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Boundary growth theorems
for superharmonic functions

Stephen J. Gardiner

Abstract. This paper examines the boundary behaviour of superharmonic functions on a
half-space in terms of their behaviour along lines normal to the boundary. It is shown that, if the
set of lines along which such functions grow quickly is (in a certain sense) metrically dense, then
the set of lines along which they are bounded below is topologically small.

1. Introduction

Let f be a non-constant holomorphic function on the unit disc, and let E
be the set of boundary points where f has radial limit 0. A classical theorem of
Luzin and Privalov (see [14] or [4, p. 150, Corollary 3]) asserts that, if ENJ has
positive outer measure for every subarc J of a given arc I, then ENI is of first
(Baire) category. A generalization of this result to superharmonic functions, due to
Arsove [1], when reformulated for the half-plane and slightly refined, is as follows.
Recall that a subset E of R is said to be metrically dense in an open interval I if
ENJ has positive outer Lebesgue measure for every open subinterval J of 1.

Theorem A. Letu be a superharmonic function on Rx(0,+o00) and I be an
open interval. If the set {x€R:limsup, ¢, u(x,y)=-+o0} is metrically dense in I,
then the set {xel:liminf, .o, u(z,y)>—00} is of first category.

Rippon [16, Theorem 6] showed that the natural analogue of Theorem A in
higher dimensions is false: there exists a superharmonic function 4 on R? x (0, +-00)
such that

u(z,y,2) — +oo, as z— 0+, (z,y) € R*\E,

where E is a first category subset of R? with zero area measure. However, the au-
thor [11] has recently shown that Theorem A can be extended to higher dimensions
using the fine topology, that is, the coarsest topology which makes every super-
harmonic function continuous. (See Doob [5, 1.XI| for its basic properties and its
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relationship to the notion of thinness.) Let U be a non-empty finely open subset
of R™. A set F is said to be metrically fine dense in U if, for every non-empty
finely open subset V of U, the set ENV has positive outer Lebesgue measure. Also,
E is said to be of first fine category if it can be expressed as a countable union of
sets Ey such that the fine closure of each Ej has empty fine interior. Relevant facts
here are that every non-empty finely open set has positive measure, and that the
fine topology has the Baire property. Also, the fine topology on R" is strictly finer
than the Euclidean topology when n>2, but the topologies coincide when n=1.
(The superharmonic functions on R are precisely the concave functions and so are
already continuous.)

Points of R", n>2, will be denoted by X or (X’,z) where X'cR""!, and
the half-space R™ ! x (0, +00) will be denoted by D. Theorem A has the following
generalization to all dimensions (see [11, Theorem 1]).

Theorem B. Let u be a superharmonic function on D and U’ be a non-empty
finely open subset of R™ 1. If the set {X'€R" !:limsup,_q, u(X', 2)=+o0} is
metrically fine dense in U’, then the set
(1) {X'EU':liminfu(X',m)>—oo}

z—0+
is of first fine category in R™™1.

Below we show that there is a family of results of this type dealing with various
growth rates for superharmonic functions along lines normal to the boundary. Let
a>0,let ECR™ and U be a finely open subset, of R™. If, for every non-empty finely
open subset V of U, the set ENV has positive a-dimensional Hausdorfl measure
(resp. ENV is non-polar), then we say that E is a-metrically fine dense in U (resp.
capacitarily fine dense in U).

Theorem 1. Let n>2 and n—2<a<n—1, let u be a superharmonic function
on D and let U’ be a finely open subset of R™™ 1. If the sel
(2) {X' eR"! :limsup:z"_lf"‘u(X’,x):—koo}

z—0+
is a-metrically fine dense in U', then the set (1) is of first fine category in R™1.

The special case of Theorem 1 where a=n—1 is Theorem A above. Other values
of o are much more difficult to treat, and new arguments are required. When n=2,
the fine-topological concepts can be replaced by their Euclidean counterparts (and
the proof is much simpler, as we indicate at the end of Section 3), but this is not
the case when n>3, see Example 1 in Section 6.

Theorem 1 fails when a<n—2 (see Example 3(b) in Section 6), but a related
result is obtained by strengthening (2).
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Theorem 2. Let n>3 and n—3<a<n—2, let u be a superharmonic function
on D and let U’ be a finely open subset of R*~ L. If the set

(3) {X'eR™ 1 ig" I oy(X 2) — too, asx—0+}

is a-metrically fine dense in U’, then the sel (1) is of first fine category in R™™1.

The sharpness of the growth rates in (2) and (3) will be demonstrated by
Examples 2 and 3 in Section 6. If n>3 and 0<a<n—3, and if a set E/CR" ! is
capacitarily fine dense in a finely open set U’, then E’ is a-metrically fine dense in
U’ because of the well-known relationship between Hausdorff measure and capacity
(see [3, IV]). However, the converse is also true since, if there is a non-empty finely
open subset V’ of U’ such that E'NV’ is polar, then V/\E’ is a non-empty finely
open subset of U’ which is disjoint from E’, and so E’ is not a-metrically fine dense
in U’. Hence the case where n>3 and 0<a<n—3 is covered by the following result.

Theorem 3. Let n>3, let U,:(0,1)—>R be given by ¥, (t)=t?, n>4, and
Us(t)=t2log(1/t), let u be a superharmonic function on D and U’ be a finely open
subset of R* 1. If the set

{X' R :liminf U, (z)u(X’, ) > 0}

z—0+

is capacitarily fine dense in U’, then the set (1) is of first fine category in R™ 1.

Following some preliminary lemmas in Section 2, Theorems 1-3 are proved in
Sections 3-5 and several examples illustrating the sharpness of these results are
provided in Section 6.

2. Preliminary lemmas
2.1. We refer to Doob [5, 1.XII] for the notion of minimal thinness.

Lemma 1. Let n>3 and A’CR™ !, and let X'eR* . The following are
equivalent:

(a) A’ is thin at X';

(b) A’xR is thin at (X',z) for all t€R,;

(c) A'x(0,400) is minimally thin with respect to D at (X',0).

For the equivalence of (a) and (b) above, see [11, Lemma 2] or [12]. It remains
to establish the equivalence of (b) and (c¢). For this we recall the facts that, for

a subset A of D and a cone Cx/ ={(Y',y):y>alY’'—X’|}, where X’€R" ! and
a>>0, thinness of A at (X’,0) implies minimal thinness of A with respect to D at
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(X’,0), and thinness of ANCx, at (X’,0) is equivalent to minimal thinness of
ANCx: , with respect to D at (X’,0) (see Lelong-Ferrand [13, Section 6)).

If (b) holds, then A’x (0,+o00) is thin at (X’,0) and (c) follows. Conversely,
suppose that (c) holds, and let C=CY, 5. Then CN(A’x(0,+0c0)) is minimally
thin, and hence thin, at (X’,0). By the integral form of Wiener’s criterion (see

2, p- 81}},
/ " C*({Y € CN(A' % (0, 400)) : [Y — (X', 0)]2~" > £}) dt < o0,

where C*(-) denotes outer Newtonian capacity for R™. If b>0, then
{YeC:Iy—(X",0)|<b} 2 {(Y",y):|Y'-X'| < 1band 1VBb<y< 1VI50}.
Hence, by translational symmetry and the observation that v/15 —v/3 >2,

C*({Y € CN(A' x (0, +00)): [Y —(X’,0)] <b})
>C*({Y e A'xR:|Y —(X',0)| < 1b}).

Thus .
/ C({V € A’ xR: [¥ — (X', 0)2" > t}) dt < 400,
1

and so A’ xR is thin at (X’,0), or indeed at (X', z) for any £€R by translational
symmetry. Hence (b) holds, and Lemma 1 is proved.

2.2. The simplest case of the following lemma, namely where /=R, is partially
covered by (6, Lemma 1].

Lemma 2. Let n>3, let I be an open interval in R, and let V' be a finely
open set in R*1. Then the fine components of V' x 1 are precisely the sets of the
form W' x I, where W' is a fine component of V.

We will give the proof of Lemma 2 for /=(a,b), where a<b; a similar argument
applies to semi-infinite intervals I. We recall (see [6, Corollary 1(i)]) the fact that,
if  is a finely open subset of R™, then there is a set ECR" ! x {0}, which is polar
in R™, such that the set {t€R:(X’,t)€Q} is open in R whenever (X’,0)¢E.

Now let W be a fine component of the set V' x{a,b), which is finely open
by Lemma 1, and let (Y',y)eW. We will deduce that {Y'}x(a,b)CcW. To do
this, let B<e<min{b—y,y—a}. By the local connectedness of the fine topology
(see [8, p. 92]) there is a fine domain §2. such that (Y',y)€Q.CV’' x(y—e,y+e).
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Also, by the fact recalled in the preceding paragraph, there exists Z’€R"! and an
interval (¢, d) such that {Z'} x(¢,d)CQe. If |n|<d—¢, then

QN{(X",z+n) (X', x)€Q} #D

and so the set
QU{(X',z+7n): (X', z) €Q:}

is a fine domain. By repeated application of this observation we see that

U {(X",z+n): (X' z)€Q}CW,

a—y+e<n<b—y—=e

and hence that {Y'} x (a+¢&,b—¢)CW. The number ¢ can be arbitrarily small, so
{Y'} x(a,b)CW. Since (Y',y) was an arbitrary point of W, we conclude that W
can be written as W’ x (a,b). Also, since W is finely open in R™ (see [8, p. 146]), it
follows from Lemma 1 that W' is finely open in R?~*.

If W’ could be expressed as the disjoint union of two non-empty finely open
sets V] and VJ, then by Lemma 1 we would obtain the contradictory conclusion
that W’ x (a, b) is the disjoint union of the finely open sets V{ x (a,b) and V; x (a, b).
Hence W' is finely connected, and so is contained in some fine component U’ of V.
On the other hand, if U’ is a fine component of V', then it follows from the preceding
paragraph that U’ x (a,b) cannot have more than one fine component. The lemma
is now established.

2.3. Let B’(X’,r) denote the open ball in R*~! of centre X’ and radius r. If
XeR", n>3, and ACR", then let % denote the balayage of the Dirac measure
at X onto A relative to superharmonic functions on R"™; that is, ,u}“( is the measure
which satisfies

R xponV)= [ IV-ZP " (2), XeR
R'n.

where Ef denotes the regularized reduced function (balayage) of v on A relative to
superharmonic functions on R™. (See [5, 1.X] for the notion of a swept measure.)
Also, let C(a,b,...) denote a positive constant, depending at most on a,b, ..., not
necessarily the same on any two occurrences.

Lemma 3. Let n>3 and W=W'x(0,1), where W’ is finely open in R""1,
and let XeW . Then there is a set F'CW', of Hausdorff dimension at most n—2,
such that

1

@ Z/B,w o |V ZE G (@) =0, as -0,
1><7
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for all Y in W\ F'.
To see this, let 0<§<3 and X=(X’,z), and define
U=(W'UB'(X',6))xR.
IfY'eW\B'(X’,28) and 0<t<§, then
(5) 1y Wisrvyxesn <sw U lBivx(b3i);
by a comparison of fine harmonic measures for the sets W and U (see [8, Section 14]).

If F is a Borel set in R", then by Harnack’s inequality and the translational invari-
ance of U,

R™M\U R™M\U
{2 2 tn) (2, 2) e BY =y (B)
<C(n,6,muk “(E), neR,
where C(n,é,1n)—1, as n—0. It follows that, if we define the finite measure ¢’ on
W\B'(X',5) by
W(E)=px 7 (B % (0,1))

for any Borel set E' in R*~!, then
/ (v',20- 2P\ (2)
BI(Y',t)x (t,3t)

3t
<o) [ [ en-(2 P dean(2)
(Y’ t)y Jt

(6) t/1Z'—Y|
=C(n, 5)/ |Z’—Y'|3—"/ (1482 ds du'(2")
BIYt) o
< { C(n,é) fB/(Y’,t) |Z/_Y,|3~n d:u'/(Z/)a n247
C(n,8) fB,(Y,7t) log(2t/|Z'—Y'|)dp/'(Z2"), mn=3.
Now let e>0 and a>n—2, and suppose that Y’ satisfies
(7) my(r) <r®, 0<r<e,
where

my(r) =W (B'(Y",r)).



Boundary growth theorems for superharmonic functions 261

It follows from (6), (7) and integration by parts that, if n>4, then

1 C(n,9)

t
= / (Y, 2t) - 2P dy (7)< m2— / r" dmy (r)
tJ By )% (8.,30) 3 0

(8)
C(n,8) [*

S#/ 2 "y (r) dr 4+t " my (£) — 0, t—0,
0

and if n=3, then similarly

1 , ~1 ; RM\U 0(5) !
- |(Y',20)-Z|7 dux 7 (Z2) < ——= [ log(2t/r)dmy(r)
9) b J By )% (1,30) t Jo

t—0.

—0,

The subset S, , of points Y’ of R*~! where (7) fails to hold can be covered by a
collection of open balls B'(Y',ry+), where ry/<e and my/(ry/)>r%,. By a well-
known covering lemma (see, for example, [18, pp. 9-10]) there is a countable disjoint
subcollection {B'(Y/,r):k>1} such that S. ,CJ, B'(Y},57r%). Hence

> (Bre)* <5* > my, (re) 5%/ (R,
k k

Since e can be arbitrarily small, it follows from (5), (8) and (9) that the set of all
Y’ in W\B'(X’,26) for which (4) fails to hold has finite a-dimensional Hausdorff
measure. Since 6 can be arbitrarily small and « can be arbitrarily close to n—2,
the lemma is proved.

2.4. For each Y/ in R® !, let hy+ denote the half-space Poisson kernel given
by
2max{l,n—2}x
(|X'—Y’|2+IL‘2)”/2 ?

Also, let B{X,r) denote the open ball in R™ with centre X and radius r.

s (X) = X =(X',z)e D\{(Y",0)}.

Lemma 4. Let n>3 and W=W'x(0,1), where W' is finely open in R"?,
and let

GW(X,Y):IX—Y|2‘"—[|Y7Z|2‘"du§n\W(Z), X,Yew.
D

Then there is a set F'CW’, of Hausdorff dimension at most n—2, such that

GW<X1 (Y’7 y))

Y HUy/(X), y—)O-F, XGVI/, YIEW/\FI,
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where
— R™\W 7 n—1
vy/(X)—hyf(X)—/M hy(2) W (2), X eW, Y'eR.
D

To prove this, recall that the half-space Green function Gp(-, -) satisfies
(10) Gp((X',2),(Y",9)) = (X, )~ (Y, )" —|(X",2) = (Y, —y)|*7"
<2(n—2)zyl(X',z)-(Y',y)|™"
and

Go(X, (Y',y))
)
Further, if | Z—(Y’,y)|>1y, then

1Z—(Y',0)|<1Z- (", y)l+y <3|1Z—(Y',y)l,

—hy(X), y—0+ YER"! XeD.

50

Go((Y',y),2)
y

by (10). Let X €W. Since hy is integrable with respect to the measure u?n\w, it
follows by dominated convergence that

/ Go((Y',y),2)
DAB((Y",),5/2) Y

for any Y’ in R" 1. Also, since Gp(Y, Z)<|Y —Z[*™, it follows from Lemma 3
(with t:%y) that there is a set F'CW’, of Hausdorff dimension at most n—2, such

that ,
GD((Y ’ y)7 Z) d;zgn\w

<3%hy (2),

auly W (2) - / hy (Z)duy W (Z), y— 0t
D

-0, y—0+ Y eW\F.

B((Y',9),y/2) Y
Hence
LGD(( 1) 2 \WH/ hy (Z)duy 7 (2), y— 0+, Y EW\F'.
s}
Since

/5 (" —9)— 2P apl Y (2) = (', —y) - X,y >0,
we see that

Gw(X,Y)=Gp(X,Y) /GDYZWX W(2),

and so Cor( X (V'
—_———W( ’y( ’y»—)l)y/(X), y— 0+, YIGW/\F/,

as required.



Boundary growth theorems for superharmonic functions 263

3. Proof of Theorem 1

We first deal with the case where n>3 and suppose to the contrary that the
set E’, defined by

E = {X’ c U’ :liminf u(X',z) > —oo},

z—04+

is not of first category. Since E'=|J;- , Ej, where
E,={X'eE:u(X',x) >~k for all z € (0,1)},

there exists kg such that the fine closure of E,’CO has non-empty fine interior R’. The
set V', given by V'=R'NU’, is thus a non-empty finely open subset of U’. Let W’
be a fine component of V'. Then, by Lemma 2, the set W=W'x(0,1) is a fine
component of V' x(0,1). 1t follows from Lemma 1 and the fine continuity of u that
u>—ko on R'x(0,1), and hence on W. Further, the fine domain W is contained in
one (Euclidean) component, 2 say, of the open set {Xe€D:u(X)>—-ky—1}.

Since W' is finely open, R*“*\W’ is thin at each point of W’ and so, by
Lemma 1, D\W is minimally thin with respect to D at each point of W' x{0}. For
each Y/'eW’ it follows that vy:#0, where vy is the function defined in Lemma 4,
80 vy >0 on the fine domain W. Since the Green function, Gg(-, -), for  satis-
fies Gy <Ggq on WxW, it follows from Lemma 4 that there is a set F/'CW’, of
Hausdorff dimension at most n—2, such that

f
Jim nt G2 9)

>0, XeW, Y eW\F.
y—0+ Yy

Let Xo be a point of W where u is finite, let A’ be a (Euclidean) compact subset
of W' which has non-empty fine interior and let

A ;={Y' € A:Ga(Xo,(Y',y)) > y/i whenever 0 <y <j 4, 4,jeN.
Then each A; ; is a compact set and
(11) ANF'C | A
ig=1

We temporarily fix 1 and j and use w to denote the balayage of the positive
superharmonic function u+kg+1 relative to the set A, ; :Ag,j x (0,71 in Q. Then,



264 Stephen J. Gardiner

by the Riesz decomposition, [5, 1.XI1.(17.3)], [15, Théorémes 12, 13] and the fact
that A} ;CA'CW’, there are measures y on A; ; and v on A} ; x {0} such that

w(X):/ Ga(X,Y) d,u(Y)-{-/ uy(X)dv(Y',0), Xe€Q,
Aiyj Afi)jX{O}

where
— R™\Q ’ n—1
uY/(X)—hy/(X)—/hy/(Z) 4®\(2), Xeq, Y eRL
Also, by [15, p. 220],

¢ X 1
(12) uY/(Xo)}_limsup%Y’y)—’—o)zf, Y/ €Al
y—0+ y ? >

We define

mX(T):/ ydu(Y' y)+v((AL, x {OWNB(X, 1), XeQ, r>0,
A;;NB(X,r)

Let (X',2)eQ and suppose that
(13) mx: 5 (r) <ar®, r>0,
for some a>0. Then
/ Ga((X',2), (Y',y)) du(Y",y)
B((X',z),2/2)
</a) | (X, 2)— (V) Py da(Y, )
B((X'",x),x/2)
z/2
=(2/z) / rn dmx: z)(7)
0

z/2
< (Z/x)"_lm(X/’z)(x/2)+(n~2)(2/;17) /0 rl'”m(X/,z) (r)dr

<C(n,a)ax*t=m,
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and, using (10),

)= [ Gal(X',2), (V")) (¥, )
B(X',x),z/2)

IA

Co((X,2), (V') du(Y", )+ / by (X) di(Y",0)
D\B((X’,z),z/2) ap

<2(n-2) / (X 2)— (Y, )| "y du(Y',y) + (Y, )
D\B((X',z),x/2)

+o0
=2(n—2)x / T dm x5 (1)
z/2

+oo
< 2n(n—2)x/ T iy g (1) dr
z/2
<C(n,a)az>Tim,
Thus
" 1w (X' 1) < C(n, a)a
for any (X', z) in Q which satisfies (13). The subset S, of A, ; where (13) fails to hold
can be covered by a collection of open balls B(X,rx), such that ry <14diam (A’)

and mx(rx)>ar%. As in Section 2.3 there is a countable disjoint subcollection
{B(X,r):k>1} such that S, CJ, B(Xk,5rk). Hence

> (5ri)* < % > mx, (re)
k k
o ' ’
<T ([ vanormyrae <ion)

5%
<2t ( / Ga(Xo, (Y',1)) du(Y", y)+ / uy(Xo) dv(Y’,0>)
& \Ja;; A ;x{0}

5% 5%

TUJ(XO) < —( (Xo)+ko+1),

using (12) and the definition of A; ;. Since u(Xp)<+oo and w=u+ko+1 on A; ;,
apart from a polar set (which has Hausdorff dimension at most n—2), and since a
can be arbitrarily large, we see that

limsup 2™ '~ u(X', z) <+oo, X'€A; \Z]

7,79
z—0+ g

where Z’ has zero a-dimensional Hausdorff measure. Since this is true for any
choice of 7 z and j, we conclude from (11) that

limsup 2"~ u(X’, 7) <400, X' € A\(F'UZ'),

x—0+



266 Stephen J. Gardiner

where Z’ has zero a-dimensional Hausdorff measure. This contradicts our hypoth-
esis since A’ has non-empty fine interior.

Theorem 1 is now proved in the case where n>3. The case where n=2 is much
easier: if E’ is of second category (in R) then there exists ko such that (E_,’CO)O#@,
where Ej is as defined above. Further, it follows easily from Wiener’s criterion
that E_x(0,1] is non-thin at each point of EJ x (0,1], so u>—ko on (B} ) x(0,1].
Standard estimates for the Green function and Poisson kernel of a half-disc can now
be used in conjunction with the argument following (12) above to obtain the result.

4. Proof of Theorem 2

To prove Theorem 2, we again suppose that the set (1) is not of first fine
category and define kg, W' and € as in the first paragraph of Section 3. Let
F’ denote the set (3). By hypothesis, the set F'NW' has positive a-dimensional
Hausdorff measure. Now

R I\F' = D - D Cl ks
i=1 j=1 k—j

where C; ; is the canonical projection onto R~ of the closed set
(Y, y): (k+1)" P <y <k Y and y" (Y, y) <1},

and since each C7 ; is closed, F” is a Borel subset of R™ 1. Since the fine topology
has a neighbourhood base consisting of Euclidean compact sets, and also has the
quasi-Lindelof property (see [5, 1.XL.11]), we can write W' as A'UZ’, where A’ is
a Euclidean F, set and Z’ is polar in R"™!, The set Z’ has zero a-dimensional
Hausdorff measure because a:>>n—3. Hence F'NA’ is a Borel subset of F'NW’ of
positive a-dimensional measure, and it follows (see [3, II, Theorem 2]) that there is
a compact subset K’ of F'NW’ of positive a-dimensional measure. By Frostman’s
lemma (see [3, IT, Theorem 1]), there is a non-zero measure v on K’ such that

v(B'(X',r))<r® r>0, X'eR"".

The measure v cannot charge any polar set in R"~! since such a set has Hausdorff
dimension at most n—3. Using integration by parts it follows that the Poisson
integral

h(X) :/Rn71 hy/(X) dI/(YI), XeD,
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satisfies

+oo

! !
h(X' z)=2n(n—2) .'1:/0 o —|—a:2 Iy v(B"(X',r))dr

+oo

(14) <2n(n—2) x/o r2+x2 ST &
1+a +oo
<2n(n—2)z (/ dr+/ pe-ion dr)
a+1 n

for (X’,z)eD, where c=C(n, a).

For each Y’ in W', the set D\ is minimally thin with respect to D at (Y’,0),
80 uy#0, where uy- is as defined in Section 3. Thus (see {15, Théoreme 12]) uy~
is a minimal harmonic function on €. Let Y, denote the minimal Martin boundary
point of Q associated with uy+. Then, for any subset E of (2, it follows from a result
of Naim [15, Théoréme 15] that F is minimally thin with respect to D at (Y”,0) if
and only if F is minimally thin with respect to Q at Y.

We define the sets

={Y'cK :y" (Y y)>iforallye (0,57}, i,j€N,

which are finely closed, by Lemma 1 and the fine continuity of u. For each i, j there
is a polar subset Z; ; of F],; such that F}; is non-thin at each point of Fj \Z ;
(see [5, 1.XL.6]). Hence by Lemma 1 and the above result of Naim, F/ ;% (0,57") is
not minimally thin with respect to Q at Y for each Y” in F] ;\Z] ;. Since u+ko+1
is a positive superharmonic function on € and

u(X)Hhot12 *h(X), X € Flyx (0,57,
(see (14)), it follows (see [5, 1.XI1.17, Application]) that

w(X)+ko+1> %/ uy (X)dv(Y'), XeqQ,
4

(recall that v does not charge the polar set Z; ;). Since K'CF’, we have U;’il E!
K’, and hence

U(X)‘Fko‘l-lZ%/ uy/(X) dll(Y’), XeQ.
K/

Finally, since ¢ can be arbitrarily large, we obtain the contradictory conclusion that
u=4o00 on the open set . Thus E’ must be of first fine category and Theorem 2
is proved.
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5. Proof of Theorem 3

The proof of Theorem 3 is similar in approach to that of Theorem 2. The set
K' now has positive (Newtonian or logarithmic) capacity in R*!, and hence is not
o-finite with respect to the Hausdorff measure associated with the measure function

o-{ " "
| (logt1/t) Y, n=3,
(see |3, IV, Theorem 1]). It follows (see [17, pp. 83-84]) that there is an increasing
continuous function ®:(0,+00)—(0,1] such that ®(¢)/¢(t)—0, as t—0+, and K’
is not o-finite with respect to the Hausdorff measure associated with the measure
function ®. By Frostman’s lemma there is a measure v on K’ such that
v(B' (X', r)<®(r), r>0, X'eR" .

Arguing as in (14), we see that the half space Poisson integral h of v satisfies

P

2n(n—2)x ~ Jg xznt?

< (s SOV ([ ari [“rtoyar) e [t

when O0<xz<a. If n>4, then

IN

3 n’

ot g HO) Lo

0<t<a ¢

S0
Pt

limsup z?h(X’,z) <C(n) sup Q

z—0+ 0<i<a ¢(t>

If n=3, then (provided a<e™!/2)

= (o 50 UL somgtm o+ [ smE )
(3

t
0<toa § tt)) ) (2353 102(1/:5) + LB log(ll/r)]::z> +%’

d(t
lim sup 22 log(1/z)h(X’,2) < C sup Q
r—0+ <t<a ¢(t)
In either case, since ®(t)/¢(t)—0, as t—0+, and a can be arbitrarily small, we see

that

SO

U, (o)X ,2) -0, z—0+ X' eR" L
The argument now proceeds as before except that we define

Fil,j = {Y’ cK’: u(Y’7y) 2ih(Y’7 y) for all y € (07j—1)}'
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6. Sharpness of Theorems 1-3

6.1. The fine topology plays an essential role in Theorems 1-3, as the following
example shows.

Ezxample 1. If n>3, then there is a superharmonic function v on D such that
(15) " (X, x) — oo, x— 0+,

for (n—1)-almost every X’€R™ ! and such that, for any non-empty open set U’C
R™ ! the set

(16) {X'EU’:lizn_l)%rifu(X’,a:)>—oo}

is of second category with respect to the Euclidean topology on R™ 1.

To see this, we slightly amend an argument of Rippon [16, Theorem 6. Let
(Ek)32, be an increasing sequence of closed nowhere dense subsets of R such that
the set (Jp- , Ep is of full measure in R, and let

s

F=| ] (Exx(0,1/k]).

k

1

By a known approximation result (see [10, Corollary 3.21]) there is a harmonic
function v on R x (0, 4+00) such that

lv(z1,22)—25 "] <1, (z1,22)€F.

Next, let s be a superharmonic function on R™~! which is valued +oo on a dense
set of points, and define

W1y ey o) =0(T1, Tn)+5(T1, -0, Bp1)y (T1yeee,Tp) €D,
Then (15) holds for almost every X’€R™ L. Also, for any non-empty open set U’
in R !, the set
UN{X'eR" 1 :5(X") =+oo} = | J{X' €U :5(X) <k}
k=1

is of first category, in view of the lower semicontinuity of s, and so the set (16) is
of second category in R"~ 1.
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6.2. The next example demonstrates the sharpness of the growth condition in
Theorem 1 when n=2. Let m, denote a-dimensional Hausdorfl measure.

Ezample 2. Let D=Rx(0,+00) and 0<a<1. There is a positive harmonic
function v on D such that, for every open interval I in R,

i 3 -
ma({zef.hyrggify u(x,y)>0}) >0.

If @=1, then we can simply define u=1. Thus, in proving Example 2, we may
suppose that a<1. Let §=2"1/%. We construct a Cantor-type set as follows. Let
Ey=[0,1] and, for each j in NU{0}, construct E;41 by removing an open interval of
proportion 128 from the centre of each interval of E;. The set E:ﬂ?‘;o E; then
has finite positive a-dimensional Hausdorff measure (cf. [7, p. 15]). For each j, let y;
be the unit measure consisting of 2/ equal point measures located at the midpoints
of the intervals which comprise £;. Then (p;)22, converges in the w*-topology to
a measure g on F.

The constituent intervals of E; are of length 7. Hence, if z€ E,

w(x—@, z+57]) >277, j=0,
SO
p(lz—r,z+r]) 227971 gt <r< i, j>0,
and thus

pllo—r,z+r]) >271r%, 0<r<1.
Let h denote the Poisson integral of p in D. Then

o =2y [T

(17) o (2—z)2+y?
>y tu(le—y,z+y]) > 2yl z€E, 0<y<l
Now let
+o0 )
= Y 27ln(atiy), (2,9)eD.
=00
Since

lim sup yv(0, y) < 400,
y—-oco

it follows that a positive harmonic function u on D is defined by
u(z,y) = Z Fx,28y),  (z,y) €D,

and it is clear from (17) that u has the property asserted in Example 2.
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6.3. We now demonstrate the sharpness of the growth conditions in Theo-
rems 1 and 2 when n>3.

Ezample 3. Let n>3.
(a) If n—3<a<n-1, then there is a positive harmonic function u on D such
that, for every non-empty finely open set U’ in R"™!, m,(E')>0, where
E'={X' €U :liminf 2"~ 1~*u(X’,2) >0},
z—0+

(b) If n—3<a<n—2, then there is a positive superharmonic function « on D
such that, for every non-empty finely open set U’ in R"*1,

Ma ({X' € E :limsupz" ' " *u(X', 1) = —|—oo}) >0,
z—0+
where E’ is as in (a).

To see this, let n—3<a<n—1. (We again dispense with the trivial case where
a=n—1.) We first note that there is a measure v with support E'C[0,1]""! such
that m,(E')>0 and such that the Poisson integral A of v in D satisfies
(18) hmmfx" ep(X'2) >0, X'€E.

z—0+
{This can be seen by taking v to be a product measure formed from the measure
¢ in the proof of Example 2, using a/(n—1) in place of a, and arguing as in (17).)
Now let
(X' z)= Y 2 VFInX'+i,2), (X',z)€D,
i/ezn—l
and define a positive harmonic function u© on D by writing

oo
u(X)=) v(2*X), XeD.
k=1
If U’ is any finely open set in R*~! and Z’'€U’, then R~ *\U’ is thin at Z'.
Since a>n—3, it follows (see [9, Theorem A]) that there is a sequence of balls
(B'(Z},,me))52, in R such that ry<1|Z’'—Z}| for each k,

o

B'(Z', 1)\U' C U (Z1, 1)

and

Z([Z’ Z’ ) < +00.
=1
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Hence
2k (B'(Z',27F)\U") =0, ask-— o,

whereas (18) and our construction of u ensure that

lim inf 2%%m,, ({X’ €B'(Z,27%) :liminf 2" "*u(X’, z) > 0}) >0.
k—oo z—0+
This establishes (a).

Further, if n—3<a<n—2, then E’'x{0} is polar in R™ since it has o-finite
me-measure. Thus there is a positive superharmonic function w on R™ such that
w=+00 on the polar set F' xQ. If we add w to the harmonic function in (a), we
obtain a positive superharmonic function on D with the desired properties.

6.4. Finally, we indicate the sharpness of the growth condition in Theorem 3.

Example 4. Let n>3. If 0<vy<2, then there is a positive harmonic function u
on D such that, for every non-empty finely open set U’ in R*~!, the set

(19) {X' €U :z2"u(X',x) — +o0, as x —0+}

is non-polar.

To see this, let a=n—2— %fy. Then n—3<a<n—2. Let u be the positive har-
monic function of Example 3(a) and E’ the set defined there. Then m,(E’)>0 and
hence E’ is non-polar in R"~!. Since v<1(y+2)=n—1—a, the set (19) contains
E’ and so is also non-polar.
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