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Sobolev functions whose inner
trace at the boundary is zero

David Swanson and William P. Ziemer

Abstract. Let QCR™ be an arbitrary open set. In this paper it is shown that if a Sobolev
function fE€WP(Q) possesses a zero trace (in the sense of Lebesgue points) on 9, then f is
weakly zero on Q in the sense that f€W, P(Q).

1. Notation and preliminaries

If QCR™ is an open set, W5P(2), p>1, will denote the Sobolev space of
functions fe€LP(§) whose distributional derivatives of order up to and including %
are also elements of LP(2). The norm on W*?(Q) is defined by

7l :<Z /Q ID"prda:)l/p

fol<k

and WP(2) is defined as the closure in W*?(Q) of the family of C* functions in
Q with compact support. It is well known that the space of Bessel potentials

LFP(R):={f: f =Gi*g, g€ LF(R™)}

with norm || f||p:=]lg]l, is isometric to W*P(R™). For arbitrary a>0, the Bessel
kernel G, is that function whose Fourier transform is

Gal2) = (2m) /2 (Lt [2f)e/2.
The Bessel capacity of an arbitrary set ECR™ is defined as

Chop(B) i=inf{|lgllp: g € LP(R"), 9>0, Gyrg>1 on E}.
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When k=1 and 1<p<oo, this capacity is equivalent to the p-capacity, v,, whose
definition is given by

&) =nt{ [ (17 +1DrP) e},

where the infimum is taken over all feW!P(R") for which E is contained in the
interior of {f>1}. When p>n the p-capacity of any non-empty set is positive. The
Lebesgue measure of a set ECR™ is denoted by |E| and B(x,r) is the open ball of
radius r centered at z. The dimension of the Euclidean space on which Lebesgue
measure is defined will be clear from the context. Hausdorff (n—1)-dimensional
measure will be denoted by H™ . The integral average of a function f over a set

E is denoted by
i),
= x)dx.
fr-m L@

An integrable function f is said to possess a Lebesgue point at zg if there is a
number [=[(zy) such that

lim |f(y)—1l dy=0.

779 B(zo,r)
Recall that [=f almost everywhere. Also, f is said to be approximately continuous
at zq if there is a measurable set F with metric density one at zo such that

lim |f(z)—f(z0)[=0.

T—Zg

€l

Note that if f has a Lebesgue point at zg and I(xg)=f(zo), then f is approximately
continuous at xg.
If f EW(;c P(£2), then the function f* defined as

Slz) ifzeq,

(L) ﬁmr={0 fooa

is an element of W*P(R™). It is well known that a Sobolev function feW*P(R™)
possesses a Lebesgue point everywhere except for a Cp, null set, cf. [Z, Theo-
rem 3.3.3]. Furthermore, if feWa?(Q), it is not, difficult to prove that

1
(1.2) lim [ (y)dy=lim ———~ f(y)dy=0
™0/ B(x,r) =0 |B(z,7)| Jp(z,r)ne

for Ci p-q-e. zeR™\ Y, in particular for Cy p-q.e. €. The converse of this is one
of the main results in [AH] which states the following.
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1.1. Theorem. ([AH, Theorem 9.1.3]) Let k be a positive integer, let 1<p<co
and let feWPP(R™). If QCR™ is an arbitrary open set, then FeWEP(Q) if and
only if

(13) tm | DPf(y)ldy=0
r—0 B(z,r)

for Cy_ig,p-2-6- TER™\Q and for all multiindices 38, 0<|B|<k—1.

For W1P(R™), 1<p<oo, this result is due to Havin [H] and Bagby [B].

A natural question arises whether the assumption that f€W¥P(R"™) can be
replaced by the weaker one, f€W*P(Q2), in which case (1.3) would have to be
replaced by

1
[ P rwldy=o.
B(z,r)NQ

r—0 rh

A similar question is raised in [AH, Section 9.12.1] concerning a different result.
The purpose of this note is to provide an affirmative answer to this question.

In the course of this development, we will utilize the space BV, the class of
functions of bounded variation.

1.2. Definitions. The space BV(Q) consists of all real-valued integrable func-
tions f defined on Q with the property that the distributional partial derivatives
of f are totally finite Radon measures. The total variation measure of the vector
valued measure associated with the gradient of f is denoted by || D f||. When viewed
as a linear functional, its value on a nonnegative real-valued continuous function g
supported in £ is

||Df||<g>=sup{ /Q gdivude:ve O (@R, Ju(z)| < f(z), xeﬂ},

and its value on a set F is || Df||(E). The space BVy,.(2) consists of all functions
f defined on € with the property that feBV(Q') for every open set €' compactly
contained in Q. The measure theoretic boundary of a set ECR™ is defined as

_ |EﬂB(x,r)|} { .. |EnB(z,r)| }
O FE=_z:0<limsup ——————— >N z:liminf ———————— <1 }.
" { 0" |B(@,7)] 0 [B(z,7)]

If H"1(8,, EN§)<oo, then E is said to have finite perimeter in Q.

Functions in BV(R™) can be characterized in terms of their behavior as func-
tions of one variable. For this, consider a real valued function g defined on the
interval [a, b]. The essential variation of g on [a,b] is defined as

SVb( — { - N—alt:
ess V2(g) :=supq > _lg(t:)—g(ti1)l ¢,
=1
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where the supremum is taken over all finite partitions of [a, b] induced by a<to<t; <
ta <...<tp<b, where g is approximately continuous at each point of {fo,¢1,...,{x}-

Now consider fEBV(R™) as a function of a single variable z, while keep-
ing the remaining (n—1) variables fixed. Thus, let #,:=(z1,%2,...,Zn—1) and
define fz, (£):=f(%y,t). In a similar manner, we can define the remaining func-
tions fz,, fanseees fo,_,. A Tunction fEBV,.(R") if and only if for almost every
ExeR™ Y, ess VI fs (- )<oo and

(1.4) /Ress VI fa(+) dE < 00

for each rectangular cell RCR™ 1, k€{1,2,...,n}, and —oo<ay<bi<oo.
Another characterization of BV(2) is due to Fleming and Rishel [FR], and its
statement most suitable for our purposes can be found in [Z, Theorem 5.4.4].

1.3. Theorem. If QCR" is open and f€BV(Q), then
(1.5) ID71@) = [ A @A)
Rl

where Ag:={x:f(x)>t}. Conversely, if fEL'(Q) and A; has finite perimeter in
for almost oll t with

(1.6) H"1(8,,A:NQ) dt < o0,
R!

then feBV(§).

In addition we will need the following known results concerning BV and Sobolev
functions.

1.4. Theorem. (|F, Theorem 4.5.9(29)]) If feBV(R") is approximately con-
tinuous at H" '-almost all points of R™, then f is continuous on almost all lines
parallel to the coordinate axes.

1.5. Theorem. ([GZ, Theorem 7.45]) A function f defined on [a,b] is abso-
lutely continuous if and only if f is of bounded variation, continuous, and carries
sets of measure zero inlo sets of measure zero.

1.6. Theorem. ([Z, Theorem 2.1.4]) Suppose feW'P(Q2), p>1. Let ' CC.
Then f has a representative f that is absolutely continuous on almost all line
segments of §Y that are parallel to the coordinate azes, and the classical par-
tial derivatives of f agree almost everywhere with the distribulional derivatives

of w. Conwversely, if f has such a representative and the classical partial deriva-
tives D1 f,..., Dnf together with f are in LP(Q') then fEWLP(QY).
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2. The main result
We are now in a position to prove our theorem.

2.1. Theorem. Let QCR™ be an arbitrary open set and let f be a function
defined on Q with the property that f EBV () for every open bounded subset Q' CS).
If f* is approzimately continuous H" -a.e. in R", then f*€BV.(R").

Proof. Let Ay:={f>t} and Aj:={f*>t}. We claim that H" '[9, A} \Q]=0
for each t£0. For this purpose, let g €R™\ 2 be a point of approximate continuity
of f*. Then f*(z¢)=0 and

(2.1) Jim f*(z)=0
xEEO

for some set ECR’™ whose metric density is one at xg. If £>0 this implies that

NB
L AnB Dl
r—=0  |B(zo,7)|

and therefore that zo¢0,AF. Similarly, if t<0 let By :={f*<t}. Then equation
(2.1) implies that

BiNnB AinB
lim Lt(ﬂ =0 and therefore lim l—t—M =1,

r>0  |B(zo,r)| r—=0  [B(zg,r)|

thus showing that zo¢0,, A7. Since H" !-a.e. point of R™\Q is a point of approx-
imate continuity of f*, this shows that H"~![8,, A} \Q]=0 for all ¢£0.

Having established our claim, it follows that for any bounded open set U CR",

/ H™ (9 AT dt = / HP=Y(9,, AT NQNT) dt

:/m H"1(9,, A, dt = | DF|(QNT) < oo,

where the third equality is implied by (1.5) and is finite by the assumption that

FeBV(QNU). That f*€BV(U) now follows from the first equality and (1.6). Since
U is arbitrary, we conclude that f*€BV..(R"™), as desired. [

2.2. Theorem. Let QCR” be an arbitrary open set and assume fCWP(Q),
1<p<oo, has the property that

.1
(22) lim — ) dy=0
r=0r B(z,r)nQ
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for yp-g.e. €N, Then FeW,P(R).

Except for a factor of %, the left side of (2.2) could be interpreted as the inner
trace of f on domains with sufficient regularity, for example, on domains of finite
perimeter. Thus our theorem states that if the inner trace of f is zero 7,-g.e. on
90, then fEWyP(Q).

Proof. Define f* as in (1.1). The proof consists of the following steps.

Step 1. The function f* is approximately continuous H™ !-a.e. in R".

Recall that f has a Lebesgue point at «y,-g.e. point in Q. Furthermore, for
any set E, 7,(E)=0 implies H™ ?*¢(E)=0 for all €>0, cf. [Z, Theorem 2.6.16]. In
particular, H"~1(£)=0. Consequently, f* has a Lebesgue point at H™ !-almost
all points in €. Furthermore, for v,-q.e. z€99, we know that

lim () dy = lim, ~ /B g T@l=o

r—0 B(z,r) r—Q rn

so f* has a Lebesgue point at H® '-a.e. point in 0. Finally, f* is identically
zero on R™\ ) and therefore we conclude that f* is approximately continuous at
H" l.ae. on R".

Step 2. We know from Theorem 2.1 that f*€BV,.(R™).

Step 3. The function f* is continuous on almost all line segments parallel to
the coordinate axes.
This follows from Steps 1, 2 and Theorem 1.4.

Step 4. The function f* is of bounded variation on each bounded interval of
almost all lines parallel to the coordinate axes.
This follows from Step 2 and (1.4).

Step 5. The function f* is absolutely continuous on almost all line segments
parallel to the coordinate axes.

In view of Theorem 1.5 we must show that on almost all line segments parallel
to the coordinate axes, f* (as a function of one variable) carries sets of Lebesgue
measure zero (linear measure zero) into sets of Lebesgue measure zero. For this,
consider for example a line segment A parallel to the n*" coordinate axis passing
through the point z=(%,z,) with the property that f*(Z,-) is continuous and of
bounded variation and that f(Z, - ) is absolutely continuous on each bounded interval
contained in ANE. Recall from Steps 3 and 4 and Theorem 1.6 that almost all 2
in R™®~! have this property. Let ECX be a set of linear measure zero and let I be
any bounded, open interval of ANQ. For any closed interval JCI, it follows from
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Theorem 1.6 that f*(JNE) is of measure zero and therefore, by a limiting process,
f*(INE) is of measure zero. Hence, ENANS is carried into a set of measure zero.
Finally, f* is constantly zero on ENAN(R™\2), and so f* carries sets of measure
zero into measure zero.

Step 6. From Step 5 we see that the distributional partial derivatives of f*
are functions and Step 2 implies that |Df*|€Li (R'). Since the classical partial
derivatives of f* exist almost everywhere on R"™, we have that D f*=0 a.e. on R™\Q
and that Df*=Df on Q. Consequently, |Df*|€ LP(R™). Theorem 1.6 implies that
FreWblP(R™) and since

lim If*(y)idy=0

—=YJ B(z,r)
for vp-q.e. z€R™\Q, it follows from Theorem 1.1 that f*EWOI”’(Q). As f*=f on
Q, it follows that feW3P(Q) as desired. O

3. Extensions to WP (Q)

As in Theorem 2.2, we address the problem of replacing the requirement that
feWk?(R™) with feWHP(Q). This will be an easy consequence of Theorems 1.1
and 2.1.

For this, we begin with the following observation. If QCR™ is an arbitrary
open set, and feWeP(Q), then f*eWH?(R") and

(3.1) Do f*=(D*f)”
for each multiindex 0<|a|<k.

We now are in a position to prove the following.

3.1. Theorem. Let k be a positive integer, let 1<p<oco and let fcWFP(Q).
If QCR™ is an arbitrary open set, then feW(;c’p(Q) if and only if

1
(3.2) t = [ D?f)ldy=0
B(z,r)NQ

r—0 17"

for Cr_ g p-q-€. zER™\Q and for all multiindices 8, 0<|8|<k—1.

Proof. The proof of sufficiency is immediate and thus we will consider only
necessity. This proceeds by induction on k with the case k=1 having been estab-
lished by Theorem 2.2. Assume that feW*P(Q) satisfies condition (3.2). Then
FeW =12(Q), and since Cy_1-|g),, <Ck—|g),p for every multiindex 8, 0<|8|<k—2,
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it follows that f satisfies condition (3.2) as an element of W*~1P(Q). Thus by the
induction hypothesis we conclude that feW, '2(Q) and hence f*e W+ 1P(R").

Let 8 be a multiindex with |8|=k—1, and define g:=D? f. Then gc WP ()

satisfies the hypotheses of Theorem 2.2, which implies that g* € W1P(R™). Thus by
(3.1), we have that D? f*=(D? f)*cW'P(R") whenever |3|=k—1. It follows that
f*ewr?(R"). Now we may apply Theorem 1.1 to conclude that f*GW(If’p(Q).
This yields our desired conclusion since f*=f on 2. O
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