ON FUNCTIONS ORTHOGONAL TO INVARIANT SUBSPACES
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Let H? denote the usual Hardy class of functions holomorphic in the unit disk, U.
Let M denote a closed, invariant subspace of H2. The theory of such subspaces is well-known
and may be found, for example, in the first three chapters of Hoffman’s book [6]; every

such M has the form M =@H?, where p € H? is an inner function, ¢ = BsA with

] ~ _ 7 510 4,
B(z) =11 (——“L) E=%  sz)=exp {—f e—Fda(O)}

s\ &/ 1—a,2 o €9—z

2 ey
A(z)=exp {— Z Ty T_—}
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where {a,} is a Blaschke sequence (Z(1- [a,|) <o) (d,/|a,] =1 is understood whenever
a,=0), o is a finite, positive, continuous, singular measure, and r,>0, Xr, <oo.

In this paper we study the subspace M+ =H?O M. Our results may be summarized as
follows: we obtain a unitary operator ¥ which maps the sum of three L? spaces onto M*.
The first, corresponding to the factor B of ¢, is the space L2(do), where oy is the measure
on the positive integers that assigns a mass 1 — || to the integer k. The second L? space is
L%(dg), and the third is the sum of the L? spaces of Lebesgue measure on the real intervals
of length ;.

In the special case ¢ =B, the functions h,(z) = (1 — |a,|2)! B,(z)/(1 —d,z) (B, the
Blaschke product with zeros a,, ...,a,_,) form an orthonormal basis of M?; cf. [10, p.
305], [1]. From this fact it follows easily that the map

V(o) @ = 3 ca1+ |ayh? Bo(a) (1=d,2) (1=, ) (0.1)

carries L2(dop) isometrically onto M+, and this represents one instance of our theorem.

(*) The first author’s contribution was partially supported by N.S.F. Grant GP-6764.
(3) The second author’s contribution was partially supported by N.S.F. Grant GP-9658.
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In the very special case p=A, r,=0 (v=1) and 0, =0, our operator V reduces to the
unitary operator defined by Sarason in [8].

When ¢ =s, the form of V represents a direct generalization of (0.1):
(Ve(d) (2) = f:nc(z) V253(2) (1 — e %2) 1 da(d), (0.2)
where s,(z) denotes the inner function ,
5;(z) =exp {— J‘:% da(@)}. (0.3)

In Part 1 of this paper we develop the various properties of V, first, when ¢ =s (Sec-
tion 1) then, when ¢ = A (Section 2) and finally (Section 3) for the general case. In Section 4,
we present for ¥V an inversion formula of the usual type for such transforms.

Part II is devoted to applications. In Section 5 we study the form of the operator
V* TV, where T is the restricted shift

Tf=Pzf, f€M*.

Here P denotes the projection (1) of H2 onto M'. We show, for example, that 7T is the sum
of a normal operator and a Hilbert-Schmidt operator. We also study spectral properties of
functions of 7. In Section 6 we give applications of our results to the density of certain
functions in ML,

We were first led to seek a continuous analogue of (0.1) by consideration of Section 4
of [1]. Reciprocally, the results presented here can be used to give a more transparent
approach to the theory developed there. The details of this approach, however, will not be
included in the present paper.

Part 1

1. Continuous singular subspaces. In this section, we prove that the operator defined
in (0.2) is a unitary isometry of L2(ds) onto M+ (where ¢(z) =s(z) is completely determined
by o).

Several special functions in L¥(do) will be of importance. One is s;, as defined in (0.3),
where z€ U is fixed. Another function is the function ¢(1) which denotes the g-measure of

the interval (0, 1). A third important function for us will be

Cuy (A= Xuq (4) e

(1) Projection always means orthogonal projection.
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where y, , is the characteristic function of the interval [y, ). In fact it is easy to compute
the norm of ¢, ,(4) in L*(do).

n
lon o= ["e72 gty ~ -2~ -2
I
Concerning the set D, by which we denote the span of all ¢, ,(4), for 0<u <y <2,
we have the following

LevMa 1.1. D is dense in 12(do).

Proof. Let [a, b] be an interval in [0, 27], and let y(1) denote the characteristic func-
tion of [a, b]. We will prove that y(1) is a limit of functions in D. Now for any interval
(u, 7], D contains the function y, ,(A)e **?=e"®¢, .. Thus, if [a,b] is divided into
subintervals I;=[u,, 5;), such that ¢(I;) <e, then D contains functions which are closer to
I than 1 —e® on I, and 0O elsewhere. Clearly the sum of such functions approximates y(1)
uniformly (and hence in L*dg)).

Now we can prove
THEOREM 1.1. The operator V defined in (0.2) maps L¥(do) isometrically onto (sH?)".

Proof. It is clear that V is a linear map of L%*do) into the space of functions holo-
morphic in U. We begin by showing that V restricted to D is an isometry into H2.
To compute V¢, ,, we notice that, for fixed 2, the measure d(s (2)e7°®) is absolutely

continuous with respect to ¢, and
d(s1(2)e®) = — 2P (2) (1 ~ ™" 2) 7 do(d). (1.1)

Integrating (1.1), we obtain

n 1 ”
(Vcﬂ’ ”) (2) = ng 3—0(11)82 (z) (1 _ e_“z)“lda(l) — __f d(S;ﬁ(Z) e—o(}.))
“ Ve u

1
=V—§(8ﬂ (2) € — 5, (2) €7°P). (1.2)
Now, it is easy to verify that the function

5,(2)e7"" — s, (2) e 7P =5,(2) 5,(0) — 8, (2) 8,(0)

is the projection onto (s, H%)*© (s, H?)* of the function 1, and hence the square of its norm
is given by its inner product with 1, i.e. its value at z=0. This yields
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| Veu 5112 =3 (4(0)2 — 5, (0)2),

and this, as we have seen, is equal to the L*dg)-norm of ¢, ,.
To extend this result to D, note that if [u, ) and [», 7) are disjoint intervals, then

¢4,y andc, . are orthogonal, as are Ve, , and Ve, ,. Furthermore, any finite linear combina-

tion of such ¢, , can be rewritten so that the terms in the sum are pairwise orthogonal.
Thus V maps D isometrically into 2+,

It remains only to show that V maps L*do) onto (sH%)*. Let {€U and define K, (z)=
(1 —5&(8)s(z)) (1 —E2)~t. Then K, €(sH?)* and, for every f€(sH?)*, (f, K;)=f(). We will
show V is onto by showing that every K, is in the range of V. This will prove that the
range of V is dense in M+, But since V is an isometry, its range must be closed, so this
will prove the theorem.

We want to find k, € L*(do) such that

1f such a k, exists, it must satisfy (Ve)(2)=(c, k), for every ¢ € L*do), and thus, from (0.2)
we can ‘‘guess’ that k,(1) must be given by

e () =V2s:(0)/(1 —e ). (1.4)

We therefore define k(1) by (1.4) and prove that (1.3) holds. By definition,

(Vi) (2) = 2{2::81 (2)82(8) (1 —e 2)7H (1 —e*{) do(A).
0

Now (1—e™2) (1 —e*8) ' =1 (1~ L2) " h(A),
where BA)=(e*+) (e * =)+ (" +2) (¢ —2) 7L

Furthermore §,()s1(z) =exp { — {24(0) do(6)}, so that

A
(Vke) (2) = — (1~ 2 f " exp {— f h(e)daw)} (~h(d) do(d)
0

0

2n A
=—(1—- Z‘z)_lf d (exp {— f h(O)da(e)})
0 )
2n
= (1 —exp {— f h(@)do‘(@)}) (1 —-F2)t

=(1-8(0)s(2)) (1 —{2)7' = K¢ (2),

and this completes the proof.
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2. Atomic measures. In this section, we assume ¢(z) is of the form ¢(z) = A(z). This is
the same as assuming ¢(z) =s(z), where ¢ instead of being continuous, is a purely atomic
measure, with masses r; at the points €.

Let us define a measure 7 on (0, o), by dt(A) =7y, dA on the real interval [N, N +1].
Let A,(z) denote the inner function

N 161_'_'4 10N+1 +z}
2

Ay (z) ~exp{ Zr, . (A— N)rNﬂeTem—
where N is the integral part of 1. Thus A;=1, and A,=A. Finally, we define A(z, A) =
V2 (1 —e ®5+12)-1 where again N is the integral part of A.

TaEOREM 2.1. The operator V defined by
(Ve) (2)=f ¢(2) Az (2) h(z, A) dr(2) (2.1)
0

maps L2(dt) isomelrically onto (AH?2)L.

The proof could be accomplished by appealing to the results of Sarason [8], but we

prefer to outline a proof which is entirely analogous to that of Theorem 1.1.

Proof. Choose u <1 and suppose N <y <5 <N +1 for some non-negative integer N, and

consider

o (A) = 2.y (A) A2(0).

1

One checks that (Ve )=—
w) V3

Just as before, this last function is the projection of 1 on (A, H%)*© (A, H?)", so that one
may verify that || Ve, ,|| =||c4,,||- If [u, %) and [, 7) are disjoint intervals of the above type,

(Au(0) Ap(z) — Ay(0) Ay (2)).

then ¢, , and ¢, ; are orthogonal, as are V¢, , and V¢, . We may conclude that V maps
a dense linear subspace of L3*(dr) isometrically into (AH?)*, and it follows, as above that
V maps L2(dr) isometrically into (AH?2)*.

To show that V maps L*(dt) onto (AH?)*, we try, as before, to find k, € L%(d7) such that

(VE) (2) = (1-AQ) A@) (L -La) . (2.2)
Once again, such a kg, if it exists, must be given by k(1) = A0 K(E, A). To check that this

&, satisfies (2.2), we consider

N+1

Az(2) bz, 2) A1 (2) B(E, A) dr(A).

This integral is equal to
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(AN(C) Ap(z) — AN+1(C) Aya()) (1 - Zz)-l’

and hence

N+1
fo Ai(0) M) (A, D R(A,2) de(D) = (1 —Ayia (D) Aya () (1= C2)7 (23)

Letting N— oo in (2.3), yields (2.2) and this completes the proof.

3. The general case. Let ¢ be a general inner function, of the form ¢ = BsA, where B
is a Blaschke product with zeros {a,}, s is a singular inner function whose associated measure
o =0, is continuous, and A is a singular inner function with a purely atomic measure having
masses r, at the points e, j=1, 2, ....

Let o be the measure on the positive integers that assigns the mass 1— |a,| to the
integer k, and let o denote the measure 7 of the last section, i.e. doy =7y, dAd on [N, N +1].
As we have seen, we have an isometry V of L¥(do;) onto (BH?)* given by (0.1); an isometry
V, of L¥(do,) onto (sH2), given by (0.2); and an isometry V, of L*dos,) onto (AH?)*,
given by (2.1).

THEOREM 3.1. Define
V: L2(doy) x L*(da,) x LA(doa) ~ (BsAH?)*-
by Vicy, €5, €a) = Vgcg+ BV c,+ BsVaca,. 38.1)
Then V is an isometry onto (BsAH?)*.

Proof. The proof is an immediate consequence of Theorems 1.1, 2.1 and the following
easy

Lemma 3.1. If ¢y, @, are inner functions,
(1@ HA)* = (@ H) @ (@ HP)
(Here @ denotes orthogonal direct sum.)
Proof. Recalling that multiplication by an inner function is an isometry, we have
H? = (g, H*) © (o H?)",
so that o H? = @0, H2 @y (@ H?)*

Le., H? = H:®(p, H?) = ¢1¢2H2®¢1(¢2H2)J_® (p H?),

and the conclusion of the lemma is clear.
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4. Inversion formula. In this section we prove the following inversion formula for the

operator V.
TuEOREM 4.1. If f€(pH?)., then

V* f ( = V—lf) = (cB’ Cs» CA):
2n
where cz(n) =J‘ f(@®) B, () (1 —a,e ) (1 +|a,|)tdb;
0
¢, (A) is the limit in L?(da,), as r—~1—0, of the functions
2" —
Vi f= f f(e) B(e®) 3, (re®) (1 — e*re )1 V2 d6; (4.1)
0
and ca(A) is the limit in L?(doya), as r—>1—0, of the functions
2n —
Vh. = f 1(e) B(e) 3(e'%) A (re®®) h(re®, A) V24d0. (4.2)
0

Proof. The instance ¢ = B of Theorem 4.1 is obvious from the remarks in the introduc-
tion and the simple properties of orthonormal bases. Let us begin, therefore, by considering -
the case p =s. Denote by k(re®, 1) the function

V2s;(re®)/(1 —re~ ')
and define a map V,: L*do)—~H?, by

2n

(V,0) () = fo c(A) k(re®®, 2) do ().
Then V, converges to V strongly as r—1, hence V} converges weakly to V* as r—1. Now
we are considering V*: H2?-> L¥(do), so that V*=0 on sH? and V*= V- on (sH?)*. The
adjoint of V, is easily computed to be the operator V3, , defined in (4.1) above (of course here
B(e®y=1). Thus to prove the theorem in the case ¢=s, it suffices to prove that Vi,
converges strongly to V* as r—1.

To prove this, let W, be defined by W, (z)=(1 —z). It is easy to calculate that if

zev, )
(VE W) = Koty 2) = kg (A).

It is also clear that k,, converges to kg in L? norm (even in the uniform norm) as r converges

to 1. Thus the Vy have uniformly bounded norms and converge strongly on a complete
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set in H2 It follows that lim,,; ¥ exists in the strong operator topology. Of course the
limit must be V*, and this completes the proof in the case ¢ =s.

Next consider the case g =A. If we let k(z, ) =A;(2)h(z, 1) and V,: L3(dv)—>H? be
given by

(V,c) () = f :c(/l) k(re®, 2) dz(4),
then V,— V strongly as r—1, so V¥ tends to V* weakly. Again V; is given by (4.2) above
(if one again recalls that this time B=s=1). Thus we must again prove V; converges
strongly to 0 on AH? and to V-1 on (AH?)L.

As in the case ¢ =s, one checks that W, (z)=(1—Cz)"! satisfies V; W, tends to k,
strongly. Since the ¥} are norm bounded and converge strongly on a dense set, lim,._,; Vi=
V* exists in the strong operator topology. That V*=0 on AH? and V*=V-1 on (AH?)*
follow as in the case ¢ =s.

The proof of Theorem 4.1 in the general case now follows from

LEMMA 4.1. Let Py, P,, P, be the projections onto (BH2)Y, (sH2) and (AH?)*. If
fE€(@pH?)*, then
f=Pyf+ BP.Bf+ BsP, Bsf.

Proof. We know from Lemma 3.1 that f=f, + Bf, + Bsfs, where f, € (BH?)*, f,€(sH%)*
and f,€(AH?%)*. That Py f=f, is clear. Multiply by B to get

Bf = Bfy +f,+5fs.

Apply P, and obtain f,=P, Bf. Now multiply by § and apply P, to get fy=P, Bsf. This
proves the lemma and completes the proof of Theorem 4.1.

Part I

5. The restricted shift. Let ¢ =BsA be an inner function, and V the isometry of
L2(dog) x L2(do,) x L¥doa) onto (pH?)* described in the last sections. We consider the
restricted shift operator 7' on (pH?)* defined by

Tf=Pzf, f€(pH?)*
where P is the projection onto (pH?)*. We wish to determine the operator V* T'V, unitarily
equivalent to 7" under V.
The results below are to be compared with Sarason’s [8] for the case p=A, r;=0,

j=2,3,..., 0;=0, except that Sarason considers (I + 7')~! and, in our case, [+ T may not,

in general, possess a bounded inverse.
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We begin with the case in which ¢ =s is a singular inner function whose associated
measure ¢ is continuous. Define an integral operator K;: L*(do)—L*(do), by
F
(Ke)(A)=2 J "D B e(t) dalt). (5.1)

[

Define M to be the multiplication operator on L?(do) given by

(M, c)(A) = ec(A).
We have the following

TueorEM 5.1. If p=s, V* TV=(I¥KS)MS.

Proof. Take c€L?(do); we show that (T'V)c=V(I — K Mc. First, note that, writing
down (VK M)c from (0.2) and (5.1), and reversing the order of integration, we obtain

2n

(VE,M,)c=2 ﬁfﬂ [f e P (2) (1 — e'”z)_lda(l)] CO oty da(i).
o LJe

Now, from (1.2), the inside integral in this equation is equal to

1 (8,(2) €77® — 83, (2) €7°®7).
It follows that (VE,M,c) (z) = ﬁf:ns,(z) et o(t) da(t) + as(z), (5.2)
« & constant. In addition, from (0.2),
(VMe)(z) = ﬁf:ne“ ¢(A) s2(2) (1 —e *2) " do(A). (5.3)

Subtracting (5.2) from (5.3), it follows easily that V(I —K,) M c=2zVc¢—as, and the con-
clusion follows.

Next we consider a singular inner function A, or equivalently an s(z) with the measure
o replaced by a purely atomic measure o, with masses r; at the points "%, Let dv be the

measure on [0, oo] defined in Section 2 above. We define an operator K,: L*d7)—~L3*dr), by
)
(a0 =2 [ o0 (83 0)A, 0D a0,

and a multiplication (=diagonal) operator M ,: L%(d7)—~L?(dr1), by
(Mpc)(A) =e®%+1¢(2) for N<A<N+1.

If V: L¥dz)—(AH?)"* is the isometry described in Theorem 2.1, then we have
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THEOREM 5.2. If o=A, V*TV=(I ~Kp) M.

Proof. The proof is formally the same as that of Theorem 5.1, and hence will be omitted.
In place of (1.2) it uses the equation

ft Du(0) Aa(e) b ) ) == [A4(0) 84(2) ~ A(0) A2

s
which was obtained in the course of the proof of Theorem 2.1.

Next we consider the case of a Blaschke product B, with zeros {a,}. We assume, for
simplicity that @, =0, k=1, 2, .... Let 65 be the purely atomic measure considered above:
o({k})=1—|a,|. This time we define K: L¥(dop)—~L%(do3) by

(K50) (n) =§1 ¢(j) B,(0)/B,(0) (1 +|a]) |a,|2(1 —|a]),

and M. L3(dog)—~L*dog), by
(M) (n) = ayc(n).

Then, if V is defined by (0.1), we have
THEOREM 5.3. If p=B, V*TV=(I -K,) M,.

Proof. Of course, the proof proceeds as in the proof of Theorem 5.1. One needs to know
that

,E,Bn(oﬂl +an])? Bo(2) (1 —@,2) 7 (1 = |a,]) = (1 + |a|)* [B;(0) B, (2) ~ B(0) B(z)J;

a fact that easily can be verified.
In the general case ¢ = BsA, V*TV takes the form

V*TV(CB’ Css CA) = (MBCB, Ms Csy MACA) +K(CB> Cs, CA)? (54)

where K is a quasi-nilpotent operator of Hilbert-Schmidt class. Neither the precise form of
K nor the complete proof of (5.4) will be given here. The derivation is similar to that of
Section 3 above. The remainder of this section will be devoted to applications of (5.4).

Let u(e') be a continuous function on 8U. The operator T',: (p H®)t — (pH?)* is defined

by
T.f=Puf, f€(@pH?*

The following applications of (5.4) are based upon the fact that the analogue of (5.4) above
holds for T'; i.e., that V* T, V(cg, ¢, ca) is given by



ON FUNCTIONS ORTHOGONAL TO INVARIANT SUBSPACES 201
(u(MB) Cps u(Ms) Cs u(MA) CA) +K’ (cB: Css CA)’ (55)

where K’ is compact, and where we assume u has been extended in some way to a continuous
function u(z) in |2| <1.

To prove (5.5), choose polynomials p, (2, Z) which tend uniformly to u(z) in |z|<1.
The analogue of (5.5) with u replaced by p, is easily seen to follow from (5.4); and then
(5.5) follows by taking uniform limits.

For our first application, let sp;(S) denote the Fredholm spectrum of an operator S,
and let supp ¢ denote the support of the inner function @. That is, supp ¢ is the closure

of the union of the set of zeros of B, the points ¢'%, and the support of o.
CorOLLARY 5.1, spp(T,) =spp(u(M))=u(supp ¢)NoU.

The corollary is a straightforward consequence of (5.5). Through similar reasoning,
we may obtain several of the results of Moeller [7], Foiag and Mlak [4] and Fuhrmann [5].
If, in addition, u is a trigonometric polynomial, then K’ in (5.5) is Hilbert-Schmidt and
so we may obtain information on when T, €c, with p >2; for similar results, see Clark [2].

As a final application of (5.5), we mention
THEOREM 5.4. T, is compact if and only if u(e®®)=0 for ¢ € supp pNU.

A curious corollary is obtained by noting that, if x€4, the algebra of continuous,
analytic functions in U, T, is compact if and only if u¢ € H® 4+ C; [9], where C denotes the

space of continuous functions on oU.

CorROLLARY B.2. If u€A, then up € H® + C if and only if ug€ .

6. Classes of functions which span {pH?)*. In this section, we consider two classes of
functions in (pH?)L. If ¢ = BsA, let F, denote the set of all inner functions y having one of
the forms p=1, y=B,, n=1,2, .., p=Bs;, 0<A<2n, or y=DBsA;, 0<A1<oco. Let F,
denote the set of functions Y* f, where f€ F,, and Y is the shift operator on all of H2:

Yg=z9, g€H.
We will prove

THEOREM 6.1. The set PF, of projections on (pH?*)* of the functions in F, spans (H?)*.
TaEOREM 6.2. The set F, spans (pH?)*.

Theorem 6.2 has a very simple corollary which was conjectured by Douglas, Shapiro
and Shields [3]:



202 P. R. AHERN AND D. N. CLARK

COROLLARY 6.1. If ¢ is not of the form g=e'™, then {Y*y} spans (pH%)*, for y a
divisor of @,y =¢.

[ e

?

Clearly, if ¢=¢'"

0<m<n.

, the function Y*g@=e4"-D0 is orthogonal to Y*y for p=¢™

Theorem 6.1 is a corollary of the proofs of Theorems 1.1, 2.1 and 3.1. Theorem 6.2

follows easily from Theorem 6.1 as we shall see below.

Proof of Theorem 6.1. As usual, we consider first the case ¢ =s. In that case, the projec-

tion of the function s;(0)s;(z) on (sH?)' is

52(0)81(2) —824(0) 824(2) = Ve, 25 (6.1)

An obvious modification of Lemma 1.1 shows that the ¢, ,, span L¥do) and hence the result

follows from the fact that ¥ is an isometry.
In case p=A, set ¢, () =¥, (4} A3(0). Then, if N is the integral part of u, we have

o0

Cu(A) =cpnir(A) + 2 ¢1(d),

j=N+1
in the notation of Section 2 above. Thus,

Veu(d) _ L [Aﬂ(O) Ay—Ayi1(0)Axie +,~=§

= (A(0) Ay— Ay (0) Aj“)]

+1

- V—lé_ [A4(0) A, — A0) AL,

i.e., Ve,(4) is the projection of (I/VE)A” (0)A, on (AH?2)*. Since the c, clearly span L*(d7),
the result follows.
For the case ¢ =B, let B,(z) denote the product of the first n —1 factors of B. Then,

as is seen from (0.1) and a simple computation, PB, = V{c,}, where

0 if j<n
=1 (1+]|a])* if j=n
I ay| (L +ay])E it j>n.

Hence the characteristic function of the integer n is given by the inverse image under V
of the function (1+ |a,|)~#[B,(z) — |a,| B,;1(2)]. Since those characteristic functions span
L*doy), it follows that the PB, span (BH?)*.

For the general case of Theorem 6.1, let P, Py, P, and P, be the projections on
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(pH?)*, (BH2)*, (sH?)* and (AH?)* respectively. If g€(pH?)* and (g, P,p)=0 for all p in
F,, then, in particular,

0= (g, P,BsA;) = (g, BsP5A;) = (PyBsg, PAA)),

so that P, B—sg=0. By Lemma 4.1, we may thus assume that g€ (BsH?)‘. With this as-
sumption and g L P, F,, we have

0= (g, P,Bs;) = (g, BP,s,) = (P, By, P;s;)
and this implies P, By=0. Again by Lemma 4.1, we may now assume g € (BH2)*. But then,
0=(g, P,B,) = (g, P B,)
and this implies g =0, by the case ¢ = B above. This proves Theorem 6.1.

Proof of Theorem 6.2. Let F, denote the set of functions of the form g¢(2) +cp, where
g€(pH?)! and ¢ is an arbitrary constant. By (6.1), Theorem 6.1 states that Fj is the H?
closure of the span of F;. Since Y* is a contraction map, it follows that the span of
Y*F,=F, is dense in Y* F;. Now the set Y* F, exactly covers (pH?)*. In fact, if T' (the
restricted shift on (pH?)*) has no nullspace, then Y* M+ covers M+, and if T does have a
nullspace then that nullspace (= (pH?)1 O Y* (pH?)') is equal to the one-dimensional span
of the vector Y* . In either case, F, spans (pH?)*.

Proof of Corollary 6.1. It suffices, by Theorem 6.2 to prove that Y*¢ lies in the
closed linear span of {¥*y}. If ¢ is a finite Blaschke product, this may easily be accom-
plished directly, as in Section 3.2.1 of Douglas, Shapiro and Shields [3]. If ¢ is not a finite
Blaschke product, we will prove the stronger statement that ¢ lies in the closure of the set
of its proper divisors. In fact, in that case, the functions B,s;A, tend to ¢ = BsA in H?

as n—>oco, A->2x and y—co, as is easily seen. This completes the proof of Corollary 6.1.

Added in proof. T. L. Kriete, III has independently obtained close analogues of the re-
sults of Sections 3 and 5 above. In work as yet unpublished, Kriete uses a somewhat differ-
ent representation for s(z) and obtains a unitary map from (sH %)L to the L? space of Lebesgue
measure on a certain interval.
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