Gt &) E+E)E+ 5 Ty,

and we have the following result: the tangents of [ at its three contacts with
a tritangent conic which forms part of a contact quartic each meet { in three
further points; the nine points so arising are nine associated points, and one of
the cubic curves passing through them touches { at each of its three contacts
with the other tritangent conic which makes up the contact quartic. This result

also follows at once from the consideration of residual sets of points on {.

26. If a conic circumscribes a triangle, the tangents of the conic at the

vertices of the triangle meet the opposite sides in three collinear points; hence
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the tangents .of { at p, ¢, » meet gr, rp, pg respectively in three collinear points.
The point of intersection of gr with the tangent of { at p represents a quadric
of N which, since the point is on ¢r, belongs to the pencil (Q R) and which,
since the point is on the tangent of { at p, passes through P; it is therefore
that quadric of (QR) which passes through P. Hence the quadric of (@ R) which
passes through P, the quadric of (RP) which passes through ¢ and the quadric
of (PQ) which passes through R are three quadrics belonging to the same
pencil. The line which represents the quadrics of this pencil has the equation
§,+ & + & =o0. Since the quadrics of (QR) meet PQR in the pairs of points
of an involution whose double points are @ and R, that quadric of (QR) which
passes through P passes also through P, the harmonic conjugate of P in re-
gard to @ and R; it may therefore be defined as the quadric of N which passes
through P and P’. The fact that the three quadrics belong to the same pencil
follows immediately from the known fact that the three pairs of points P, P’;
Q, @; R, R (where @ and R’ are defined similarly to P’) belong to an involu-
tion. The double points of this involution are the Hessian points of PQR;
hence we may say that the points of the line & + & + & = o represent those
quadrics of N n regard to which the Hessian points of PQR are a pair of con-
Jugate points.

There is a pencil of quadrics belonging to N and in regard to which the
points P and P’ are conjugate; we call this pencil H,. The quadric of N which
passes through @ and R is clearly a member of H,, as also is the cone (P);
the quadrics through ¢ being represented by the points of the line &, + £ = o,
and those through R being represented by the points of the line §, + §, =o,
that through both @ and R is represented by the point of intersection of these
two lines. The pencil H, is therefore represented by the line joining P to the
intersection of &, + & =0 and & + & =0, i.e. by the line & =1§;. Similarly
we have a pencil H, of quadrics belonging to N and represented by the line
g, =&,; these are the quadrics of N in regard to which @ and @ are conjugate;
and similarly for the pencil H;. There is a quadric common to the three pen-
cils H,, H,, H,; it is represented by the point §, =&, =&, and may be defined
as the quadric of N which contains the Hessian points of PQR.

The contact quartic whose points represent quadrics of N which touch the
solid ef is (§, + &) Iy + £ & I'b=o0, and that whose points represent quadrics of
N which touch the solid ay is (§, + &) I'; + §, 5 ', = 0. The identity
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(& + gz)rs + §1§2F2_<§1 + §3) F3—§1§3T25(§2"‘§3)(113 + 51112)

proves that the four intersections of these two contact quartics — apart from

their six contacts at w, v, w, =1, ¥, 2, — lie on the line & =&,. Hence, apart

from the six cones whose vertices lie in «, there are four quadrics belonging to

N which touch both the solids ¢f and ay, and these four quadrics belong to

the pencil H,. ' '
Again the identity

Fs"‘§2.IV2_1‘3—§3F2§(§2_§3)r2

shows that, apart from the cones (U), (V), (W), there are three quadrics be-
longing to N which touch both the planes # and y, and these three quadrics

belong to the pencil H,.
Similarly we obtain corresponding quadrics belonging to the pencils H,

and H,.

27. Up to this we have made use of only one half of the configuration;
precisely similar results can be obtained by using the triangle wvw in place of

the triangle pgr. We suppose that
d, the secant plane conjugate to U, meets J in the six points
-P7 Qa Ry Lla Ml: Nla

¢, the secant plane conjugate to V, meets & in the six points
P) Q’ R7 L2a M27 N2)

7, the secant plane conjugate to W, meets & in the six points
-P’ Q: —R) LS) MS; N3'
Then we have three sets of five collinear points on % namely

v, w, lla”llanl; w, u, l217n?7”2; U, v, ls,m3,1’13.

We take 7, =0, 7,=0, 7,=0 to be the equations of vw, wu, uv respectively,
4y==0 to be the equation of the conic touching { at p, ¢, r, whose equation
we have already found to be § 5§, + §;§, + §, & = 0. Then there is a cubic whose
fifteen intersections with £ are the set

2(pqr) lymy ny lymymy lgmy Mg
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and whose equation we suppose to be ;=0. Then the equation of { is

(nams + mamy + Nume) Ay + e Ay =0

while the equation of the conie touching § at u, v, w is
N2Ms T N3N+ N0 = 0.
There is also a cubic curve, whose equation is
Ay + (g + my + n5) 4y, =0,

meeting { in the set of fifteen points 2 (pq7r) e, us uy v, v, V5w, wyw,. The points
of this curve represent quadrics of N which touch the three planes of inter-
section of pairs of the three solids Ud, Ve, Wo.

We have now obtained two forms of the equation of {; the first form may

be written
(585 + 55 + & 5) Iy + §1§2§3("72773 + gy + 771772) == 0,
and the second

(772773 + mgn t ”71772)43 + 771’72’73(5253 + §§& + §1§2):0.

These must be the same equation. Now since I'y= 0 is tritangent to the conic

Iy=mnyn4 + 13m, + 1,1, =0 at the vertices of the triangle wvw we may write
Fy=mnens + Lngms + nyn + qimy),

where L is linear in 7,, 7, 1,; and, similarly,
Ay =858+ MEE + 55 +§8),

where M is linear in §;, &, &. Then it is clear that L and M must be
identical, so that we have the equation of { in the form

(528s + &85 + & §2)"71 Na Mg + (772 Ny + Mgy + 771’72) £ 55
' +L(§2§3+§3§1+§1§2)(’72"]3+773’71“‘771"72):0-
This may be written as

S Ay g s H LET A T EN 7 o i) =o.

28. We have seen that the points of a quartic curve in ¢ represent qua-
drics of N which are all inpolar to the same quadric @ (not necessarily be-
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longing to N). When we have a linear system of quartic curves in ¢ the asso-
ciated quadrics @ belong to a linear system' of quadric primals in [4]. A
quartic curve in ¢ may, in particular, consist of a pair of conics, or of a single
conic counted twice. Since each conic of the plane may be paired with «?®
other conics to make up a quartic curve, the set of ten points of ¢ which
correspond to the ten intersections of { with a conic is such that there are «?°
quadrics passing through the ten points of the set; hence the set only imposes
nine conditions on a guadric primal, and therefore every quadric which passes
through nine points of the set passes also through the tenth. This may also be
seen otherwise. For the points of a conic in o represent the quadrics of N given
by an equation of the form ‘

(@@ +2b,0+¢c) Qo+ (@, @+ 2b,0+6)Q + (0, ®+ 20,0+ ¢,) Qy=0,

where @ is a parameter; these quadrics therefore form a singly-infinite system
3, of index 2, two quadrics of the system passing through an arbitrary point
of [4]. The tangential equation of the system, being of degree four in the
coefficients of the point equation, is of the form

BT+ O T+ Ty + T+ O T, +6 T+ @T,+OT, + Ty=o0,

and is linearly dependent from the tangential equations of nine quadrics. There
are therefore six linearly independent quadrics outpolar to all the quadrics of
2;. Bach of these outpolar quadrics must contain the vertices of all the cones
belonging to Z,; these vertices are the ten points of 9 which correspond to the
ten intersections of { with the conic, and which we now see to lie on o?®
quadrics.

The set of points common to { and a conic is a canonical set on {, the
corresponding set of points on & is therefore a canonical set ‘on &. Whence
any two canonical sets of & form the complete interseclion of 9 with a quadric,
and all the quadrics through nine points of a canonical set pass also through
the tenth. |

When a conic of ¢, counted twice, is regarded as a quartic curve, the
associated quadric € must touch % at each of the ten pointé corresponding to
the ten intersections of & with the conic. Hence there és a quadiic touching 9
at each of the ten points of any canonical set. There is therefore a system of «°

! Ct. for the analogous statement in three dimensions Hesse: Jowrnal fiir Math. 49 (1855),
288—289,
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contact quadrics of F; the twenty points of contact of 9 with any two quadrics
of the system form the complete intersection of & with a quadric, and the
canonical series is cut out on & by those quadrics which pass through any one of
tts sets.

Any two sets of five collinear points of { make up a canonical set and,
in particular, a set counted twice does so; hence any two sets of five points of
&, each of which is the set of vertices of the five cones which belong to a
pencil of quadries of N, make up a canonical set and, in particular, any such
set counted twice does so. If five points of & are vertices of the five cones
belonging to a pencil of quadries of N there must be a quadric having four-point
contact with 9 at each of these five points. Any four such sets of five points of
J lie on a quadrie, while any three such sets make up a set of fifteen points
lying on o2 quadrics!, and therefore on a curve of order eight and genus 5.
If, in particular, we consider the pencil of quadrics which belong to IV and pass
through a point P of &, the five cones of the pencil consist of (P), counted
twice, and of three other comes (4), (B), (C); there is a quadric having eight-
point contact with 9 at P and four-point contact at each of the points 4, B, C.
Again: the five cones which belong to a pencil of quadries corresponding to one
of the 120 bitangents of { consist of a cone (7) and of two cones (7,) and (7))
both counted twice: there is a quadric having eight-point contact with 9 at T
and at 7, while it has four-point contact with % at 7. Further: the five cones
which belong to a pencil of quadrics corresponding to one of the 45 inflectional
tangents of { consist of a cone (), counted three times, and of two cones (J)
and (K); there is a quadric having twelve-point contact with & at I and four-
point contact at each of the points J, K.

There are 2015 contact conics of {, and the five contacts of any one of
these make up, when counted twice, a canonical set on {; hence there are 2015
quadries each of which has five four-point contacts with ¢, apart from those
quadries for which the five four-point contacts are the vertices of five cones of
N belonging to a pencil. The system $ of contact quartics of [ includes 496
curves which break up into pairs of contact conies; hence, of the 2015 sets of
five points just found on & there are 496 pairs of sets such that each pair makes
up a set of ten intersections of % with a solid. The remaining 1023 sets are
sets of five points which do not lie in a solid.

! This is of course a particular case of the statement, made in § 19, that the set of fifteen
points of & which correspond to the fifteen intersections of { and a cubic curve lie on ® 2 quadrics.

30-—34472. Acta mathematica. 64. Imprimé le 2 novembre 1934.
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The Quartic Primals having C for a Double Curve.

29. We shall use the symbol .7 to denote a quartic primal having C for
a double curve. It is clear, in the first place, that if a chord of C meets o in
a point other than its two intersections with C then this chord, as having at
least five intersections with 7, lies entirely on .. Now the chords of C gene-
rate a locus M;'® on which C is a sextuple curve, as was pointed out in § 17;
hence those chords of ' which lie on .7 generate a ruled surface R,** on which
C is a curve of multiplicity 12. The tangent cone of 4 at any point G of C
is a quadric line-cone whose vertex is the tangent of C at (; this cone meets
C in 12 points other than G, and the lines joining these points to G are
the 12 generators of R,** which pass through G. Since % is a quadruple curve
on M ' the forty points in which .7 meets ¢ are quadruple points of R,%. The
surface generated by the tangents of C is of order 2z4; its intersection with
therefore consists of the curve O, counted four times (since C is double on .7 and
cuspidal on the other surface), and of 64 tangents of (. This then is the num-
ber of tangents of C which lie on ., or the number of generators of R,* which
touch C.

The cyclide which is the base surface of any pencil of quadrics belonging
to N contains C; thus the curve C, counted twice, must make up the whole of
the intersection of the cyclide with 7, unless the cyclide lies entirely on .
There is a cyclide passing through any arbitrary point of [4], and the cyclide
which passes through any point of 4 which s not on C les entirely on 4. We
can thus generate ./ by means of a singly-infinite set of cyclides, and we can
foresee that o/ may be defined as the envelope of a singly-infinite family of qua-
drics belonging to N. Any cyclide which lies on o contains sixteen generators
of R,**. The primal +# contains, in particular, the cyclide which passes through
P, where P is a point common to o and J; this cyclide has a node at P, the
tangent cone being! the intersection of (P) with the solid w; since each gene-
rator of this tangent cone must also have three intersections with o at P we
see that the tangent solid of A4 at any one of its intersections with 9 is the solid
@ assoctated with that point, and that the inflectional tangents of # are those
generators of (P) which lie in @. The four chords of € which pass through P
lie on A; they must be generators of (P) and lie in .

1 Cf. Segre: Math. Annalen 24 (1884), 353.



The Geometry of a Net of Quadries in Four-Dimensional Space. 235

The surface of intersection of 7 and a quadric belonging to N consists of
two cyclides, which may coincide. Two quartic primals #/ and 4, on both of
which C is a double curve, intersect in four cyclides.

30. The class of .7 is the number of points, other than those of O, which
are common to ./ and the first polars of three arbitrary points O, 0, 0”'; these
first polars are cubic primals containing C; they meet in C and in a residual
curve K of order 19, and the class of 7 is the number of its intersections with
K which do not lie on C. It follows from a known formula® that K and C
have 24 common points. Now K must pass through any point of C at which
the tangent of C meets the plane 00" 0", and there are precisely 24 such points
on (; thus all the intersections of K and C are accounted for, and .7 has no
bispatial points on its double curve. Rach intersection of K and C counts twice
among the intersections of K and ./, so that the number of intersections of K
and «/ which are not on € is 4 X 19—2X 24 = 28. Hence A 7s of class 28. Other
characters of ./ are obtained at once from those of an arbitrary prime section,
such a section being an octadic surface whose nodes are the eight intersections
of the prime with C.

The 24 intersections of (' with K are, as we saw in § 4, on the cubie
primal IT associated with the plane 00" O"’. The primal IT however meets K
not only in these 24 points but also in the 28 further points common to K
and 4. For, if A is any one of these latter points, the solid AOO" 0" is the
tangent solid of # at 4 and hence meets # in an octadic surface with a ninth
node at 4. Hence A lies on the Jacobian curve of the net of quadric surfaces?
in the solid 400" 0”, and hence on the surface F,® which is the locus of poles
of the solid in regard to the quadrics of N. Hence, since F,¢ lies on IT, 4 must
lie on II.

We have thus shown that the cubic primal associated with the plane 00’ 0"
meets K at its 24 intersections with ¢ and at 28 other points, but we can in
fact show that the cubic primal contains the curve K completely. For let 7 be

any plane; the first polars of the points of = in regard to 4 form a net of cu-

1If a curve C is the complete intersection of three primals in [4] of orders A, g, v, then
three primals of orders I/, m, » which pass through C have in common also a curve of order [ m n—
—Auy having A uv ((+m+n—r—u—») points in common with C. See Salmon: Higher Algebra
(Dublin 1885), ¢h. 18. :

? Edge: »Octadic Surfaces and Plane Quartic Curves». Proc. London Math. Soc. (2), 34
(1932), 492—525 (502).
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bic primals, the base curve of ‘the net consisting of C and a curve K of order
19; we may call K the polar curve of m with respect to 4. If P is any point
of [4] there are two quadrics of N which pass through P and belong to that
system of quadrics of which  is the envelope, and there is one quadric of N,
say (), which contains the two cyclides along which these two quadrics touch .
It is easily shown that the polar prime of P in regard to ¢ is also the polar
prime (i. e. the third polar) of P in regard to 7. Thus associated with any point
P of [4] there is a quadric of N such that P has the same polar prime in re-
gard to o and this quadric; the same quadric is in fact obtained for all points
on the cyclide through 2P, and the correspondence thus set up by  between
the quadrics and cyclides of N is the same as the conjugacy, in regard to a
conic, of the points and lines of a plane. Now suppose that P is on the polar
curve of m with respect to /; then, since the first polars of all the points of 7
contain P, the polar prime of P in regard to o/ contains the plane 7. Hence,
since this prime is also the polar prime of P in regard to a quadric of N, the
line conjugate to P meets s; in other words, the point P lies on the cubic pri-
mal IT associated with =. If' 4 is any quartic primal having C as a double curve
and 7 s any plane, the polar curve of w with respect to A lies on the primal IT
associated with w. As there are in all o’ quartic primals which have O as a
double curve the primal IT which is associated with any given plane = contains

®% of these polar curves,A all passing through the 24 intersections of IT and C.

31. . Several properties of the primals .7 are analogous to those of octadic
surfaces in (3], and are obtained in the same way; as a paper has recently been
published in which the properties of these surfaces are obtained® the following
brief account of certain properties of the primals 7 will suffice.

If the quadrics, z @, + ¥ ¢, + ¢ @ = 0, which belong to N are represented
by the points of a plane o, then those points in ¢ which lie on the conic

ax® +by*+c?+2fyz+ 292z + 2hxy=o0

represent quadrics of N which belong to a singly-infinite family =, of index 2;
the quadrics of 3, have as their envelope the primal .7 whose equation is

AQ*+ B+ CQ*+2F @ Qe +2G Qs Qp +2HQ @ =0,

! Edge: loc. cit.
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where 4 = be — f?, ete. Thus we have, associated with the conics of ¢, a linear
system of o® primals /. The forty intersections of .7 and & correspond, in the
(1,1) correspondence between 9 and {, to the points of contact of { with the
forty common tangents of the conic and .

Those primals # which pass through an arbitrary point 7' of [4) all con-
tain the cyclide which passes through 7, so that their tangent solids at 7' all
contain the tangent plane of the cyclide; hence, in order that 7 should have a
node at T, it is only necessary to impose three linear conditions. It would
therefore be expected that there are o? primals .# with a node at 7T, but these
all break up into pairs of quadrics belonging to N; in order that - should have
a node at some point not on C, and not break up into a pair of quadries, this
point must be on &. The primals # which pass through a point P of 4 all
touch the solid w there; hence, in order that -/ should have a node at P only
two linear conditions need be imposed. The primals # which have a node at
P are in fact associated with the conics which touch { at the point p corres-
ponding to P; ¢f a conic touches § the associated primal 4 has a node at the cor-
responding point of 9.

Since the quadrics of N which are represented by the points of a conic
which touches { at p have as their envelope a primal # with a node at the
corresponding point P of %, it is' possible to have primals ./ with one, two,
three, four or five nodes on & just as it is possible to have conics touching ¢

in one, two, three, four or five points.

32. There are 2015 conics which touch { in five points; hence, of the oo?
primals o/, 2015 are five-nodal. Now, of the 2015 contact conics of [, there are
406 pairs, each pair making up a contact quartic belonging to the system $.
Consider then such a pair of contact conics, y and y’; the quadrics of N repre-
sented by the points of y have as their envelope a five-nodal primal .7, the nodes
of 4 corresponding to the contacts of y and [; similarly there is a fivenodal
primal 4" associated with y’. Since the conics y and 7" make up a contact quar-
tic belonging to & the five nodes of ./ and the five nodes of ' make up the
ten intersections of J with a solid S. Since y is part of the contact quartic
associated with S the quadrics of N represented by the points of y all touch S,
as also do the quadrics of N represented by the points of 5’; the locus of points
in which § is touched by quadrics of N therefore consists of two curves J and
d’; these curves together constitute the Jacobian of the net of quadrie surfaces
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in S. Now the quadric of N which is represented by any one of the four in-
tersections of y and y touches § not only at a point of J but also at a point
of ¢’; but, since an intersection of y and ' cannot lie on {, this gquadric is not
a cone and so can only touch S in one point; hence d and ¢’ have four com-
mon points, and these are nodes of the Jacobian curve of the net of quadrie
surfaces. Thus the quadric surfaces have fixed tangent lines at each of these
four points, and S ¢s a quadritangent solid of C; d and J" are twisted cubics.
Since the quadrics of N which have 4 as their envelope all touch § at points
of J, § is the tangent solid of & at each point of J, and so meets o in a quar-
tic surface on which d is a double curve; it also meets " in a quartic surface
on which ¢’ is a double curve. It is known that C possesses 496 quadritangent
solids; hence each quadritangent solid of € meets 9 in ten points which divide
into two groups of five; the five points of either group lie on a twisted cubic
passing through the four points of contact of the solid with C'. In addition
to the 992 contact conics of { which make up contact quartics belonging to $,
there are 1023 others; hence of the 20135 five-nodal primals ./ 1023 are such
that their five nodes do not lie in solids®. The solid which contains any four
of the five nodes of such a primal meets it in a triply-octadic surface.

Among the contact conics of { there are sets of three such that the three
conics of any set have a common tangent®; each conic belongs to 495 of these
sets. IHence among the five-nodal primals o there are sets of three such that
the three primals of any one set have a cyclide in common; each five-nodal pri-
mal 4 belongs to 495 of these sets.

33. It has been shown above that if UV W is any one of the trisecants
of 9, there is a conic touching { at each of the corresponding points u, v, w;
hence there is a primal 4 having nodes at the three intersections of & with any
one of its trisecants. The trisecant UV W lies on 4. The points of the tritang-
ent conic uwvw represent quadrics of N which touch the solid =, joining UVW
to its conjugate trisecant, at points of UV W, hence I is the tangent solid of
A4 at each point of UV W, and meets o« in a quartic surface on which UV W
is a double line. This quartic surface is in fact a complex-surface of Pliicker.

v Cf. W. P. Milne: Journal London Math. Soc. 2 (1927), 79—84.
* Cf. W. P. Milne: Proc. London Math. Soc. (2), 28 (1928), 485.
* White; Proc. London Math. Soc. (2), 30 (1930), 347—358.
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A Canonical Form for the Net of Quadries.

34. We return now to the pair of conjugate trisecants UV W and PQR.
The secant planes «, 8,y which are conjugate respectively to P, @, B all pass
through UV W; we suppose that the three solids Sy, y, « 8 have the respective
equations z; =0, ¥, = 0, ¥y ==0. Also we suppose that, if J, ¢, 7 are the secant
planes conjugate to U, ¥V, W respectively, the equations of the three solids &,
nd, de are ¥, =0, Y, =0, y; = 0; these three solids have PQR as their line of
intersection. The six expressions xy, %, %y, ¥;, ¥, ¥s are homogneous linear func-
tions of five coordinates; there must therefore be one identical relation between

them, and we can suppose this to be
2y T X+ X3 =y + Yy + Ys.

If @(x,, 2y, %5, Y1, Y3, ¥s) 18 any homogenous quadratic polynomial then it
is easily shown that the polar prime of any point (A, Ay, hs, &, %y, &) in regard
to the quadric @ = o is

oo o oo oo Jo oo
}le hz(?—%+]320_9?3+k0y +k_5?2+k30‘/3 o,
where the partial differentiations are performed as though the six coordinates
were independent. Now if @ =0 is a quadric belonging to N the polar prime
of any point on PQR, whose equations are y, = ¥, = y; = 0, must contain UV WV,
whose equations are x; = x, = a3 =0; it follows that @ cannot in this case

contain any product terms xy and so is of the form
axi +bai+ecai v 2fmpry + 29wy + 2hx 2, +
+d i+ Vgt T2 eyt 29 ysy + 20 Y19

The polar prime of P in regard to this quadric has to contain the plane «;
hence, since P, being the intersection of the line PQR and the solid §y, has
coordinates (0, 1, —1, 0, 0, 0), the solid

hao, +bxy + faa=gx, + fa, + cxy

must contain the plane 2, = x;==0. Hence h=g. Similarly we obtain g = f
as the condition that the polar prime of R should contain y; so that we must
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have f=g¢g=h. Also, by considering the polar primes of U, ¥V, W we find
S =g =h'. The equation of the quadric may therefore be written in the form

axi+bxy+ cxs + 2d(wyay + 2z + 2, 25) +

+d YAV Syt 2d (Yays + Yays + yiys) = 0.

This is the same as

@—d)add +(b—d)ais + (e —d)ad + dlx; + 2 + ,)° +
+@ —d)yi+ OV — Vi + (¢ —d)ys + d (g + y, + 9o =o.

Any quadric which belongs to N must therefore have an equation of this form;
whence the following fundamental result may be enunciated:
The equations of three quadrics in [4] can be reduced simultaneously to the
Jorm "
EXI+EX+EX S+ e+ Yi+ Y+, Yi=o,
where
X+ X+ X;=T=Y,+Y,+ ¥,.

A given net of quadrics in [4] can be reduced to this canonical form in ten diffe-
rent ways.

The coefficients which occur are of course different for different quadrics
of the net, but the seven linear forms are fixed for all the quadrics. 1t is al-
ways supposed that the net of quadrics is not specialised in any way.

The seven linear forms occuring are the seven solids 8y, ya, a8, 3, &9, 10,
de where X denotes, as previously, the solid which joins the two conjugate

trisecants.

35. We can use this canonical form of the net of quadrics to obtain a
canonical form for the plane quintic; we have merely to obtain the diseriminant
of the quadric. Let as then, for the moment, regafd Xy, X, T,Y,, Y, as the
five independent coordinates in [4]; the equation to the quadric may be written

§1(X2+X3—T)2 +§2X§+§3X§+sz+m(Y2+ Y;— T+, Yi+ g Yi=o.

The discriminant of this is
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£+ & £ —& o o
& &+ & —& o o
d=| —§ —& &+t — — M
0 o M Ny ne 7
o o M L N+ 7

Now add the second and fourth rows of «/ to its middle row and, in the mo-
dified determinant, add the second and fourth columns to the middle column; we

obtain
E + & & o 0 o
& £+ & & o o
A= o] & S trtn m o]
o o 72 n ot n 4
o o o M U

It follows that thes ¢s a canonical form for the terhary quintic, where now
£, &, &, T, 1, n,, n; are seven homogeneous linear functions of three variables.

The expanded form of 7 is

(§2§3 + 5§ + §1§2)771772’73 + (772773 + oyt ’71’72)§1§2§3 +
+ T(§2§3 + 8686+ & §2)(772773 + sy Ty 172)a

and this is exactly the same form as that obtained in § 27.
The equation of the contact quartic associated with those quadrics of N
which touch the solid I X, + m X, +nT +p Y, + ¢ ¥Y;=o0 is

§ + & g, o} o 0 l
& § + & §s o o m
o] &, L+t s o} nl_ o
o o M2 U U ¥z
o o o o omtns g
{ m n P q o]

* contact quartics of the system $ by giving different va-

and we obtain the o
lues to the ratios {:m:n:p:q. We have already met with the equations of
certain quartics of this system: for example

31-—34472. Acta mathematica. 64. Imprimé le 3 novembre 1934.
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(Eobs + Bs & + 5 ) (momy + memy+ 1y 7)) =0

is the contact quartic associated with those quadrics of N which touch X; the
equation of 3 is 7'=o0, and the contact quartic is obtained by putting [ =m =
=p = ¢ =0 and expanding the determinant. Similarly the other contact quar-
ties arise by giving appropriate values to 1,m, n, p, ¢ and expanding the deter-

minant.



