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Boundary growth theorems 
for superharmonic functions 

Stephen J. Gardiner  

Abstract .  This paper examines the boundary behaviour of superharmonic functions on a 
half-space in terms of their behaviour along lines normal to the boundary. It is shown that, if the 
set of lines along which such functions grow quickly is (in a certain sense) metrically dense, then 
the set of lines along which they are bounded below is topologically small. 

1. I n t r o d u c t i o n  

Let f be a non-cons tan t  holomorphic  funct ion on the unit  disc, and let E 

be the set of bounda ry  points  where f has radial limit 0. A classical theorem of 
Luzin and Privalov (see [14] or [4, p. 150, Corol lary 3]) asserts tha t ,  if E A J  has 

positive outer  measure for every subarc J of a given arc I ,  then E n I  is of first 

(Baire) category. A general izat ion of this result to  superharmonic  functions, due to 

Arsove [1], when reformulated for the half-plane and slightly refined, is as follows. 

Recall t ha t  a subset E of R is said to be metrically dense in an open interval I if 
E A J  has positive outer  Lebesgue measure  for every open subinterval J of I .  

T h e o r e m  A.  Let u be a superharmonie function on R • (0, +c~) and I be an 
open interval. I f  the set {xER:l imsupy_~0+ u(x, y ) = + o o }  is metrically dense in I ,  

then the set { x c I : l i m  infy-~0+ u( x, y) > - o c  } is of first category. 

Rippon  [16, Theorem 6] showed tha t  the na tura l  analogue of Theorem A in 
higher dimensions is false: there exists a superharmonic  function u on R 2 • (0, +oo)  
such tha t  

u(x, y, z) as 0+, (x, y) �9 R2\E,  

where E is a first ca tegory  subset of R 2 with zero area m e a s u r e .  However, the au- 

thor  [11] has recently shown tha t  Theorem A can be extended to higher dimensions 

using the fine topology, t ha t  is, the  coarsest topo logy  which makes every super- 

harmonic  funct ion continuous.  (See Doob [5, 1.XI] for its basic propert ies and its 
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relationship to the notion of thinness.) Let U be a non empty finely open subset 

of R n. A set E is said to be metrically fine dense in U if, for every non-empty 

finely open subset V of U, the set EAV has positive outer Lebesgue measure. Also, 

E is said to be of first fine category if it can be expressed as a countable union of 

sets Ek such that the fine closure of each Ek has empty fine interior. Relevant facts 

here are that every non-empty finely open set has positive measure, and that the 

fine topology has the Baire property. Also, the fine topology on R ~ is strictly finer 

than the Euclidean topology when n>2, but the topologies coincide when n-l. 

(The superharmonic functions on R are precisely the concave functions and so are 

already continuous.) 

Points of R ~, n>2, will be denoted by X or (X~,x) where X~ER n-l, and 

the half-space R ~-I x (0, +oc) will be denoted by D. Theorem A has the following 

generalization to all dimensions (see [11, Theorem i]). 

T h e o r e m  B.  Let u be a superharmonic function on D and U r be a non-empty 
finely open subset of R ~-1. I f  the set { X ' E R  n ]:limsup~__~o+ u ( X ' , x  ) +oe} is 
metrically fine dense in U ~, then the set 

(1) { X '  ~ U ' : l i m i n f u ( X ' , x ) > - o c }  
x ~ O +  

is of first fine category in R n-1. 

Below we show that  there is a family of results of this type dealing with various 
growth rates for superharmonic functions along lines normal to the boundary. Let 
a_>0, let E C R  ~ and U be a finely open subset of R% If, for every non-empty finely 
open subset V of U, the set E n V  has positive c~-dimensional Hausdorff measure 
(resp. E A V  is non-polar), then we say that  E is c~-metricallyfine dense in U (resp. 
capacitarily fine dense in U). 

T h e o r e m  1. Let n >_ 2 and n - 2 < c ~ < n - 1 ,  let u be a superharmonic function 
on D and let U ~ be a finely open subset of R n-1. I f  the set 

(2) {X '  E R  ~-1 : l i m s u p x ~ - !  ~ u ( X ' , x ) =  +oe}  
x ~ 0 +  

is a-metrically fine dense in U ~, then the set (1) is of first fine category in R '~ 1. 

The special case of Theorem ] where c ~ = n -  1 is Theorem A above. Other values 
of c~ are much more difficult to treat,  and new arguments are required. When n=2 ,  
the fine-topological concepts can be replaced by their Euclidean counterparts (and 
the proof is much simpler, as we indicate at the end of Section 3), but this is not 
the case when n>3 ,  see Example 1 in Section 6. 

Theorem 1 fails when c~_<n-2 (see Example 3(b) in Section 6), but a related 
result is obtained by strengthening (2). 
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T h e o r e m  2. Let n>3 and n 3 < a _ < n - 2 ,  let u be a superharmonic function 
on D and let U ~ be a finely open subset of R n-1. If the set 

(3) {X'  e a n - l :  x n 1 o ~ u ( X ,  ' x )  ---> q-cx),  a s  x ---> 0•} 

is a-metrically fine dense in U ~, then the set (1) is of first fine category in R ~-1. 

The sharpness of the growth rates in (2) and (3) will be demonstrated by 
Examples 2 and 3 in Section 6. If n_>3 and 0 < a < n - 3 ,  and if a set E I C R  n-1 is 
capacitarily fine dense in a finely open set U/, then E f is a-metrically fine dense in 
U ~ because of the well-known relationship between Hausdorff measure and capacity 
(see [3, IV]). However, the converse is also true since, if there is a non-empty finely 
open subset V ~ of U ~ such that  E~NV ~ is polar, then V t \ E  ~ is a non-empty finely 
open subset of U ~ which is disjoint from E ~, and so E t is not a-metrically fine dense 
in U% Hence the case where n > 3  and 0 < a < n - 3  is covered by the following result. 

T h e o r e m  3. Let n>_3, let ~I/n: (0, 1)--~R be given by ~ ( t ) = t  2, n>_4, and 
�9 3(t) = t  2 log(I / t ) ,  let u be a superharmonic function on D and U' be a finely open 
subset of R n-1. If the set 

{ X '  C R n - l  :liminf qdn(x)u(X',x) >O} 
x--+O+ 

is capacitarily fine dense in U ~, then the set (1) is of first fine category in R n-1. 

Following some preliminary lemmas in Section 2, Theorems 1 3 are proved in 
Sections 3 5 and several examples illustrating the sharpness of these results are 
provided in Section 6. 

2. Pre l iminary  lemmas 

2.1. We refer to Doob [5, 1.XII] for the notion of minimal thinness. 

L e mma 1. Let n>3 and AIC_R ~-1, and let X I c R  n-1. The following are 
equivalent: 

(a) A' is thin at X~; 
(b) A ' x R  is thin at (X ' , x )  for all xCR;  
(c) A ' x  (0, + ~ )  is minimally thin with respect to D at (X' ,  0). 

For the equivalence of (a) and (b) above, see [11, Lemma 2] oi" [12]. It remains 
to establish the equivalence of (b) and (c). For this we recall the facts that,  for 
a subset A of D and a cone C x , , a = { ( Y ' , y ) : y > a l Y ' - X ' l } ,  where X ' E R  ~ 1 and 
a>0 ,  thinness of A at (X t, 0) implies minimal thinness of A with respect to D at 
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(X', 0), and thinness of ANCx,,a at (X',  0) is equivalent to minimal thinness of 
ANCx,,~ with respect to D at (X' ,  0) (see Lelong-Ferrand [13, Section 6]). 

If (b) holds, then A 'x  (0, +c~) is thin at (X', 0) and (c) follows. Conversely, 
suppose that (c) holds, and let C=Cx,,,/5. Then CO(A'x (0, +ec))  is minimally 
thin, and hence thin, at (X',  0). By the integral form of Wiener's criterion (see 
[2, p. 8i1), 

f +o~ C* ({V �9 CM(A' x (0, §  IV - (X',  0)] 2-~ _> t}) dt < +oo, 

where C*(. ) denotes outer Newtonian capacity for R'L If b>0, then 

{y �9  c:  Iy- (x ' ,  0)15b} > {(Y', y): IY'-X'l and ~v~b<y<_ �88 

Hence, by translational symmetry and the observation that x / ~ -  v ~  >2, 

C*({Y E CM(A' x (0, +co)) :  I Y - ( X ' ,  0)1 _< b}) 

> C* ({Y E A ' x R :  ] Y - ( X ' ,  0)1 _< �88 

Thus 

f l  +~ ({Y �9 x R :  [ Y -  (X',  0 ) > _  t}) < +oo, C* A I dt 

and so A' x R  is thin at (X', 0), or indeed at (X', x) for any x E R  by translational 
symmetry. Hence (b) holds, and Lemma 1 is proved. 

2.2. The simplest case of the following lemma, namely where I = R ,  is partially 
covered by [6, Lemma 1]. 

L e m m a  2. Let n>3, let I be an open interval in R, and let V' be a finely 
open set in R n-1. Then the fine components of V~• are precisely the sets of the 
form W' x 1, where W' is a fine component of Vq 

We will give the proof of Lemma 2 for I=(a, b), where a<b; a similar argument 
applies to semi-infinite intervals I. We recall (see [6, Corollary 1(i)]) the fact that, 
if ~ is a finely open subset of R '~, then there is a set E c R  n-1 x {0}, which is polar 
in R n, such that the set { tER: (X ' , t ) � 9  is open in R whenever (X',O)~E. 

Now let W be a fine component of the set V ' x  (a, b), which is finely open 
by Lemma 1, and let (Y' ,y)EW. We will deduce that  {Y '}•  To do 
this, let 0 < e < m i n { b - y , y - a } .  By the local connectedness of the fine topology 
(see [8, p. 92]) there is a fine domain ~ such that (Y', y) ~ <V '  x ( y - e ,  y+e) .  



Boundary growth theorems for superharmonic functions 259 

Also, by the  fact recalled in the  preceding pa ragraph ,  there  exists Z I � 9  n-1 and  an 

interval  (c, d) such t ha t  {Z '}  • (c, d) C f ~ .  I f  I~1 <d-c ,  t hen  

and so the  set 

n {(x', x+.) :  (x', x) �9 fir} r O 

x+.) :  (x', x) �9  

is a fine domain .  By r epea ted  appl ica t ion of this observat ion  we see t ha t  

U { (X ' ,  x + , ) :  (X ' ,  x) �9 ~ }  C W, 
a--yq-~<~lKb--y-~ 

and hence t h a t  {Y'}  x ( a + G  b - ~ ) c W .  The  number  c can be a rb i t ra r i ly  small,  so 
{Y'}  x (a ,b)cW.  Since (Y' ,y)  was an a rb i t r a ry  point  of W,  we conclude t h a t  W 
can be wr i t t en  as W '  x (a, b). Also, since W is finely open in R n (see [8, p. 146]), it 
follows f rom L e m m a  1 t h a t  W / is finely open in R n -  1. 

If  W ~ could be expressed as the  disjoint union of two n o n - e m p t y  finely open 
sets V1 ~ and V~, then  by L e m m a  1 we would ob ta in  the  con t rad ic to ry  conclusion 

t ha t  W' x (a, b) is the  disjoint union of the  finely open sets V1 ~ x (a, b) and V~ x (a, b). 
Hence W '  is finely connected,  and so is conta ined in some fine componen t  U ~ of W. 
On the  other  hand,  if U ~ is a fine componen t  of W,  then  it follows f rom the preceding 
p a r a g r a p h  t h a t  U ~ x (a, b) cannot  have more  t h a n  one fine component .  T h e  l e m m a  
is now established.  

2.3.  Let  B~(X ~, r) denote  the  open ball in R n-1 of centre X / and radius  r. If  
X � 9  ~, n>3, and A C R  ~, then  let #A x denote  the  balayage of the  Dirac  measure  
a t  X onto A relat ive to supe rha rmonic  funct ions on R~;  t h a t  is, #A is the  measure  
which satisfies 

I ' -X I  ~ - n ( g ) :  ~ [Y-- Zl2-n d~Ax(Z), X � 9  ~, 

where ~A R v denotes  the  regularized reduced funct ion (balayage) of v on A relat ive to  
superha rmonic  funct ions on R n. (See [5, ].X] for the  not ion of a swept  measure . )  

Also, let C(a, b, ...) denote  a posit ive constant ,  depending  at  mos t  on a, b, ..., not  
necessari ly the  same on any  two occurrences.  

L e m m a  3. Let n>_3 and W = W '  x (0, 1), where W'  is finely open in R n-l ,  
and let X � 9  Then there is a set F~CW ', of Hausdorff dimension at most n - 2 ,  
such that 

1 fB I (Y"2 t ) -ZI2- '~"  a~\w (4) t '(Y',t)x(t,3t) a#x (Z) -~0 ,  as t---+O+, 
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for all y i  in W I \ F  I. 

1 To see this, let 0 < 6 <  5 and X = ( X  ~, x), and define 

v ( w ' u B ' ( x ' ,  6)) •  

If Y ' C W ' \ B ' ( X ' ,  26) and O< t<& then 

R"\W R~kU 
(5) #X B'(Y',t) x(t,3t) ~ X  B'(Y',f)• 

by a comparison of fine harmonic measures for the sets W and U (see [8, Section 14]). 
If E is a Borel set in R n, then by Harnack's inequality and the translational invari- 
ance of U, 

, ~n  w ({(z' ,  ~ +,7): (z ' ,  ~) e z})  : I*(~,~~ ~J"~' 

_ rl)Px (E), r lER,  <C(n,& Rn\V 

where C(n, 6, 7/)--~ 1, as r/-*0. It follows that ,  if we define the finite measure #'  on 

W ' \ B ' ( X ' ,  ~) by 

~'(E')  = # ~ " \ u ( E '  • (0,1)) 

for any Borel set E '  in R n - l ,  then 

B' (,,3~) I(Y'' ~t)-- Zl 2-~ d#~ ~ (Z) 
(Y, x 

I(Y', 2 t ) - ( Z ' ,  z)l 2 ~ dzdp'(Z') C(?z, 6) ' (Y',/') 

(6) 
= C(?z, 6) /13'(Y',t) ]ZI- YIIa-n Jo[t/[z' Y'l ( l_[_s2)a_n/2 ds d.t ( Zt) 

{ c(~,  6) f.,(y,,~) I Z ' - y ' l  a-~ d~'(Z'), ~ >_ 4, 

<- C(~,6)fB,(y,~llog(9.t /IZ'--Y' l)d#'(Z') ,  ~----3. 

Now let e >0  and c~>n-2 ,  and suppose that  Y' satisfies 

m y , ( r ) < r  ~, 0 < r < e ,  (7) 

where 

' ~ ' 0 " )  = ~ ' (B ' (z ' , r ) ) .  
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It follows from (6), (7) and integration by parts that ,  if n>4 ,  then 

(8) 
1 /B I(Y"2t) ZI2-"@~"\u(z)<V(n'6)~o 'r3-'~dmY'(r) 

' (Y' , t )  X(t,3t) - -  t 

< C(n, ~) [ t  
- t Jo r2-nmy,(r)dr+t2-nmy,( t ) -+O,  t -nO, 

and if n=3 ,  then similarly 

f~ c(~) f [  _1 ](Y', 2 t ) - Z 1 - 1  dpRx"kU(z) < ~ -  log(2t/r)  dmy,(r) 
(9) t '(Y',t)• 

--~0, t --+ 0. 

The subset Sc,~ of points Y~ of R n-1 where (7) fails to hold can be covered by a 
collection of open balls B'(Y' ,  ry,), where ry,  <~ and my, (ry,)>@,.  By a well- 
known covering lemma (see, for example, [18, pp. 9-10]) there is a countable disjoint 
subcollection {B'(Y~, r k ) : k > l }  such that  S~,~c_Uk B'(Y~, 5r~). Hence 

~ ( 5 ~ )  ~ < 5 ~ ~ y ; ( r ~ )  _< 5%'(W ~ ~). 
k k 

Since c can be arbitrarily small, it follows from (5), (8) and (9) that  the set of all 
Y' in W ' \ B ' ( X ' ,  25) for which (4) fails to hold has finite a-dimensional Hausdorff 
measure. Since 5 can be arbitrarily small and a can be arbitrarily close to n - 2 ,  
the lemma is proved. 

2.4. For each Y~ in R n - l ,  let by, denote the half-space Poisson kernel given 
by 

2 max{ 1, n - 2 } x  
hy,(X)= (iX,_Y,12+x~)n/2, X=(X ' , x )  e ~\{(Y',O)}. 

Also, let B(X,  r) denote the open ball in R '~ with centre X and radius r. 

L e m m a  4. Let n>3 and W W~x(0,1) ,  where W ~ is finely open in R n- l ,  
and let 

Gw(X,Y)=IX--yI2-n--  fD IY ZI2-~@R~XW(z), X, Y E W .  

Then there is a set F~C W ~, of Hausdorff dimension at most n - 2 ,  such that 

c~ (x, (z', y)) 
vy,(x),  y --+ 0+, x �9 w, Y' �9 W'\F', 

Y 
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where 

/ ~  " R ' ~ X W ~ "  Y '  C R n-1 W, (X) = hy, ( X ) -  by, (Z) aUx ~ ) ,  X e W, 

To prove this, recall that  the half-space Green function GD(., . ) satisfies 

GD( (X' ,x) ,  (Y', y) ) = [ (X ' , x ) - (Y ' ,  yDl2- '~- l (X ' ,x ) - (Y  ', -y ) I  z - "  
(10) 

<_ ~(,~- 2)xvl(X', x ) - (v ' ,  y)l -'~ 

and 
Go(X,  (Y', y)) ~ by, (X), 

Y 
Further, if ]Z-(Y ' ,y) l>�89 then 

y-*O+, Y'  C R ~-l ,  X c D. 

IZ-(Y',  0)l <_ IZ- (g', y)l+ y <~ 3IN-(y' ,  y)l, 

SO 

co((v ' ,  v), z) _< 3nhy ' (z), 
Y 

R ~ \ W by (10). Let X c W .  Since hy, is integrable with respect to the measure # x  , it 
follows by dominated convergence that  

\B((V',v),v/2) Y 

for any Y'  in R n-1. Also, since GD(Y,Z)SIY--Z[  2-n, it follows from Lemma 3 

(with t=�89 that  there is a set F'CW' ,  of Hausdorff dimension at most n - 2 ,  such 
that  

/~  GD((Y' ,y) ,Z)  ~ i ~ \ w  
aft X --+ u, y --+ 0+, y ,  E W ' \ F  I. 

((g',y),y/2) Y 

Hence 

f G D ( ( Y ' , y ) , Z ) .  aPx fD --~ h y , ( Z ) d p ~ \ W ( z ) ,  y---~O+, Y'  CW' \F ' .  

Since 

i ( y , , _ y ) _ Z l 2 - n d t ~  \ ( Z ) = l ( y , , _ y ) _ X [ 2  n, y>O,  

we see that  

a~(x, Y) = co(x, Y ) - [  co(Y, z) d~\W(z) ,  
219 

and so 

as required. 

aw(x , (Y ' , y ) )~w, (X) ,  y~o+, Y' eW'\f ' ,  
Y 
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3. P r o o f  o f  T h e o r e m  1 

We first deal with the case where n > 3  and suppose to the contrary tha t  the 

set E ~, defined by 

E~= {X~ � 9  :liminf u(X~,x) >-oc}, 
x----~O+ 

! o o  ! 
is not of first category. Since E = U k = l  Ek, where 

E L = {X '  E E ' :  u(X', x) > - k  for al l  x �9 (0, 1)}, 

there exists k0 such tha t  the fine closure of E r has non-empty fine interior R ~. The ko 
set V ~, given by V~=R~r~U ~, is thus a non-empty finely open subset of U ~. Let W ~ 
be a fine component  of V p. Then, by Lemma 2, the set W=W~x (0, 1) is a fine 
component  of V t x (0, 1). I t  follows from Lemma 1 and the fine continuity of u tha t  

u>_-ko on R~x (0, 1), and hence on W. Further, the fine domain W is contained in 
one (Euclidean) component,  f~ say, of the open set {X �9 D :u(X) > - h 0 - 1 } .  

Since W ~ is finely open, R n - l \ W ~  is thin at each point of W ~ and so, by 
Lemma  1, D\W is minimally thin with respect to D at each point of W '  x {0}. For 
each Y~cW' it follows tha t  vy,~O, where vy, is the function defined in Lemma 4, 
so Vy, >0 on the fine domain W. Since the Green function, G a ( . ,  �9 ), for ft satis- 
ties Gw<Ga on W x W ,  it follows from Lemma 4 tha t  there is a set F~CW ~, of 

Hausdorff dimension at most n - 2 ,  such that  

liminf Ga'X''Y''yH( ( ~ >0 ,  X c W ,  Y ' EW' \F ' .  
y--~O+ y 

Let X0 be a point of W where u is finite, let A ~ be a (Euclidean) compact  subset 
of W ~ which has non-empty fine interior and let 

A~d = {Y'  C A ' :  Ga  (X0, (Y', y)) >_ y/i whenever 0 < y _< j - l } ,  i, j �9 N.  

Then each A~,j is a compact  set and 

o c  

(11) A'\F'C_ U A~{,J" 
i , j=l  

We temporar i ly  fix i and j and use w to denote the balayage of the positive 
superharmonic function u + k 0 + l  relative to the set Ai,j=A~,j x (0 , j  -1] in ft. Then, 
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by the Riesz decomposition, [5, 1.XII.(17.3)], [15, ThSorSmes 12, 13] and the fact 
that  A~,j CA 'CW' ,  there are measures p on Ai,j and ~ on A~,j x {0} such that  

where 

~.j ~,j x {o} 

f . Rn\f~, ~, uy, (X) = h y , ( X ) -  hy,(Z) aPx I,z), 

Also, by [15, p. 220], 

X E Q ,  YPER n-1. 

(12) uy,(Xo) > limsup Gn((Y' ,y) ,Xo) > 1 Y'  EA~,j. 
- -  y-*O+ y - i '  

We define 

rex(r)= L y d#(Y', y)+y( (A~j • {O} )nB(X,  r) ), 
i , j ~ B ( X , r )  

r>O,  

X E~, 

Let (X ~, x ) e f t  and suppose that  

(13) m(x,,~) (r) <_ ar ~, 

for some a > 0. Then 

/B((X,,~),~/2) Ga( (X', x), (Y', y) ) dp(Y', y) 

X r  r>O.  

f 
_< (2/x) l I(X', x) - (Y', y)12-~y d#(Y', y) 

JB ((x,,x),x/2) 

= (2Ix) r 2 ~ d.~(X,,x)(r) 
JO 

f 
x/2 

< (21x)n-~.~(x,x)(xl2)+(~-2)(2/x) r~-n.~(x,,~)(r) dr 
dO 

< C(n,  a )ax  ~+1-'~, 
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and, using (10), 

~(x', x ) - f  a~ ((x', ~), (Y', y)) d~(Y', y) 
JB ((x,,~),~/2) 

_< f~\~((., ~),~.) a.((x', ~), (Y', y)) d.(Y', y)+ f ~  h~, (x)d.(Y', 0) 

< 2(n-  2 ) x /  I(x', x ) -  (Y', v) l -n(v d~(Y', y) + d~(Y', v)) 
JD \B((X',~),x/2) ~+~ 

= 2 (~ -  2)x r -~ d~(~,,~)(r) 
/2 ~+- _< 2~(~- 2)~ r-n-~-~(~, ~)(r) dr 

/2 

<_ C(n, a)ax ~+1 n. 

Thus 
x n - 1  ~ ( x ' ,  x) < c(n, ~)a 

for any (X', x) in ft which satisfies (13). The subset Sa of A~,j where (13) fails to hold 
can be covered by a collection of open balls B(X,  r x ) ,  such that  rx ( l + d i a m  (A') 
and mx(rx)>ar~;.  As in Section 2.3 there is a countable disjoint subcollection 
{B(Xk,rk) :k>l}  such that  Sac[_Jk B(Xk, 5rk). Hence 

5 ~ ~(5r~) ~ < -  ~ ~ ( r ~ )  
a 

k k 

< - -  yd#(Y ' , y )+u(A[ jx{O 
a i,j 

< - -  Ca (Xo, (Y', y)) d#(Y', y)+ uy, (Xo) du(Y', O) 

5~i : --5~iw(X~ <- ~- (u (Xo)+ko+l ) ,  

using (12) and the definition of A~,j. Since u ( X 0 ) < + c c  and w=u+ko+l  on A~,j, 
apart  from a polar set (which has Hausdorff dimension at most n - 2 ) ,  and since a 
can be arbitrari ly large, we see tha t  

lim sup x'~-I-~u(X ', x) < +oo, X '  E A~,j\Z~,j, 
x---~O+ 

where Z~,y has zero a-dimensional Hausdorff measure. Since this is true for any 
choice of i and j, we conclude from (11) that  

l imsupxn- l -~u(X ' , x )  < + o o ,  X'  cA ' \ (F 'UZ' ) ,  
x--+O+ 
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where Z '  has zero c~-dimensional Hausdorff measure. This contradicts our hypoth- 

esis since A' has non-empty fine interior. 
Theorem 1 is now proved in the case where n > 3 .  The case where n = 2  is much 

easier: if E '  is of second category (in R)  then there exists k0 such that  ~7 ~ (E 0) #0, 
where E~ is as defined above. Further, it follows easily from Wiener 's  criterion 

tha t  E~0 x (0, 1] is non-thin at each point of E-~k ~ x (0, 1], so u >  - k o  on (ETko)~ x (0, 1]. 
Standard estimates for the Green function and Poisson kernel of a half-disc can now 
be used in conjunction with the argument following (12) above to obtain the result. 

4. P r o o f  o f  T h e o r e m  2 

To prove Theorem 2, we again suppose that  the set (1) is not of first fine 

category and define k0, W'  and ~ as in the first paragraph of Section 3. Let 
F '  denote the set (3). By hypothesis, the set F'NW' has positive a-dimensional 
Hausdorff measure. Now 

OO OO CX3 

Rn-I\F! un U ~ 
i=l  j = l  k=j  

where C~, k is the canonical projection onto R n-1 of the closed set 

{ ( Y ' , y ) : ( k + l )  - l _ ~ y < k  1 a n d y n  1 ~u(Y',y)<i}, 

and since each C~, k is closed, F '  is a Borel subset of R ~-1. Since the fine topology 
has a neighbourhood base consisting of Euclidean compact sets, and also has the 
quasi-LindelSf proper ty  (see [5, 1.XI.11]), we can write W '  as A'UZ', where A' is 
a Euclidean Fo set and Z '  is polar in R n-1. The  set Z '  has zero a-dimensional 
Hausdorff measure because a > n - 3 .  Hence F'NA' is a Borel subset of F'NW' of 
positive a-dimensional measure, and it follows (see [3, I I ,  Theorem 2]) that  there is 
a compact  subset K '  of F'NW' of positive c~-dimensional measure. By Frostman's  
l emma (see [3, II, Theorem 1]), there is a non-zero measure u on K '  such tha t  

u(B' (X ' , r ) )Kr  ~, r > O ,  X ' e R  n - ] .  

The measure u cannot charge any polar set in R n-1 since such a set has Hausdorff 
dimension at most n - 3 .  Using integration by parts  it follows that  the Poisson 
integral 

h(X) = / hy,(X) du(Y'), X c D, 
JR n 1 
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satisfies 

j~o + ~176 
h( X', x) = 2n(n-  2)x r (r2_~ X2)n/2+ 1 l]( Bl ( X ' ,  r) ) dr 

< 2n(n-2)x f+~  rl+~ (14) - ~u (r2+x2)n/2+l dr 
r l + ~  f + o o  

ex aT l -n  

for (X', x)eD, where e=C(n, a). 
For each Y' in W',  the set D \ ~  is minimally thin with respect to D at (Y', 0), 

so u , , ~ 0 ,  where uy, is as defined in Section 3. Thus (see [15, Th~or~me 12]) uy, 
is a minimal harmonic function on ~. Let Y.~ denote the minimal Martin boundary 
point of ~t associated with uy,. Then, for any subset E of ~, it follows from a result 
of Na'im [15, Thhor~me 15] that  E is minimally thin with respect to D at (Y', 0) if 
and only if E is minimally thin with respect to ~ at Y.~. 

We define the sets 

F~j={Y'  r  n 1-~u(Y',y)>i forallyE(O,j-1)}, i, j c N ,  

which are finely closed, by Lemma 1 and the fine continuity of u. For each i, j there 
is a polar subset Z{,j of F~,j such that  F~,j is non-thin at each point of F~j\Z{,j 
(see [5, 1.XI.6]). Hence, by Lemma 1 and the above result of Na'/m, F[,j x (0, j  -1) is 
not minimally thin with respect to ~ at Y,~ for each y t  in F~,j\Z{j. Since u + k 0 + l  
is a positive superharmonic function on ~ and 

u ( X ) + k 0 + l > ~ h ( X ) ,  X e F ' j •  j -1 ) ,  
c 

(see (14)), it follows (see [5, 1.XII.17, Application]) that  

 (X)+ko+I >_ /F " x ef , 
C ,# 

O 0  (recall t h a t ,  does not charge the polar set Z{,j). Since K'CF',_ we have Uj=x F~,j.= 
K t, and hence 

x e a .  

Finally, since i can be arbitrarily large, we obtain the contradictory conclusion that  
u ~ + c ~  on the open set ~. Thus E ~ must be of first fine category and Theorem 2 
is proved. 



268 Stephen J. Gardiner 

5. P r o o f  o f  T h e o r e m  3 

T h e  proof  of T h e o r e m  3 is similar in approach  to t ha t  of T h e o r e m  2. The  set 
K ~ now has posi t ive (Newtonian  or logari thmic)  capac i ty  in R ~ -  1, and hence is not  

a-f ini te  wi th  respect  to  the Hausdorf f  measure  associa ted with  the  measure  funct ion 

{ t  n-3 ,  n _> 4, 

r  (log + i/t) 1, Tt = 3, 

(see [3, IV, T h e o r e m  1]). I t  follows (see [17, pp. 83 84]) t h a t  there  is an increasing 
cont inuous funct ion O: (0, +ec)--~(0,  1] such t h a t  ~(t)/r as t---~0+, and K '  
is not  a-f ini te wi th  respect  to  the  Hausdorf f  measure  associa ted wi th  the measure  
funct ion ~.  By F ros tman ' s  l e m m a  there  is a measure  u on K ~ such t h a t  

u(B'(X',r))<~(r), r>O, X ' ~ R  n 1. 

Arguing as in (14), we see t ha t  the  half  space Poisson integral  h of u satisfies 

h(X',x) foX rap(r) f+oo 
2 n ( n - - 2 ) x  ~ ~ d r @  J x  r - n - l ( I ) ( r )  d r  

-<(\o<t<~sup ~(t)~(f~rr162 ~ . . . .  n l r  +~176 

when 0 < x < a .  If  n > 4 ,  then  

h(X',x) <C(n)( sup ~(~)~ 1 a '~ 
2 ~ ( n - 2 ) ~  - ~o<~<o r ) x ~ ~ ' 

SO 
~(t) limsupx2h(X ', x) < C(n) sup . 

x ~ o +  - o < t < a  r  

If  n 3, then  (provided a<_e -1/2) 

( 4 ) ( t )  ~ ( ~  ~" r f "  3 log(i/r)- 1 ) 1 
h(X',x) < sup ~x H ( l o g ( l / ~ ) ) ~  3 ~  6x - \O<t<a ~(t) ]  X 5lOg(I/x) dr+ dr q 

<(sup  (I)(t)~( 1 [ 1 ]~=~) 1 
- \o<~<a r  ] 2x~ l o g ( l / x )  + ~ l o g ( l / r )  ~=~ + 3a~'  

SO 
e ( t )  limsupx 2 ]og(1/x)h(X',x) < C sup . 

~ o +  - O<~<a r  

In  ei ther case, since q~(t)/r as t---+O+, and a can be arb i t rar i ly  small,  we see 
that 

�9 n(x)h(X~,x)-+O, x-+O+, X~ER n I. 

The argument now proceeds as before except that we define 

Ff .= {Y~ C K~:u(Y I,y) >ih(Y ~,y) for all y E ( 0 , j - I ) } .  Z~3 
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6. S h a r p n e s s  o f  T h e o r e m s  1 - 3  

6.1. The fine topology plays an essential role in Theorems 1-3, as the following 
example shows. 

Example 1. If n > 3 ,  then there is a superharmonic function u on D such that  

(15) xn-lu(X ', x) ~ +~,  x-~ 0+, 

for (n 1)-almost every X t E R  n x and such that ,  for any non-empty open set UtC_ 
R n - l ,  the set 

(16) {X'  EU':liminfu(X',x)>-~}x_~O+ 

is of second category with respect to the Euclidean topology on R "-1 .  
To see this, we slightly amend an argument of Rippon [16, Theorem 6]. Let 

E ~o ( k)k=l be an increasing sequence of closed nowhere dense subsets of R such that  
the set Uk~_l Ek is of full measure in R,  and let 

OO 

r - -  U • (0, i lk] ) .  
k--1 

By a known approximation result (see [10, Corollary 3.21]) there is a harmonic 
function v on R x  (0, +oc)  such that  

IV(Xl,X2) x~nl<t,  (Xl, x2) E F. 

Next, let s be a superharmonic function on R n-m which is valued +oo on a dense 
set of points, and define 

U(Xl, . . . ,Xn)=V(Xl,Xn)-~S(Xl, . . . ,Xn 1), (XI,. . . ,Xn) CD.  

Then (15) holds for almost every X ' E R  '~ 1. Also, for any non-empty open set U' 
in R ~-1, the set 

OO 

V l \ { Z  t � 9  n l : 8 ( X , )  :~-oo}= U { X '  �9 Ut:8(X') < k} 
k-1 

is of first category, in view of the lower semicontinuity of s, and so the set (16) is 
of second category in R n-1. 
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6.2. The next example demonstrates  the sharpness of the growth condition in 
Theorem 1 when n=2 .  Let rn~ denote c~-dimensional Hausdorff measure. 

Example 2. Let D = R •  and 0 < a < l .  There is a positive harmonic 
function u on D such that ,  for every open interval I in R,  

y~0+ 

If  a = l ,  then we can simply define u - 1 .  Thus, in proving Example 2, we may 
suppose that  c~<l. Let ~ = 2  -1/~.  We construct a Cantor- type set as follows. Let 
E0 = [0, 1] and, for each j in NU {0}, construct Ej+~ by removing an open in terwl  of 

OG 
proportion 1 - 2 ~  from the centre of each interval of Ej. The set E = ~ j = 0  Ej  then 
has finite positive c~-dimensional Hausdorff measure (cf. [7, p. 15]). For each j, let #j 
be the unit measure consisting of 2 j equal point measures located at the midpoints 
of the intervals which comprise Ej. Then (#j)j~--0 converges in the w*-topology to 
a measure # on E.  

The constituent intervals of Ej  are of length ~J. Hence, if xEE, 

SO 

and thus 

p([x-ZJ, x+ZJ]) _> 2-J, j _> 0, 

[ l ( [ x - r , x - ~ r ] ) _ ) 2  - j - l ,  f l j + l  _<r < ~ J ,  j _ ) 0 ,  

.([~-~,x+r])>_2 1<, 0<~<_1. 
Let h denote the Poisson integral of # in D. Then 

(17) 

Now let 

Since 

/ ~  d.(z) h(x,y) =2y (z_x)2+y2 
1 o~--1 > y-l#([x-y, x+y] )  > ~y , xEE, 0 < y < l .  

~-OG 

v(x,y)= ~ 2-Nh(x+i,y), (x,y) ED. 
i= -oc  

lira sup yv(0, y) < +cx~, 
y-~+oo 

it follows that  a positive harmonic function u on D is defined by 
(x) 

~(x, y) = Z v(2%, 2~y), (x, y) e D, 
k=l  

and it is clear from (17) tha t  u has the property asserted in Example  2. 
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6.3. We now demonstrate the sharpness of the growth conditions in Theo- 
rems 1 and 2 when n >  3. 

Example 3. Let n >_ 3. 
(a) If n - 3 < a < n - 1 ,  then there is a positive harmonic function u on D such 

that,  for every non-empty finely open set U' in R n-  1, rn~ (E')  > 0, where 

E' = { X' c U' : lim inf x'~- l-~ u( X', x ) > O }. 
x-+O+ 

(b) If n - 3 < ~ _ < n - 2 ,  then there is a positive superharmonic function u on D 
such that ,  for every non-empty finely open set U' in R n - l ,  

m~({X' EE':limsoUpXn-l-~u(X',x)= + o o } ) > 0 ,  

where E '  is as in (a). 
To see this, let n-3<a<n-1.  (We again dispense with the trivial case where 

a = n - 1 . )  We first note that  there is a measure ~ with support E ' _ [0 ,  1] '~-1 such 
that  m~(E')>0 and such that  the Poisson integral h of t, in D satisfies 

(18) l iminfx  n-1 ~ > 0, X '  e E' .  
x---*0+ 

(This can be seen by taking u to be a product measure formed from the measure 
# in the proof of Example 2, using ~/(n- 1) in place of a, and arguing as in (17)0 
Now let 

v(X',x)= Z 2-1r (X',x) CD, 
i, C Z , ~ -  i 

and define a positive harmonic function u on D by writing 

C~O 

u(X)=Ev(2kx) ,  XeD.  
k = l  

If U' is any finely open set in R n-1 and Z'cU', then R ~ - I \ U  ' is thin at Z'.  
Since a > n - 3 ,  it follows (see [9, Theorem A]) that  there is a sequence of balls 

r oo a n - 1  1 ~ t  Z t (B'(Z~, k))k=l in such that  rk<~ .~ - k[ for each k, 

B'(Z', 1)\U'  C 5 _ B '  (Z>'  rk) 
k : l  

and 

s Tk 
Z'---Z;[ < +oo. 
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Hence 
2-k)\U') 0, 

whereas (18) and our construction of u ensure that  

as k -~ cx3~ 

liminf2kama({ X'EB'(Z''2-k)~--.~ : linl inf Xnx--~0+ 1-~ X)~  0 } ) ~ 0 .  

This establishes (a). 

Further, if n - 3 < a < _ n - 2 ,  then E~x{0} is polar in R n since it has a-finite 

m~-measure, Thus there is a positive superharmonic function w on R n such that 

w = + o c  on the polar set E~xQ.  If we add w to the harmonic function in (a), we 

obtain a positive superharmonic function on D with the desired properties. 

6.4. Finally, we indicate the sharpness of the growth condition in Theorem 3. 

Example 4. Let n>3 .  If 0<- /<2 ,  then there is a positive harmonic function u 
on D such that, for every non-empty finely open set U r in R n - l ,  the set 

(19) { X  r c U' : x ~ u ( X ' ,  x) ~ + ~ ,  as x ~ 0+} 

is non-polar. 

To see this, let o e = n - 2 - 2 " /  Then n - 3 < c ~ < n - 2 .  Let u be the positive hat- 2 " 
monic function of Example 3(a) and E' the set defined there. Then m ~ ( E ' ) > 0  and 
hence E'  is non-polar in R n-1. Since " / < � 8 9  L the set (19) contains 
E r and so is also non-polar. 
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