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Introduction

The development of intrinsic theories for area-minimization problems was motivated in
the 1950’s by the difficulty to prove, by parametric methods, existence for the Plateau
problem for surfaces in Euclidean spaces of dimension higher than two. After the pioneer-
ing work of R. Caccioppoli [12] and E. De Giorgi [18], [19] on sets with finite perimeter,
W.H. Fleming and H. Federer developed in [24] the theory of currents, which leads to
existence results for the Plateau problem for oriented surfaces of any dimension and codi-
mension. It is now clear that the interest of this theory, which includes in some sense the
theory of Sobolev and BV-functions, goes much beyond the area-minimization problems
that were its initial motivation: as an example one can consider the recent papers [3],
[8], [27], [28], [29], [35], [41], [42], to quote just a few examples.

The second author is on leave from UAM MFF UK, Mlynské dolina, 84215 Bratislava, Slovakia.



2 L. AMBROSIO AND B. KIRCHHEIM

The aim of this paper is to develop an extension of the Federer-Fleming theory to
spaces without a differentiable structure, and virtually to any complete metric space; as a
by-product we also show that actually the classical theory of currents depends very little
on the differentiable structure of the ambient space, at least if one takes into account
only normal or rectifiable currents, the classes of currents which are typically of interest
in variational problems. The starting point of our research has been a very short paper
of De Giorgi [20]: amazingly, he was able to formulate a generalized Plateau problem
in any metric space E using (necessarily) only the metric structure; having done so, he
raised some natural questions about the existence of solutions of the generalized Plateau
problem in metric or in Banach and Hilbert spaces.

The basic idea of De Giorgi has been to replace the duality with differential forms
with the duality with (k+1)-tuples (fo, f1,--., f&), where k is the dimension, f; are Lip-
schitz functions in E, and fy is also bounded; he called metric functionals all functions T’
defined on the space of these (k+1)-tuples which are linear with respect to fy. We point
out that the formal approach of De Giorgi has a strong analogy with the recent work
of J. Cheeger [13] on differentiability of Lipschitz functions on metric measure spaces:
indeed, also in this paper locally finitely many Lipschitz functions f; play the role of
the coordinate functions zi,..., 2, in the Euclidean space R™. The basic operations of
boundary T— 8T, pushforward T—p4T and restriction T+TLw can be defined in a
natural way in the class of metric functionals; moreover, the mass, denoted by ||T|, is
simply defined as the least measure u satisfying

k
1T (fo, f1, - fE)I < HLip(fi)/ | fol dp
i=1 E

for all (k+1)-tuples {fo, f1,-.-» fx), where Lip(f) denotes the Lipschitz constant of f.
We also denote by M(T)=||T||(E) the total mass of T. Notice that in this setting it is

o~

natural to assume that the ambient metric space is complete, because Lip(E)~Lip(E)
whenever F is a metric space and E is the completion of E. ‘

In order to single out in the general class of metric functionals the currents, we have
considered all metric functionals with finite mass satisfying three independent axioms:

(1) linearity in all the arguments;

(2) continuity with respect to pointwise convergence in the last k& arguments with
uniform Lipschitz bounds;

(3) locality.

The latter axiom, saying that T'(fo, f1,..-, fx)=0 if f; is constant on a neighbour-
hood of {fo#0} for some i>1, is necessary to impose, in a weak sense, a dependence on
the derivatives of the f;’s, rather than a dependence on the f;’s themselves. Although
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df has no pointwise meaning for a Lipschitz function in a general metric space E (but
see 7], [13]), when dealing with currents we can denote the (k+1)-tuples by the formal
expression fp dfi A...Adfy, to keep in mind the analogy with differential forms; this nota-
tion is justified by the fact that, quite surprisingly, our axioms imply the usual product

and chain rules of calculus:

T(fodfi A .Adfe) +T(frdfoA...Adfy) =T (Ld(fo fr) ... Adfy),
T(fo dr(S)N--AdYw(f)) =T (fo det(V(f)) dfi A-.. A df).

In particular, any current is alternating in f=(fi,..., fx).
A basic example of a k-dimensional current in R* is

[9l(fo dfl/\---/\dfk)2=/ngfodet(Vf) dz

for any g€ L*(R¥); in this case, by the Hadamard inequality, the mass is |g|£*. By the
properties mentioned above, any k-dimensional current in R* whose mass is absolutely
continuous with respect to L£* is representable in this way. The general validity of this
absolute-continuity property is still an open problem: we are able to prove it either for
normal currents or in the cases k=1, k=2, using a deep result of D. Preiss [53], whose
extension to more than two variables seems to be problematic.

In the Euclidean theory an important class of currents, in connection with the
Plateau problem, is the class of rectifiable currents. This class can be defined also in

our setting as
Ri(E):={T:||T|| <« H* and is concentrated on a countably H*-rectifiable set}

or, equivalently, as the Banach subspace generated by Lipschitz images of Euclidean k-
dimensional currents [g] in RF. In the same vein, the class Z;(E) of integer-rectifiable
currents is defined by the property that w4 (TL A) has integer multiplicity in RF (i.e.
is representable as [g] for some integer-valued g) for any Borel set ACE and any @€
Lip(E, RF); this class is also generated by Lipschitz images of Euclidean k-dimensional
currents [g] in R¥ with integer multiplicity.

One of the main results of our paper is that the closure theorem and the boundary-
rectifiability theorem for integer-rectifiable currents hold in any complete metric space E;
this result was quite surprising for us, since all the existing proofs in the case E=R™
heavily use the homogeneous structure of the Euclidean space and the Besicovitch deriva-
tion theorem; none of these tools is available in a general metric space (see for instance

the counterexample in [17]). Our result proves that closure and boundary rectifiability
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are general phenomena; additional assumptions on F are required only when one looks
for the analogues of the isoperimetric inequality and of the deformation theorem in this
context.

If F is the dual of a separable Banach space (this assumption is not really restric-
tive, up to an isometric embedding) we also prove that any rectifiable current T' can
be represented, as in the Euclidean case, by a triplet [M, 6, 7] where M is a countably
HE-rectifiable set, 0>0 is the multiplicity function and 7, a unit k-vector field, is an
orientation of the approximate tangent space to M (defined in [7]); indeed, we have

T(fodfi A...Adfi) = /M0f0</\def,T>dH’“

where A, dMf is the k-covector field induced by the tangential differential on M of
F=(f1, .-, fr), which does exist in a pointwise sense. The only relevant difference with
the Euclidean case appears in the formula for the mass. Indeed, in [38] the second author
proved that for any countably H*-rectifiable set in a metric space the distance locally
behaves as a k-dimensional norm (depending on the point, in general); we prove that
|ITI|=0AH*L M, where ), called area factor, takes into account the local norm of M
and is equal to 1 if the norm is induced by an inner product. We also prove that A can

k/2 and from above with 2%/wy; hence the mass

always be estimated from below with k~
is always comparable with the Hausdorff measure with multiplicities.

If the ambient metric space F is compact, our closure theorem leads, together with
the lower semicontinuity property of the map T+—M(T'), to an existence theorem for the

(generalized) Plateau problem
min{M(T): T€ Ix(E), 0T =S} (1)

proposed by De Giorgi in [20]. The generality of this result, however, is, at least in part,
compensated by the fact that even though S satisfies the necessary conditions 85=0
and S€Z;_1(E), the class of admissible currents T in (1) could in principle be empty.
A remarkable example of a metric space for which this phenomenon occurs is the 3-
dimensional Heisenberg group Hj: we proved in [7] that this group, whose Hausdorff
dimension is four, is purely k-unrectifiable for k=2, 3,4, i.e.

H*(p(A)) =0 for all ACRF Borel, p € Lip(A, Hs).

This, together with the absolute-continuity property, implies that the spaces Ry(Hj)
reduce to {0} for k=2,3,4; hence there is no admissible 7 in (1) if S#0. Since a
lot of analysis can be carried on in the Heisenberg group (Sobolev spaces, Rademacher
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theorem, elliptic regularity theory, Poincaré inequalities, quasiconformal maps, see [34]
as a reference book), it would be very interesting to adapt some parts of our theory
to the Heisenberg and to other geometries. In this connection, we recall the important
recent work by B. Franchi, R. Serapioni and F. Serra Cassano [25], [26] on sets with
finite perimeter and rectifiability (in an intrinsic sense) in the Heisenberg group. Related
results, in doubling (or Ahlfors-regular) metric measure spaces are given in [6] and [47].

Other interesting directions of research that we do not pursue here are the extension
of the theory to currents with coeflicients in a general group, a class of currents recently
studied by B. White in [62] in the Euclidean case, and the connection between bounds on
the curvature of the space, in the sense of Alexandrov, and the validity of a deformation
theorem. In this connection, we would like to mention the parametric approach to the
Plateau problem for 2-dimensional surfaces pursued in [49], and the fact that our theory
applies well to CBA metric spaces (i.e. the ones whose curvature in the Alexandrov sense
is bounded from above) which are Ahlfors-regular of dimension k since, according to a
recent work of B. Kleiner (see [39, Theorem B]), these spaces are locally bi-Lipschitz-
parametrizable with Fuclidean open sets.

With the aim to give an answer to the existence problems raised in [20], we have
also studied some situations in which certainly there are plenty of rectifiable currents; for
instance if F is a Banach space the cone construction shows that the class of admissible
currents T in (1) is not empty, at least if S has bounded support. Assuming also that spt S
is compact, we have proved that problem (1) has a solution (and that any solution has
compact support) in a general class of Banach spaces, not necessarily finite-dimensional,
which includes all [P-spaces and Hilbert spaces. An amusing aspect of our proof of this
result is that it relies in an essential way on the validity of the closure theorem in a general
metric space. Indeed, our strategy (close to the Gromov existence theorem of “minimal
fillings” in [32]) is the following: first, using the Ekeland~Bishop—Phelps principle, we
are able to find a minimizing sequence (77) with the property that 7} minimizes the
perturbed problem

T M(T)+%M(T—Th)

in the class {T:8T=S}. Using isoperimetric inequalities (that we are able to prove in
some classes of Banach spaces, see Appendix B), we obtain that the supports of the
T}, are equi-bounded and equi-compact. Now we use the Gromov compactness theorem
(see [31]) to embed isometrically (a subsequence of ) spt T} in an abstract compact metric
space X; denoting by i, the embeddings, we apply the closure and compactness theorems
for currents in X to obtain S€Z(X), limit of a subsequence of i5,475. Then a solution of
(1) is given by 7S, where j:spt S— F is the limit, in a suitable sense, of a subsequence
of (ir)"!. We are able to circumvent this argument, working directly in the original
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space F, only if F has a Hilbert structure.

Our paper is organized as follows. In §1 we summarize the main notation and recall
some basic facts on Hausdorff measures and measure theory. §2 contains essentially the
basic definitions of [20] concerning the class of metric functionals, while in §3 we specialize
to currents, and §4 and §5 deal with the main objects of our investigation, respectively
the rectifiable and the normal currents. As in the classical theory of Federer—Fleming
the basic operations of localization and slicing can be naturally defined in the class of
normal currents. Using an equi-continuity property typical of normal currents we also
obtain a compactness theorem.

In order to tackle the Plateau problem in duals of separable Banach spaces we study
in §6 a notion of weak* convergence for currents; the main technical ingredient in the anal-
ysis of this convergence is an extension theorem for Lipschitz and w*-continuous functions
frA—-R. If Ais w*-compact we prove the existence of a Lipschitz and w*-continuous ex-
tension (a more general result has been independently proved by E. Matouskov4 in [43]).
The reading of this section can be skipped by those who are mainly interested in the
metric proof of closure and boundary-rectifiability theorems.

87 collects some informations about metric-space-valued BV-maps u: RF—S; this
class of functions has been introduced by the first author in [4] in connection with the
study of the I'-limit as )0 of the functionals

F.(u):= /m |:E|Vu|2+ @] dz

with W:R™—[0,00) continuous (in this case S is a suitable quotient space of {W=0}
with the metric induced by 2vW ) We extend slightly the results of [4], dropping
in particular the requirement that the target metric space is compact, and we prove a
Lusin-type approximation theorem by Lipschitz functions for this class of maps.

88 is devoted to the proof of the closure theorem and of the boundary-rectifiability
theorem. The basic ingredient of the proof is the observation, due in the Euclidean
context to R. Jerrard, that the slicing operator

R¥>z— (T,7, )

provides a BV-map with values in the metric space S of 0-dimensional currents endowed
with the flat norm whenever T is normal and f€Lip(E, R¥). Using the Lipschitz approx-
imation theorem of the previous section, these remarks lead to a rectifiability criterion
for currents involving only the 0-dimensional slices of the current. Once this rectifiability
criterion is established, the closure theorem easily follows by a simple induction on the

dimension. A similar induction argument proves the boundary-rectifiability theorem.
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We also prove rectifiability criteria based on slices or projections: in particular, we show
that a normal k-dimensional current 7' is integer-rectifiable if and only if ¢ 4T is integer-
rectifiable in R¥*! for any Lipschitz function ¢: E—+RF*1; this result, new even in the
Euclidean case E=R™, is remarkable because no a priori assumption on the dimension
of the support of T is made.

In §9 we recover, in duals of separable Banach spaces, the canonical representation
of a rectifiable current by the integration over an oriented set with multiplicities. As a
by-product, we are able to compare the mass of a rectifiable current with the restriction
of HF to its measure-theoretic support; the representation formula for the mass we obtain
can be easily extended to the general metric case using an isometric embedding of the
support of the current into l,,. The results of this section basically depend on the area
formula and the metric generalizations of the Rademacher theorem developed in previous

papers [38], [7] of ours; we recall without proof all the results we need from those papers.

§10 is devoted to the cone construction and to the above-mentioned existence results
for the Plateau problem in Banach spaces.

In Appendix A we compare our currents with the Federer-Fleming ones in the
Euclidean case E=R™, and in Appendix B we prove in some Banach spaces the validity of
isoperimetric inequalities, adapting to our case an argument of M. Gromov [32]. Finally,
in Appendix C we discuss the problem of the lower semicontinuity of the Hausdorfl
measure, pointing out the connections with some long-standing open problems in the
theory of Minkowski spaces.

Acknowledgements. We thank M. Chlebik, R. Jerrard, J. Jost, B. Kleiner and
V. Magnani for their helpful comments and suggestions. The first author gratefully
acknowledges the hospitality of the Max-Planck-Institut in Leipzig, where a large part
of this paper was written in 1998, and completed in the summer of 1999.

1. Notation and preliminary results

In this paper F stands for a complete metric space, whose open balls with center z and
radius r are denoted by B,.(z); B(E) is its Borel o-algebra and B (FE) is the algebra of
bounded Borel functions on E.

We denote by M(E) the collection of finite Borel measures in E, i.e. g-additive
set functions u: B(F)—[0, 00); we say that ue M(FE) is concentrated on a Borel set B if
p(E\B)=0. The supremum and the infimum of a family {u;};c; CM(FE) are respectively
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given by
V ui(B):= sup{Zpi(Bi) : B; pairwise disjoint, B= |J Bi}, (1.1
el ooy i€J
A wi(B):= inf{z w;(B;) : B; pairwise disjoint, B= | Bi}, (1.2)
el Py i€J

where J runs among all countable subsets of I and B;€ B(E). It is easy to check that
the infimum is a finite Borel measure and that the supremum is o-additive in B(E).

Let (X, d) be a metric space and let k& be an integer; the (outer) Hausdorff k-dimen-
sional measure of BC X, denoted by H*(B), is defined by

k . Wi, > . k e .
H¥(B):= 1613)1 ok mf{iz_g [diam(B;)]*: BC iyo B;, diam(B;) < 6}

where wy, is the Lebesgue measure of the unit ball of R¥, and wg=1. Since H%(B)=
#H% (B) whenever BC X and X isometrically embeds in Y, our notation for the Haus-
dorff measure does not emphasize the ambient space. We recall (see for instance [38,
Lemma 6 (i)]) that if X is a k-dimensional vector space and Bj is its unit ball, then
#*(B,) is a dimensional constant independent of the norm of X and equal, in particular,
to wg. The Lebesgue measure in R* will be denoted by £*.

The upper and lower k-dimensional densities of a finite Borel measure u at = are
respectively defined by

. : 1(Bo(z)) . H(B,(x))
,z):=limsup —=—"=, O, (u,z):=liminf ——==.
k('u ) 0l0 P wio* k(u ) el0 wro®
We recall that the implications
O;(u,z) >t forallzeB = u>tHLB, (1.3)
O;(u,z)<t forallzeB = ulLB<2"tH*LB (1.4)

hold in any metric space X whenever t€(0,00) and B€ B(X) (see [23, 2.10.19]).
Let X,Y be metric spaces; we say that f: X —Y is a Lipschitz function if

dy (f(2), f(y)) < Mdx(z,y) forall z,y€X,

for some constant M€[0, 00); the least constant with this property will be denoted by
Lip(f), and the collection of Lipschitz functions will be denoted by Lip(X,Y) (Y will
be omitted if Y=R). Furthermore, we use the notation Lip,(X,Y") for the collection
of Lipschitz functions f with Lip(f)<1, and Lip,(X) for the collection of bounded real-
valued Lipschitz functions.

We will often use isometric embeddings of a metric space into [°° or, more generally,

duals of separable Banach spaces. To this aim, the following definitions will be useful.
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Definition 1.1 (weak separability). Let (E,d) be a metric space. We say that I is
weakly separable if there exists a sequence {5 )C Lip;(F) such that

d(z,y) = sup lon(z)—pn(y)| forall z,ycE.

A dual Banach space Y=G" is said to be w*-separable if G is separable.

Notice that, by a truncation argument, the definition of weak separability can also
be given by requiring @y, to be also bounded. The class of weakly separable metric spaces
includes the separable ones (it suffices to take @p(-)=d(-,zp) with (z,)CE dense) and
all w*-separable dual spaces. Any weakly separable space can be isometrically embedded
in [* by the map

J(z) = (p1(z) —p1(z0), p2(x) —@2(z0), -.), TEE,

and since any subset of a weakly separable space is still weakly separable also the converse
is true.

2. Metric functionals

In this section we deﬁne, following essentially the approach of [20], a general class of
metric functionals, in which the basic operations of boundary, pushforward, restriction
can be defined. Then, functionals with finite mass are introduced.

Definition 2.1. Let k>1 be an integer. We denote by D*(E) the set of all (k+1)-
tuples w=(f, 71, ..., 7} of real-valued Lipschitz functions in F with the first function f
in Lip,(E). In the case k=0 we set D°(E)=Lip,(E).

If X is a vector space and T: X - R, we say that T is subadditive if |T(z+y)|<
|T(z)|+|T(y)| whenever z,y€X, and we say that T is positively 1-homogeneous if
[T'(tz)|=t|T(z)| whenever z€X and {>0.

Definition 2.2 (metric functionals). We call k-dimensional metric functional any
function T: D¥(E)— R such that

(fim1y ey, ) = T(f, 71, ey TE)

is subadditive and positively 1-homogeneous with respect to f€Lip,(F) and 7y, ..., 7€
Lip(E). We denote by MF(F) the vector space of k-dimensional metric functionals.

We can now define an “exterior differential”

dw=d(f,m1,...wx):=(1, f, 71, .0y TE)
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mapping D*(E) into D*+1(E) and, for p€Lip(E, F), a pullback operator

QO#w :w#(fa 1, ---aﬂk) = (fo<pa mey, "',TrkNp)

mapping D*(F) on D¥(E). These operations induce in a natural way a boundary operator
and a pushforward map for metric functionals.

Definition 2.3 (boundary). Let k1 be an integer and let T'€ MF(E). The bound-
ary of T, denoted by 0T, is the (k—1)-dimensional metric functional in E defined by
0T (w)=T(dw) for any weD*"1(E).

Definition 2.4 (pushforward). Let ¢: E— F be a Lipschitz map and let T€ MFy(E).
Then, we can define a k-dimensional metric functional in F, denoted by ¢47T, setting
puT(w)=T(p*w) for any weD*(F).

We notice that, by construction, px commutes with the boundary operator, i.e.

P (0T) =0(p4T)- (21

Definition 2.5 (restriction). Let T€ MFy(E) and let w=(g, 71, ..., Tm) €D™(E), with
m<k (w=g if m=0). We define a (k—m)-dimensional metric functional in E, denoted
by T'Lw, setting

TLW(f 1y, Themm) =T (f G T1s ey Trny Ty weey Fhimrn )

Definition 2.6 (mass). Let T€ MFy(E); we say that T has finite mass if there exists
HEM(E) such that

k
WMMWJM<EUWWLVWL (22)

for any (f,m1, ..., mx)€D¥*(E), with the convention [], Lip(m;)=1 if k=0.
The minimal measure p satisfying (2.2) will be called the mass of T and will be
denoted by ||T||.

The mass is well defined because one can easily check, using the subadditivity of T
with respect to the first variable, that if {u;}ier CM(E) satisfy (2.3) also their infimum
satisfies the same condition. By the density of Lip,(E) in L(E,||T]|), which contains
B>*(E), any T€ MF,(F) with finite mass can be uniquely extended to a function on
B>(E) x [Lip(E)]*, still subadditive and positively 1-homogeneous in all variables and
satisfying

k
WMMWJMSEUWWLVMWI (23)
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for any fe€ B>(E), 1, ..., €Lip(E). Since this extension is unique we will not introduce
a distinguished notation for it.

Functionals with finite mass are well behaved under the pushforward map: in fact,
if Te MF(E) the functional p4T has finite mass, satisfying

loa Tl < [Lin(0)* o4IT]- (2.4)

If ¢ is an isometry it is easy to check, using (2.6) below, that equality holds in (2.4). It
is also easy to check that the identity

¢#T(f7 1y aney ’Kk) :T(f0(107 T10@;5 ovey ”Tko(P)

remains true if fe B°°(F) and m, €Lip(E).
Functionals with finite mass are also well behaved with respect to the restriction
operator: in fact, the definition of mass easily implies

ITLw] <suplgl [T Li(r)ITH - with w= (g, 71, ., Tm). (2.5)
i=1

For metric functionals with finite mass, the restriction operator TLw can be defined
even though w=(g,m,...,7,) with g€ B®(F), and still (2.5) holds; the restriction will
be denoted by T'L A in the special case m=0 and g=x4.

PROPOSITION 2.7 (characterization of mass). Let Te MF,(E). Then T has finite
mass if and only if

(a) there exists a constant M€[0,00) such that
(e}
N IT(fim, o mh) <M
=0

whenever 3, |fi|<1 and Lip(7})<1;
(b f=T(f,71,...,mk) is continuous along equi-bounded monotone sequences, i.e.
sequences (frn) such that (frn(z)) is monotone for any z€E and

sup{|fn(z)|: z€ E, he N} < c0.

If these conditions hold, | T||(E) is the least constant satisfying (a), and ||T||(B) is
representable for any B€B(E) by

sup{g Tk, bl (26)
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where the supremum runs among all Borel partitions (B;) of B and all k-tuples of 1-
Lipschitz maps .

Proof. The necessity of conditions (a) and (b) follows by the standard properties of
integrals. If conditions (a) and (b) hold, for given 1-Lipschitz maps 71, ..., mx: E= R, we
set m=(m1, ..., 7 ) and define

pr (A) :=sup{{T(f, 71, -, me)| : | fI < xa}

for any open set ACFE (with the convention p,(@)=0). We claim that

pr(A) < pn(Ai)  whenever AC |J A (2.7)
i=1

i=1

Indeed, set 1¥(z)=min{1, N dist(z, E\ A;)} and define

1/)1\1 N N —1\—1
oY= e gN:=Zcpr=(1+<Nzwfv) > :
i=1

STYN+1/N e

Notice that 0<gn <1, gn is nondecreasing with respect to N, and gy 11 for any z€(J; As.
Hence, for any feLip,(F) with |f|<xa, condition (b) gives

N 0o
T, 71, o) = ngnmlT(Z; ol misame)| <> el

Since f is arbitrary, this proves (2.7).
We can canonically extend p, to B(E) setting

tr(B) ::inf{pr(Ai) tAC fj Ai} for all Be B(E),
i=1 =1

and it is easily checked that p, is countably subadditive and additive on distant sets.
Therefore, Carathéodory’s criterion (see for instance [23, 2.3.2 (9)]) gives that p, € M(E).
We now check that

IT(f,?tl,...,wk)]g/E{f[dp,, for all f€Lipy(F). (2.8)

Indeed, assuming with no loss of generality that f>0, we set f,=min{f,¢} and notice
that the subadditivity of T" and the definition of p, give

HT(fs, T15eeey T) | = [T (fts 71y ooy )| | S o ({ f > £})(s—1)  for all s>¢.
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In particular, t—|T'(f;, 71, ..., )| is a Lipschitz function, whose modulus of derivative
can be estimated with ¢(t)=p,({f>t}) at any continuity point of ¢. By integration
with respect to t we get

T (f, 0, 2)] = /0 T (formr, i) de < /0 b ((f > 1)) dt = /E £ .

By the homogeneity condition imposed on metric functionals, (2.8) implies that the
measure p*=\/_ i, satisfies condition (2.2). Since obviously

) )
(2 =sup{ 3 a5 Y 1 <1, Lip(r) <1}
i=0 i=0
we obtain that p*(E)<M, and this proves that ||T||(E)< M, i.e. that ||T||(E) is the least
constant satisfying (a).

It is easy to check that the set function 7 defined in (2.6) is less than any other
measure 4 satisfying (2.2). On the other hand, a direct verification shows that 7 is
finitely additive, and the inequality 7<u* implies the o-additivity of 7 as well. The
inequality

|T(xB,m1,-..,7k)| <7(B) for all Be B(E), m; €Lip,(FE)

gives p. <7, whence p*<7 and also 7 satisfies (2.2). This proves that 7 is the least
measure satisfying (2.2). O

Definition 2.8 (support). Let pe M(E); the support of 4, denoted by spt y, is the
closed set of all points z€ E satisfying

w(By(z))>0 for all p>0.

If Fe MFy(F) has finite mass we set spt T:=spt ||T|.

The measure u is clearly supported on spt u if F is separable; more generally, this
is true provided the cardinality of E is an Ulam number, see [23, 2.1.6]. If B is a Borel
set, we also say that T is concentrated on B if the measure ||T}| is concentrated on B.

In order to deal at the same time with separable and nonseparable spaces, we will
assume in the following that the cardinality of any set F is an Ulam number; this is
consistent with the standard ZFC set theory. Under this assumption, we can use the
following well-known result, whose proof is included for completeness.

LEMMA 2.9. Any measure pu€ M(E) is concentrated on a o-compact set.

Proof. We first prove that S=sptpu is separable. If this is not true we can find
by Zorn’s maximal principle £ >0 and an uncountable set AC.S such that d(z,y)>¢ for
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any x,y€A with z#y; since A4 is uncountable we can also find § >0 and an infinite set
BC A such that u(B,/o(x))>4 for any z€ B. As the family of open balls {B,/2()}zcB
is disjoint, this gives a contradiction.

Let (z,)CS be a dense sequence and define Lk,h:UZ:o By /k(%,), for k>1 and
h>0 integers. Given £>0 and k>1, since u is supported on S we can find an integer
h=h(k,e) such that p(Ly n)>u(E)—e/2%. It is easy to check that

K:= [\ Lk, n(k,e)
k=1
is compact and p(E\K)<e. O

We point out, however, that Lemma 2.9 does not play an essential role in the paper:
we could have as well developed the theory making in Definition 2.6 the a priori assump-
tion that the mass ||T|| of any metric functional T is concentrated on a o-compact set
(this assumption plays a role in Lemma 5.3, Theorem 5.6 and Theorem 4.3).

3. Currents

In this section we introduce a particular class of metric functionals with finite mass, char-
acterized by three independent axioms of linearity, continuity and locality. We conjecture
that in the Euclidean case these axioms characterize, for metric functionals with compact
support, the flat currents with finite mass in the sense of Federer-Fleming; this problem,
which is not relevant for the development of our theory, is discussed in Appendix A.

Definition 3.1 (currents). Let k>0 be an integer. The vector space My(E) of k-
dimensional currents in F is the set of all k-dimensional metric functionals with finite
mass satisfying:

(i) T is multilinear in (f, 71, ..., mk);

(il) im; 00 T(f, 7%, ..., 7g)=T(f, 71, ..., M) whenever 7}—7; pointwise in E with
Lip(7r§-)<C for some constant C;

(iii) T(f, 71, ..., mk)=0 if for some i€ {1, ..., k} the function r; is constant on a neigh-
bourhood of {f#0}.

The independence of the three axioms is shown by the following three metric func-
tionals with finite mass:

b

Ti(f, 7)== ‘/wa'e‘t2 dt

Om O

= e ™ ¥ dg dy,
Rz Oz Oy

T2(fa ﬂ-laﬂ-Q) =

Ty(f, m) = /R FO) (1) —m()) e dt.
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In fact, T} fails to be linear in 7, T% fails to be continuous (continuity fails at mi(z,y)=
ma(x, y)=1+y, see the proof of the alternating property in Theorem 3.5), and T3 fails to
be local.

In the following we will use the expressive notation
w=fdr=fdmAN.. . Ndmy

for the elements of D*(E); since we will mostly deal with currents in the following, this
notation is justified by the fact that any current is alternating in (my,...,m;) (see (3.2)
below).

An important example of a current in Euclidean space is the following.

Ezample 3.2. Any function geL'(RF) induces a top-dimensional current [g]€
M. (RF) defined by

[[g]](fdm/\.../\dﬂk)::/ngfdm/\.../\dﬂk:/ngfdet(VW) dz

for any fcB>(RF), m,..., mz€Lip(R¥). The definition is well posed because of the
Rademacher theorem, which gives £*-almost everywhere a meaning to V. The metric
functional [g] is continuous by the well-known w*-continuity properties of determinants
in the Sobolev space W1 (see for instance [16]); hence [g] is a current. It is not hard
to prove that ||[g]||=1g| L*.

In the case k=2 the previous example is optimal, in the sense that a functional
I(f,m,m2) =/ fdet(Vw) dp,
R2

defined for f€ B (R?) and mp, ;e WH°(R2)NC(R?), satisfies the continuity property
only if p is absolutely continuous with respect to £2. This is a consequence of the
following result, recently proved by D. Preiss in [53]. The validity of the analogous result
in dimension higher than two is still an open problem.

THEOREM 3.3 (Preiss). Let ue M(R?) and assume that p is not absolutely con-
tinuous with respect to L2. Then there exists a sequence of continuously differentiable
functions gn<Lip;(R2,R2) converging pointwise to the identity, and such that

lim det(Vgp) du < p(R?).
h—oco R2

Notice that the 1-dimensional version of the Preiss theorem is easy to obtain: as-
suming with no loss of generality that u is singular with respect to £}, it suffices to
define

gn(t) :=t—L'(ArN(—00,t)) for all teR,
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where (A) is a sequence of open sets such that £!(As)—0, containing an £*-negligible
set on which pu is concentrated.

It is easy to check that M (F), endowed with the norm M(T):=|T||(E), is a Banach
space. Notice also that the pushforward map T+—pxT and the restriction operator
T—TLw (for weD*(E)), defined on the larger class of metric functionals, map currents
into currents. As regards the boundary operator, we can give the following definition.

Definition 3.4 (normal currents). Let k>1 be an integer. We say that T€ My(E) is
a normal current if also 8T is a current, i.e. 3T€ Mg_;(E). The class of normal currents
in E will be denoted by N¢(E).

Notice that 8T is always a metric functional satisfying conditions (i) and (ii) above;
concerning condition (iii) it can be proved using the stronger locality property stated in
Theorem 3.5 below. Hence T is normal if and only if 8T has finite mass. It is not hard
to see that also N¢(F), endowed with the norm

N(T) := | TII(E)+]0T|(E),

is a Banach space.

Now we examine the properties of the canonical extension of a current to B®(E) x
[Lip(E)]*, proving also that the action of a current on D*(E) satisfies the natural chain
and product rules for derivatives. An additional consequence of our axioms is the alter-
nating property in 7y, ..., m%.

THEOREM 3.5. The extension of any T€ My (E) to B®(E)x [Lip(E)|* satisfies the
following properties:

(1) (product and chain rules) T is multilinear in (f, 71, ..., 7x),
T(fdmiA. . Adm)+T(midf A...Adm) =T(1d(fri)A... Admy) (3.1)
whenever f,m €Lip,(F), and
T(f dp1(m)A .. Adipi (7)) =T(f det Vyp(mr) dmiA... Admy) (3.2)

whenever Y=(¢1, ..., ¥x) E[CHR¥)]F and Vv is bounded,;
(ii) (continuity)
il_i)rg)T(ﬂ,ﬁ, ey M) =T (f, 1y ooey Th)

whenever f'—f—0in L'(E, ||T||) and 7} —m; pointwise in E, with Lip(5)<C for some
constant C,

(iii) (locality) T(f,m1,...,mx)=0 if {f#0}=; B; with B;cB(E) and m; constant
on B;.
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Proof. We prove locality first. Possibly replacing f by fxs, we can assume that m;
is constant on {f#0} for some fixed integer ¢. Assuming with no loss of generality that
7;=0 on B; and Lip(n;)<1, let us assume by contradiction the existence of CC{f#0}
closed and € >0 such that |T(xc¢ dm)|>¢, and let §>0 be such that |T']|(Cs\C)<e, where
Cs is the open é-neighbourhood of C. We set

gi{x) = ma.x{O, 1— % dist(z, C)}, ce(x) = sign(z) max{0, |z| -},

and using the finiteness of mass and the continuity axiom we find to€(0,d) such that
|T(gt, dm)|>e and t1€(0,t0) such that |T(g,d7)|>e, with 7,=m; for j#i and ;=
ct,om;. Since 7; is 0 on Cy, and spt g;, CCY, /2, the locality axiom (iii) on currents gives
T'(g¢, d)=0. On the other hand, since Lip(7;)<1 we get

T (gt —g0,) d7)[ < /E (0ta— e AITT < ITN(C\C) <.

This proves that |T'(g:, d7)] <e and gives a contradiction.
The continuity property (ii) easily follows by the definition of mass and the continuity
axiom (ii) in Definition 3.1.

Using locality and multilinearity we can easily obtain that
T(f dmiAdm;_q /\d’w(ﬂi)/\.‘./\dﬂk) = T(f?f)l(ﬂ'l) dm /\.../\d’ﬁ'k) (33)

whenever i€{1,...,k} and ¥<cLip(R)NC*(R); in fact, the proof can be achieved first
for affine functions ¢, then for piecewise affine functions 1, and then for Lipschitz and
continuously differentiable functions 4 (see also the proof of (3.2), given below).

Now we prove that 7" is alternating in y, ..., Tx; to this aim, it suffices to show that
T vanishes if two functions =; are equal. Assume, to fix the ideas, that m;=m; with ¢<7,
and set 7 =m; if [¢{i,j} and

1 1 1
k. _ . k._ — i
my = }g—gp(km), = knp(kw]+2)

where ¢ is a smooth function in R such that ¢(t)=t on Z, ¢'>0 is l-periodic and
¢'=01in [0, 3]. The functions 7* uniformly converge to m, have equi-bounded Lipschitz
constants, and since

o' (km;) <p'(k7rj + %) = ¢'(kn;) <p’(k7ri + %) =0

from (3.3) we obtain that 7'(f dr*)=0. Then the continuity property gives T'(f dn)=0.
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We now prove (3.2). By the axiom (i) and the alternating property just proved, the
property is true if ¢ is a linear function; if all components of ¥ are affine on a common
triangulation 7 of R¥, representing R* as a disjoint union of (Borel) k-simplices A and
using the locality property (iii) we find

T(f dipy(m)A... Adipg(m)) = Z TLr (A dipr(m) A Adipy (7))

AeT
= > TLr (A)(f det V|a(r) dmiA... Admy)
AeT
:T(f Z detV@blA(w)x,,_1(A) d7'r1/\.../\d7l'k).
AET

In the general case, the proof follows by the continuity property, using piecewise affine
approximations v, strongly converging in le’coo (RE,RF) to 9.

Finally, we prove (3.1); possibly replacing T by TLw with w=dmzA...Adm we can
also assume that k=1. Setting S=(f,71)x7T€M;(R?), the identity reduces to

S(g1dg2)+S(g2dgr) = S(1d(g192)) (3-4)

where g; € Lip,(R?) are smooth and g1(z, )=z and g2(x,y) =y in a square @D (f, 7)(E)D
spt S. Let g=g1g2 and let u;, be obtained by linear interpolation of g on a family of
regular triangulations 7, of @ (i.e. such that the smallest angle in the triangulations
is uniformly bounded from below). It can be proved {see for instance [15]) that (up)
strongly converges to g in W1*°(Q) as h— 00, and hence we can represent up(z,y) on
each A€T}, as alz+b2y+c?, with

im sup sup |g2—ah|+]g1—by]=0.
h—o0 AT (z,y)eA

Using the continuity, the locality and the finiteness of mass of § we conclude

S(1dg)= lim S(1duy)=lim >  SLA(af dz)+SLA(bR dy)
h—o0 h—o00 AST,
h

Zhli_{go SLA(g2dg1)+SLA(g1dg2) = S(g92dg1)+S(g1 dga). u
A€Th

A simple consequence of (3.1) is the identity
oTLf)=(0T)f-TLdf (3.5)

for any f€Lip,(E). In particular, TL f is normal whenever T is normal and f&Lip,(E).
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The strengthened locality property stated in Theorem 3.5 has several consequences:
first

T(fdm)=T(f'dr’) whenever f=f', m=7"on sptT, (3.6)

and this property can be used to define pxTeM(F) even if p€Lip(spt T, F}; in fact,
we set

OuT(f, 71, ey ) :=T(f, 71, oon, h)

where fe Lip,(E) and 7; €Lip(FE) are extensions to E, with the same Lipschitz constant,
of fop and m;op. The definition is well posed thanks to (3.6), and still (2.1) and (2.4)
hold. The second consequence of the locality property and of the strengthened conti-
nuity property is that the (extended) restriction operator T—TL f driA...AdTm maps
k-currents into (k—m)-currents whenever feB>(FE) and 7;€Lip(E).

Definition 3.6 (weak convergence of currents). We say that a sequence (13,) C My (F)
weakly converges to T€ My(E) if T, pointwise converge to T as metric functionals, i.e.

hlim Tn(fdr)=T(fdr) forall feLip,(E), m;€Lip(E), i=1,..., k.
— 00

The mapping T ||T|(A) is lower semicontinuous with respect to the weak conver-
gence for any open set ACF, because Proposition 2.7 (applied to the restrictions to A)
easily gives

i) =sup{ S 1705 ax): 3 [l < xasopTin(e) < 1) (5

Notice also that the existence of the pointwise limit for a sequence (Th)C My (F) is not
enough to guarantee the existence of a limit current T' and hence the weak convergence
to T. In fact, suitable equi-continuity assumptions are needed to ensure that condition (ii)
in Definition 3.1 and condition (b) in Proposition 2.7 hold in the limit.

The following theorem provides a simple characterization of normal k-dimensional
currents in R¥.

THEOREM 3.7 (normal currents in R¥). For any T€Ng(R¥) there ezists a unique
g€BV(R¥) such that T=[g]. Moreover, |0T|=|Dg|, where Dg is the derivative in the
sense of distributions of g, and |Dg| denotes its total variation.

Proof. Let now T€Ni(R¥). We recall that any measure y with finite total varia-
tion in R¥ whose partial derivatives in the sense of distributions are (representable by)
measures with finite total variation in R¥ is induced by a function g€ BV(R¥). In fact,
setting fe=p*0. €C(R¥), this family is bounded in BV(R¥), and the Rellich theorem
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for BV-functions (see for instance [30]) provides a sequence (f.,) converging in L} _(RF)
to geBV(RF), with ;—0. Since f.L* weakly converge to p as £/0 we conclude that
p=gLk.
Setting
w(f) =T(f dz1A...Adxy), feB>®(R¥),

we first prove that all directional derivatives of i are representable by measures. Thisis a
simple consequence of (3.2) and of the fact that T is normal: indeed, for any orthonormal
basis (e1,-..,ex) of R¥ we have

‘ 09 M] |T(6¢’dm i, )

rr O0¢; Je

~1T(1dgnd)| =0T (@ di)I< [ lolloT)

for any ¢€C°(R¥), where 7; are the projections on the lines spanned by e;, and dft;=
dmiA. Adm;_iAdmigi A Admy. This implies that |D,u|<||0T| for any unit vector v,
whence p=g¢L* for some g€ L'(R*) and |Dyu|<||0T).

By (3.2) we get

T(fd7r1/\.../\d7rk):/ gf det(Vr) dz
REK

for any fe B~°(R*) and any 7€ C'(R¥,R¥) with V& bounded. Using the continuity
property, a smoothing argument proves that the equality holds for all w= f dr€D*(RF);
hence T'=[g].

Finally, we prove that

k-1
OT(f dmy...ndme-)] < [ Lin(ms) [ 1f1dIDgl, (3.8)
i=1
which implies that ||0T||<|Dg|. By a simple smoothing and approximation argument

we can assume that f and all functions m; are smooth and that f has bounded support;
denoting by H, the (kx k)-matrix having Dg/|Dg| and V7, ..., Vmi_1 as rows we have

8T(fd7r1/\.../\d7rk_1)=/ gdfndmiA. Ndmg_q
k

on
; /fdet(axl)dD,g
D o
1t [ 708 aer( 5 ) algl

f det(H,)d|Dgl,
Rk

M?r

=1
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whence (3.8) follows using the Hadamard inequality. O

The previous representation result can be easily extended to those k-dimensional
currents in R¥ whose mass is absolutely continuous with respect to £¥. Except for
k=1,2, we do not know whether all currents in My (R¥) satisfy this absolute-continuity
property. As the proof of Theorem 3.8 below shows, the validity of this statement is
related to the extension of the Preiss theorem to any number of dimensions.

THEOREM 3.8. A current T€ M (R¥) is representable as [g] for some ge L'(R¥) if
and only if ||T||< L*. For k=1,2 the mass of any T€My(RF) is absolutely continuous
with respect to LF.

Proof. The first part of the statement can be obtained from (3.2) arguing as in the
final part of the proof of Theorem 3.7. In order to prove the absolute-continuity property,
let us assume that k=2. Let

/l,(B) =T(xgB diL‘l/\de'g), BGB(RQ),

and let ul A+ul (R?\ A) be the Hahn decomposition of u. Since T is continuous, by
applying Theorem 3.3 to the measures uL A and —uL (R?\ A), and using (3.2), we obtain
that u<<L?; hence p=gL? for some g€ L'(R?). In the case k=1 the proof is analogous,
by the remarks following Theorem 3.3. O

In the following theorem we prove, by a simple projection argument, the absolute-

continuity property of normal currents in any metric space E.

THEOREM 3.9 (absolute continuity). Let T€N(E) and let Ne B(R*) be L*-neg-
ligible. Then

|TLdr||(x~(N))=0 for all w€Lip(E,RF). (3.9)
Moreover, ||T| vanishes on Borel H*-negligible subsets of E.

Proof. Let L=n"(N) and f€Lip,(E); since

(TLdrm)(fxe) =TL(fdr)(xr)=7x(TL f)(Xn dz1A... A dizy)

and mg (TL f)€Ng(R¥), from Theorem 3.7 we conclude that TLdm(fxz)=0. Since f is
arbitrary we obtain ||TLdr|(L)=0.

If LeB(E) is any H*-negligible set and w€Lip(E, RF), taking into account that
7(L) (being H*-negligible) is contained in a Lebesgue-negligible Borel set N we obtain
|TLdr||(L)<||TLdr| (7w~ (N))=0. From (2.6) we conclude that ||T||(L)=0. a
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4. Rectifiable currents

In this section we define the class of rectifiable currents. We first give an intrinsic
definition and then, as in the classical theory, we compare it with a parametric one
adopted, with minor varjants, in [20].

We say that an #H*-measurable set SCE is countably H¥-rectifiable if there exist
sets A; CR* and Lipschitz functions f;: A;— E such that

H* (S\;Ljo fi(Ai)) —0. (4.1)

It is not hard to prove that any countably H*-rectifiable set is separable; by the com-
pleteness assumption on E the sets A; can be required to be closed, or compact.

LEMMA 4.1. Let SCE be countably H*-rectifiable. Then there ezist finitely or
countably many compact sets K; CRF and bi-Lipschitz maps f;: K;—S such that fi(K;)
are pairwise disjoint and H*(S\U, fi(K:))=0.

Proof. By Lemma 4 of [38] we can find compact sets K;C RF and bi-Lipschitz maps
fi: Ki— E such that SCJ, f;(K;), up to H*-negligible sets. Then, setting Bo=Kjy and

B;:= Ki\f‘l(Sm U fj(Kj)) €B(R*) forall i1,
§<i
we represent H*-almost all of S as the disjoint union of f;(B;). For any i€ N, representing
Lk-almost all of B; by a disjoint union of compact sets the proof is achieved. O

Definition 4.2 (rectifiable currents). Let k>1 be integer and let T€ M(E); we say
that T is rectifiable if

(a) ||IT|| is concentrated on a countably H*-rectifiable set;

(b) ||T}| vanishes on H*-negligible Borel sets.
We say that a rectifiable current 7 is integer-rectifiable if for any @€ Lip(E, R¥) and any
open set ACE we have @4 (TL A)=[0] for some 8¢ L}(R*,Z).

The collections of rectifiable and integer-rectifiable currents will be respectively de-
noted by Ry (E) and Zx(E). The space of integral currents I(F) is defined by

Ik(E) :Ik(E)ﬂNk(E)

We have proved in the previous section that condition (b) holds if either k=1,2 or
T is normal. We will also prove in Theorem 8.8 (i} that condition (a) can be weakened
by requiring that 7 is concentrated on a Borel set, o-finite with respect to H™~!, and
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that, for normal currents 7', the integer rectifiability of all projections ¢4 (T'L A) implies
the integer rectifiability of 7'.

In the case k=0 the definition above can be easily extended by requiring the existence
of countably many points € E and 6,€R (or ,€Z, in the integer case) such that

T(f)=>_ 0nf(zn) forall feBX(E).
)

It follows directly from the definition that Ri(F) and Zx(F) are Banach subspaces
of My (E).

We will also use the following rectifiability criteria, based on Lipschitz projections,
for 0-dimensional currents; the result will be extended to k-dimensional currents in The-
orem 8.8.

THEOREM 4.3. Let Se My(E). Then

(1) SeIo(F) if and only if S(xa)EZ for any open set ACE;

(ii) SeZo(F) if and only if pxSeIo(R) for any peLip(E);

(iii) if E=RY for some N, then SER,(E) if and only if puSER(R) for any
peLip(E).

Proof. (i) If S(x4) is integer for any open set A, we set
L:={zecE:||S||(By(z}) =1 for all o>0}

and notice that ¥ is finite and that, by a continuity argument, SLYX€Iz(E). If z¢%
we can find a ball B centered at z such that ||S|(B)<1; as S(x4) is an integer for any
open set ACB, it follows that S(x4)=0, and hence ||S||(B)=0. A covering argument
proves that ||.S||(K)=0 for any compact set KC E\X, and Lemma 2.9 implies that S is
supported on .

(ii) Let ACFE be an open set and let ¢ be the distance function from the complement
of A. Since

S(xa)=¢#S(X(0,00)) €Z

the statement follows from (i).

(iii) The statement follows by Lemma 4.4 below. O

LEMMA 4.4. Let u be a signed measure in RY. Set Q=QN x(QN(0,00))V and
consider the countable family of Lipschitz maps



24 L. AMBROSIO AND B. KIRCHHEIM

where (z,A) runs through Q.
Then ueRo(RN) if and only if fr rxxp€Ro(R) for all (x,\)€Q.

Proof. We can assume with no loss of generality that p has no atom and denote by
[l - lloo the loo-norm in RY. Assume p to be a counterexample to our conclusion and let
K <N be the smallest dimension of a coordinate-parallel subspace of R" charged by |/,
i.e. K is the smallest integer such that there exist z°¢ R, IC{1, ..., N} with cardinality
N — K such that |u|(Pr(z°))>0, where

Pr(z®):={zeRN:z; =2 for any i I}.

Since & has no atom, K >0. Replacing p by —p if necessary, we find e>0 and z'e QY
such that
pw(M)>3e  where M:= Pr(z)n{y:|ly—z'||c <1}.

Next we choose k sufficiently large such that
lul(M)<e with M:={yeR": disto(y, M) € (0,2/k)}.

Modifying z! only in the ith coordinates for i€ I we can, without changing M, in addition
assume that |[(z°—z!);|<1/k for all ieI. We define Ae(QN(0,00))™ by A;=k if i€,
and A; =1 otherwise. Observe that

Mc f31,(0,1)) € MUM.

Let T be the countable set on which ji=f;1 ygp is concentrated. Due to our minimal
choice of K we have |u|(MNf; }(s))=0 for any s€R; hence our choice of M gives

l(f A (TN[0, 1)) < Il (£, (10, 1)\ M) <&,

and we obtain that |/([0,1))<e. On the other hand,

(0, 1)) = (£, (10, 1)) > (M)~ |u| (BT > 2€.
This contradiction finishes our proof. - O

It is also possible to show that this kind of statement fails in any infinite-dimensional
situation, for instance when E is L2. In fact, it could be proved that given any sequence
of Lipschitz functions on a Hilbert space, we can always find a continuous probability
measure on it whose images under all these maps are purely atomic.

Now we show that rectifiable currents have a parametric representation, as sums of
images of rectifiable Euclidean currents (see also [20]).
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THEOREM 4.5 (parametric representation). Let T€ Mg(E). Then, TER(E) (resp.
TeT(E)) if and only if there exist a sequence of compact sets K;, functions ;€ L}(RF)
(resp. ;€ LY(R*,Z)) with spt6;C K;, and bi-Lipschitz maps fi: K;—E, such that

T=Y fixl0] and Y M(fix[0:]) =M(T).

1==0 i=0

Moreover, if E is a Banach space, T can be approrimated in mass by a sequence of
normal currents.

Proof. One implication is trivial, since f;4[6;] is rectifiable, being concentrated
on f;(K;) (the absolute-continuity property (b) is a consequence of the fact that i
fi(K;)— K, is a Lipschitz function), and Ry(F) is a Banach space. For the integer case,
we notice that T;= f;»[6;] is integer-rectifiable if ; takes integer values, because for any
peLip(E,R¥) and any open set ACE, setting h=pof;: K;—R* and A’:fi'l(A), we
have

prmin)=tp@dea)=| 3 o@sinten vhGe)|
x€h~1(y)NA’
as a simple consequence of the Euclidean area formula.

Conversely, let us assume that T is rectifiable, let S be a countably H*-rectifiable
set on which |T| is concentrated, and let K; and f; be given by Lemma 4.1. Let
gi:fi_leLip(Si,K,v), with S;=f;(K;), and set R;=g;%(TLS;); since ||R;|| vanishes on
HE-negligible sets, by Theorem 3.7 there exists an integrable function 6; vanishing outside
of K; such that R;=[6;], with integer values if T€Zy(E). Since fiog;(z)=z on S;, the
locality property (3.6) of currents implies

TLS; =(fiogi)#(TLS;) = fix Ri = fin[0:]-

Adding with respect to %, the desired representation of T follows. Finally, if E is a Banach
space we can assume (see [37]) that f; are Lipschitz functions defined on the whole of R*
and, by a rescaling argument, that Lip(f;)<1; for ¢ >0 given, we can choose 6, BV (R¥)
such that [i. |0; —0}| dz<e27* to obtain that the normal current T=Y", fix[0!] satisfies
M(T-T)<e. O

The following theorem provides a canonical (and minimal) set Sr on which a recti-
fiable current T is concentrated.

THEOREM 4.6. Let TeERL(E) and set

Sri={z€E:0,4(|T]}, ) > 0}. (4.2)
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Then St is countably H*-rectifiable, and ||T|| is concentrated on Sr; moreover, any
Borel set S on which ||T| is concentrated contains St, up to H*-negligible sets.

Proof. Let S be a countably H*-rectifiable set on which ||T'|| is concentrated; by the
Radon—Nikodym theorem we can find a nonnegative function € L}(H*L S) such that
|T|=0H*LS. By Theorem 5.4 of [7] we obtain that Ox(||T||,z)=0(z) for H*-a.e. z€S,
while (1.3) gives O, (||T}|, z)=0 for H*-a.e. z€ E\S. This proves that ST=SN{6>0}, up
to H*-negligible sets, and since ||T|| is concentrated on SN{#>0} the proof is achieved. O

Definition 4.7 (size of a rectifiable current). The size of TE Ry (E) is defined by
S(T) :=H*(Sr)

where St is the set described in Theorem 4.6.

5. Normal currents

In this section we study more closely the class of normal currents; together with recti-
fiable currents, this is one of the main objects of our investigation, in connection with
the isoperimetric inequalities and the general Plateau problem. We start with a useful
equi-continuity property which leads, under suitable compactness assumptions on the

supports, to a compactness theorem in Ni(FE).

PROPOSITION 5.1 (equi-continuity of normal currents). Let TENy(E). Then the

estimate
k
- ! = i i i T :d .
|T(f dr) T(fdﬂ)|<i§:_;/E|f||7r 7rz|dllaTH+Lu.0(f)/sptf|7r mld|T|  (5.1)

holds whenever f,m;, m,€Lip(E) and Lip(m;)<1, Lip(n])<1.
Proof. Assume first that f, m; and 7} are bounded. We set dmy=dmaA...Adm and,
using the definition of T, we find
T(f dmiAdmo)—T(f dryAdmo)

=T(1d(fm)Ndrg) —T(1d(fn)Admo)—T(my df Ndmo)+T {7y df Admo)
=T (fm dmg) —OT(fr} dmo) —T(m1 df Admo) +T (] df Ndmo);

hence using the locality property, |T'(f dmiAdmg)—T(f dniAdmg)| can be estimated with

[ 1flim ~wi1diori+Lin(s) [ pm—rilai].

pt f
Repeating k—1 more times this argument the proof is achieved. In the general case the

inequality (5.1) is achieved by a truncation argument, using the continuity axiom. O
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THEOREM 5.2 (compactness). Let (Th)CNg(E) be a bounded sequence, and assume
that for any integer p>1 there exists a compact set K, CE such that

1
| Th[(E\Kp)+|0TR [ {(E\K)) <5 for all heN.

Then, there exists a subsequence (Ty(y)) converging to a current T€ Ny (E) satisfying

ImI(2\ U 55) + 1ol (8\ G, K) =

Proof. Possibly extracting a subsequence, we can assume the existence of measures
i, vEM(E) such that

tm [ faini= [ ran g [ rajoni= [ gav
h—oo E E h—o0 E E

for any bounded continuous function f in E. It is also easy to see that (u+v)(E\Kp)<
1/p, and hence p+v is concentrated on |J, K.

Step 1. We will first prove that (T3 ) has a pointwise converging subsequence (T (r));
to this aim, by a diagonal argument, we need only to show for any integer g1 the
existence of a subsequence (h(n)) such that

] 3
hmiup | Ty (f ) = Ty (f dmr)| < P

whenever fdreDF(E) with |f|<q, Lip(f)<1 and Lip(;)<1. To this aim, we choose
g€Lip(FE) with bounded support such that

1
sup N(T,—ThL g) < —
heN q

(it suffices to take g: £—{0, 1] with Lip(g)<1 and g=1 in Ky42), and prove the existence
of a subsequence h(n) such that T}, )L g(f dr) converges whenever f dr € D¥(E) with
Lip(f)<1 and Lip(m;) <1,

Endowing Z=Lip,(lJ, K;) with a separable metric inducing uniform convergence on
any compact set Kp, we can find a countable dense set DCZ and a subsequence (h(n))
such that Ty, L g(f dm) converge whenever f,m,..., 7z belong to D. Now we claim that
Th(nyLg(f dm) converge for f, 1, ...,mx €Lip;(E); in fact, for any f, 71, o, T €D We can
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use (5.1) to obtain

lim sup |ThnyL g(f d7) = Thy(ny L g(f d)|

n,n’ —oco

< 2limsup | Ty (f dn) —Th (f d7)]
h—o00
k
<limewp3- /E (1F1+1)|m— 73] d[IO(Th L g) |+ ITL gll]

—fldlIT
+ /E F—FldITaLal

k
<§/Sptg(lfl+1)lm—frildﬂ
+ /E (114 1)\g] e — 4] s+ /E 1= Fl1gl d.

Since f and 7; are arbitrary, this proves the convergence of Th(nyLg(f dm).

Step 2. Since Tj(n)(w) converge to T'(w) for any weD*(E), T satisfies conditions (i)
and (iii) stated in Definition 3.1. Passing to the limit as n— o0 in the definition of mass
we obtain that both T and AT have finite mass, and that ||T||<u, ||0T||<v. In order to
check the continuity property (ii) in Definition 3.1 we can assume, by the finiteness of
mass, that f has bounded support; under this assumption, passing to the limit as A—oo

in (5.1) we get

k
T(fdm)-T(fan) <Y [ 1Al m—mldu+Lin(r) [ me=rilan
=1 E spt f
whenever Lip(7;)<1 and Lip(n})<1. This estimate trivially implies the continuity prop-
erty. O

A simple consequence of the compactness theorem, of (3.5) and of (3.1) is the fol-
lowing localization lemma; in {5.2) we estimate the extra boundary created by the local-

ization.

LEMMA 5.3 (localization). Let peLip(E) and let Te Ny (FE). Then, TL{p>t}€
Nk(E) and

1T (o> Dl ({o=tD) < = ITLdpl(fo<))| _ 52)

for Ll-a.e. teR. Moreover, if S is any o-compact set on which T and 8T are concen-
trated, T {p>t} and its boundary are concentrated on S for L'-a.e. teR.
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Proof. Let p=||T||+||0T]|, let (K,) be a sequence of pairwise disjoint compact sets
whose union covers p-almost all of E, and set

9ty =p({p<t}),  gp(t) = p(Kpn{p<t}).

We denote by L the set of all t€R such that ¢'(t)=)", g,(t) is finite and the derivative
in (5.2) exists; these conditions are fulfilled £!-almost everywhere in R, and hence L has
full measure in R.

Let te L, let €,]0 and set

0 for s <t,
fu(s)=<1 for s > t+ep,
(s—t)/en for s€[t,t+ep];

by (3.5) and the locality property we obtain that the currents T'L fro satisfy
HTL frop)=0TL froo—Rn (5.3)

with Rh:z-:,;lTl_x{K(quh} dp. By (3.5) and locality again we get
1
OR, =0(0TL frop) = —a aTLX{t<Lp<t+£h} dep.

It is easy to see that our choice of ¢ implies that the sequence (R},) satisfies the assump-
tions of Theorem 5.2. Hence, possibly extracting a subsequence, we can assume that
(R},) converges as h—00 to some RENy_1(E) such that ||R|| and ||OR|| are concentrated
on J, Kp.

Since 8TL fr(p) converge to OTL {¢>t}, passing to the limit as h—oo in (5.3) we
obtain

AT {p>t})=08TL{p>t}—R,

and hence [|O0(TL{p>t})||({e=t})<M(R). Finally, the lower semicontinuity of mass
gives

M(R) <liminf M(Ry) < 4 ITLde||{e<TH)] . a
h—o0 dr T=t

In the proof of the uniqueness part of the slicing theorem we need the following
technical lemma, which allows us to represent the mass as a supremum of a countable
family of measures.
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LEMMA 5.4. Let SCFE be a g-compact set. Then, there exists a countable set DC
Lipy(E)NLip,(E) such that

ITl| =V {ITLdr|: 71, .., mi € D} (5.4)

whenever T is concentrated on S.
Proof. Let X=Lip,(E)NLip,(F) and let S={J, K, with K;, C E compact. The proof
of Proposition 2.7 and a truncation argument based on the continuity axiom give

IT| =V {ITLdnl|: 71, oo mi € X} (5.5)

for any T'e My (F). Let D, CX be a countable set with the property that any geX
can be approximated by a sequence ¢*C Dy, with sup |¢*| equi-bounded and ¢* uniformly
converging to ¢ on K;. Taking into account (5.5), the proof will be achieved with
D=\, Dy, if we show that

|\ TLdr|LK, <V{|Trdgll: q1,.-,qx € Dp}  for all my, ..., me € X. (5.6)

Let feB*°(E) vanish outside of K}, and let ﬂ}EDh converge as i—00 to m; as above
(i-e. uniformly on K}, with supy, |7}| equi-bounded). Then, the functions

T (x) = yrg}?h 73 (y)+d(z,y) € Lip,(E)

coincide with 7} on K}, and pointwise converge to ;(z)=ming, m;(y)+d(z,y). Using

the locality property and the continuity axiom we get
T(f dr)=T(f d7) = lim T(f dx*) = lim T(f dr*) g/ |F|dun
1— 00 Kamde o] E

where i, is the right-hand side in (5.6). Since f is arbitrary this proves (5.6). ad

In an analogous way we can prove the existence of a countable dense class of open
sets.

LEMMA 5.5. Let SCFE be a o-compact set. There erists a countable collection A
of open subsets of E with the following property: for any open set ACE there exists a
sequence (A;)CA such that

lim x4, =xa n L'(u) for any p€ M(E) concentrated on S.

i—00

Proof. Let S=|J, K4, with K}, compact and increasing, let D be constructed as in
the previous lemma, and let us define

As={{r>}}:meD).
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The characteristic function of any open set AC E can be approximated by an increasing
sequence (g;)C Lip(E), with g;>0. For any ¢>1 we can find f;€ D such that |f;—g;|<1/3
on K;. By the dominated convergence theorem, the characteristic functions of { fi> %}
converge in L' (1) to the characteristic function of A whenever y is concentrated on S. [J

The following slicing theorem plays a fundamental role in our paper; it allows to
represent the restriction of a k-dimensional normal current 7" as an integral of (k—m)-
dimensional ones. This is the basic ingredient in many proofs by induction on the di-
mension of the current.

We denote by (T, z) the sliced currents, m: E—R™ being the slicing map, and
characterize them by the property

/ (T,m,2)¢(x) de =TL (Yor)dn for all 3 € C.(RF). (5.7)

We emphasize that the current-valued map z+ (T, 7,z) will be measurable in the fol-
lowing weak sense: whenever g dr€D*~™(E), the real-valued map

x> {T,m,x)(gdr)
is L™-measurable in R™. This weak measurability property is necessary to give a sense
to (5.7) and suffices for our purposes. An analogous remark applies to z+—||{T, 7, x)||.

THEOREM 5.6 (slicing theorem). Let T€Ng(E), let L be a o-compact set on which
T and AT are concentrated, and let w€Lip(E,R™), with m<k.
(i) There exist currents (T, m,2)ENg_p,(E) such that

(T, m,x) and 8(T,w,z) are concentrated on LN (z), (5.8)
/R (T, 7, )| d = | TL dr | (5.9)

and (5.7) holds.

(ii) If L' is a o-compact set, and zf T*eMy_n(E) are concentrated on L', satisfy
(5.7) and z—>M(T?®) is integrable on R¥, then T*=(T,r,z) for L™-a.e. z€ R™.

(iii) If m=1, there exists an L'-negligible set NCR such that

(T,7,x)= liin TI_XL;”;!’—} dr=0T)L{r>z}—-(TL{n>x})
yle -

for any x€R\N. Moreover, M((T, n,z))<Lip(m)M(TL {r<z})’ for L'-a.e. z, and

[  N((T, 7, 2)) dz < Lip(r)N(T). (5.10)
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Proof. Step 1. In the case m=1 we take statement (iii) as a definition. The proof
of the localization lemma shows that

Sy =(0T)L{r>z}-0(TL{n>z})=1lim LTI_X{Z<,r<y} dm (5.11)

iz Y—ZF

for £1-a.e. z; hence spt S, C LN7w~!(z) and

M(S;Lw) <%||(Tl_d7r)l_w||({7r>t}) for £'-a.e. z€R

t=z

whenever we DP(E), 0<p<k—1. By integrating with respect to z we obtain
/ M(S,Lw) dz < M((TL dr)Lw) (5.12)
R

where [ * denotes the upper integral (we will use also the lower integral [, later on).

Now we check (5.7): any function ¥ €C.(R) can be written as the difference of two
bounded functions ¢, ¥ €C(R) with v, >1. Setting 'yi(t):fot (1) dr, for i=1,2 and
weD*"(E) we compute

/ S, () ¥i(z) dz = / AT {m >z} (w) ¥ (z) dz — / AT {r> z})(w) () dz
0 0 0

:/ T L {viom >t} w)dt —/ TL{y;om >t}{dw)dt

0 0

=0T (v omw) =T (v o dw).

Analogously, using the identity S,=8(TL {r<z})—8TL {r<x} we get
| 0
| Satwyute)do = -0T(r7 om) +T (o om ).

Hence, setting w=f dp, we obtain

/R 82(f dp) (=) dz = OT (ysom  dp) T (i df Adp)
=T(f d(viem)Adp) =T (fv;em dnAdp)=TLy;omdn(f dp).

Since =11 — this proves (5.7).
By (5.7) we get

k—1
Tde(ng)=/ sz(gdf)dxgﬂmp(n)/ 15211(|g]) dz
R i=1 *R
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whenever gdr€D* 1(E). The representation formula for the mass and the superaddi-
tivity of the lower integral give

IITI—dWII(IQI)</R||Szll(lgl)dx for all g€ L'(E, [|TLdrl).

This, together with (5.12) with w=|g|, gives the weak measurability of z— ||S;|| and (5.9).
To complete the proof of statement (iil) we use the identity

T, m,z)=—(0T,m,x), (5.13)
and apply (5.9) to the slices of T and JT to recover (5.10).

Step 2. In this step we complete the existence of currents (T, 7, z) satisfying (i) by
induction with respect to m. Assuming the statement true for some me([l,k—1], let us
prove it for m+1. Let w=(my,7), with #€Lip(E,R™™!), and set z=(y, t) and

n::<T77T17t>) Tz = <3})7~r)y>

By the induction assumption and (5.12) with w=d= we get
/ M(Ty) dy dt =/ M(T;L d7) dt < M(T L dm). (5.14)
R JRm-1 R
By applying twice (5.7) we get
| T a(®)dyde = [ Tiwn(R) drvale) dt=TLn () ga(m) dr
m R

whenever ¥, €C.(R™~!) and ¢2€C,(R); then, a simple approximation argument proves
that T, satisfy (5.7). Finally, the equality (5.9) can be deduced from (5.7) and (5.14)
arguing as in Step 1.

Step 3. Now we prove the uniqueness of (T, 7, z); let f dpe D*~™(E) be fixed; de-
noting by (o.) a family of mollifiers, by (5.7) we get

T*(f dm) :lig)l T(fo-omdnAdp) for L™-a.e. € R™.
€

This shows that, for given w, T%(w) is uniquely determined by (5.7) for L™-a.e. z€e R™.
Let D be given by Lemma 5.4 with S=LUL’, and let NCR™ be an £L™-negligible Borel
set such that T%(f dn)=(T,m, z)(f dn) whenever m;€ D and x€R™\N. By applying
(5.4) to T*—(T, 7w, xz) we conclude that T*=(T', 7, z) for any z€e R™\N. O

Now we consider the case of (integer-)rectifiable currents, proving that the slicing
operator is well defined and preserves the (integer) rectifiability. Our proof of these facts
uses only the metric structure of the space; in w*-separable dual spaces a more precise
result will be proved in Theorem 9.7 using the coarea formula of [7].
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THEOREM 5.7 (slices of rectifiable currents). Let TER(E) (resp. T€Zx(F)) and
let meLip(E,R™), with 1<m<k. Then there exist currents (T, m,z)ERk—m(E) (resp.
(T, 7, 2)€T—m(E)) concentrated on SyNn~'(z) and satisfying (5.7), (5.9),

(TLA,mz)={T,m,z)LA for all Ac B(E) (5.15)

for L™-a.e. zeR™ and

S((T, W,z))d:cgc(k,m)HLip(m)S(T). (5.16)

R™ i=1

Moreover, if T*€ My, (E) are concentrated on LNw~(z) for some o-compact set L,
satisfy (5.7) and [, M(T®) dz<oo, then T*=(T,n,z) for L™-a.e. zER™.

Proof. We construct the slices of the current first under the additional assumption
that F is a Banach space. Under this assumption, Theorem 4.5 implies that we can write
T as a mass-converging series of normal currents Ty; by applying (5.9) to Ty we get

Ly

(Th,m,z)do < [ [ Lip(ms) Y M(Th) = [ | Lip(m:) M(T),
h=0 i=1 h=0 =1

and hence )", (Th, 7, x) converges in My _,,,(E) for L™-a.e. € R™. Denoting by (T, 7, z)
the sum, obviously (5.7), (5.9) and condition (b) in Definition 4.2 follow by a limiting
argument. Since (T}, n, ) are concentrated on 7~ 1(z), the same is true for (T, 7, z). In
the general case, we can assume by Lemma 2.9 that F'=spt T is separable; we choose an
isometry j embedding F into [, and define

(T,m,t):=ju" (j4T,7,t) forall teR

where 7 is a Lipschitz extension to I, of moj 1:j(F)—R. It is easy to check that (5.7)
and (5.9) still hold, and that (T, 7, t) are concentrated on w~!(z). Moreover, since (5.9)
gives
m
[ 2281 do < T Liptr 1T \5) =0
we obtain that (T, 7, z) is concentrated on Sy for £L™-a.e. z€R™. Using this property,
the inequality (see Theorem 2.10.25 of [23])

/RmHk‘m(STﬂw’l(x)) dz < e(k,m) ﬁ Lip(m;) H*(Sr)

i=1

and Theorem 4.6 imply (5.16).
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The uniqueness of (T, 7, z) can be proved arguing as in Theorem 5.6 (ii). The unique-
ness property easily implies the validity for £L™-a.e. z€R™ of the identity

(TLA, 7, z)=(T,m, z)LA

for any A€ B(E) fixed. Let A be given by Lemma 5.5 and let NCR™ be an £L™-negligible
set such that the identity above holds for any A€ A and any re R™\N. By Lemma 5.5
we infer that the identity holds for any open set ACE and any x € R™\ N, whence (5.15)
follows.

Finally, we show that (T, 7, z) €Iy, (E) for L™-a.e. ze R™ if T€Z(E). The proof
relies on the well-known fact that this property is true in the Euclidean case, as a con-
sequence of the Fuclidean coarea formula; see also Theorem 9.7, where this property is
proved in a much more general setting. By Theorem 4.5 we can assume with no loss
of generality that T'=f4[6] for some integer-valued < L!(R¥) vanishing outside of a
compact set K, and that f: K— F is bi-Lipschitz. Then, it is easy to check that

T%:= fu([0], 7 f, x)
are concentrated on f(K)Nm~!(x), satisfy (5.7), and that [, M(T*)dr<oco. Hence

(T,m,z2)=T"€Ty_m(E) for LT-ae. zeR™. |

We conclude this section with two technical lemmas about slices, which will be used
in §8. The first one shows that the slicing operator, when iterated, produces lower-
dimensional slices of the original current; the second one shows that in some sense the
slicing operator and the projection operator commute if the slicing and projection maps
are properly chosen.

LEMMA 5.8 (iterated slices). Let TEeRy(E)UNL(E), 1<m<k, neLip(E,R™) and
T,=(T,w,t). Then, for any n€[l,k—m] and any pcLip(E,R") we have

(T, (m,0), (t, ) =(Ts, 0,y)  for L7 -a.e. (t,y) eR™™.

Proof. The proof easily follows by the characterization of slices based on (5.7). 0

LEMMA 5.9 (slices of projections and projections of slices). Let me([l, k], n>m,
SeRK(E), peLip(E,R" ™) and w€Lip(E,R™). Then

q#{(p, M) 4 S, p, t) = (S,m,t)  for LT-a.e. tER™,
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where p: R*—>R™ and ¢ R*—R""™ are respectively the projections on the last m co-

ordinates and on the first n—m coordinates.

Proof. Set ¢=(p,7), let fdre DF~™(R"™ ™) and let g€ C>(R™) be fixed. By the
same argument used in the proof of Theorem 5.6 (ii) we need only to prove that

/g(w)q#<¢#S,p,t)(de)dw=/ 9(x) (S, m, t)(f dr) dz. (5.17)
Rm R™

Using (5.7) we obtain that the right-hand side in (5.17) is equal to

| s@S.ma)(fopdrop) do=S(fop-gom dnnd(rop)).

On the other hand, a similar argument implies that the left-hand side is equal to

/ 9(2)(645,p, 2)(Foqd(roq)) dz = .5 (foq-gopdpAd(rq))

R™

=8(fop-gemdrAd(Top))

because go¢=¢ and pogp=m. 0

We conclude this section by noticing that in the special case when k=m and r=¢
an analogous formula holds with p equal to the identity map, i.e.

(pS,p,x) = pu(S,p,z) for LF-ae rcRE (5.18)

6. Compactness in Banach spaces

In the compactness theorem for normal currents seen in the previous section, the exis-
tence of a given compact set K containing all the supports of T} is too strong for some
applications. This is the main motivation for the introduction of a weak* convergence
for normal currents in dual Banach spaces, which provides a more general compactness

property, proved in Theorem 6.6.

Definition 6.1 (weak* convergence). Let Y be a w*-separable dual space. We say
that a sequence (T,)CMj(Y) w*-converges to Te My(Y), and we write T, —T, if
Tw(f dm) converge to T(fdm) for any fdreD*(Y) with f and m; Lipschitz and w*-

continuous.

The uniqueness of the w*-limit follows by a Lipschitz extension theorem: if A is w*-
compact and f is w*-continuous, we can extend f preserving both the Lipschitz constant

and the w*-continuity.
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THEOREM 6.2. Let Y be a w*-separable dual space, let ACY be w*-compact and let
f:A—=R be Lipschitz and w*-continuous. Then, there exists a uniformly w*-continuous
map f:Y—R such that fla=f, sup|f|=sup|f| and Lip(f)=Lip(f).

Proof. Of course, we can assume f(A)C|0, 1]. Using compactness (and metrizability)
of the w*-topology on any bounded subset of Y we find a sequence {Up}nzo of w*-
neighbourhoods of zero such that

|f (@)= fI <27+ Lip(f) disty. (z—y, Un) if z,y€A, n>0. (6.1)

Clearly, we can also modify this sequence (gradually replacing the U, by smaller sets if
necessary) in a way that additionally

Uy=Y and Upp1+Upp1CU, forallnz0. (6.2)
For z€Y we define
di(z):=f{27™:z€U,}, da{z):=min{2d:(z),LLip(f)|z|}.

Due to (6.2) we have dy(z+y)<2max(d;(z),d1(y)) for any pair of points z,y. This im-
plies by induction with respect to n that di(3"7 z;)<2d1(z,) provided di(z1)<di(z2)<
...<di(zn). We prove also by induction in n that di(3 ] #:)<2 Z’f di(z;) for any
Z1,..,Zn €Y. Indeed, if all values di(z;) are different, then this is a consequence of
what was just said. But if dy(z,.1)=di(z,) then the estimate dyi(xn—1)+di(zn)>
d1(xp—1+71,) shows that the claimed inequality follows from the induction assumption

n—2 n—2

dl(z xi+<xn_1+xn)> <2 dy(z:) + 241 (2 +20).
1 1

Now we put for any z€Y

d(z) ::inf{idz(x) : w:zn:a:}

i=1 =1

We note that
|f(z)-f(y)|<d(z—y) whenever z,y€ A. (6.3)

To see this take an arbitrary representation z—y=31 z;. We define S to be the set of

those indices 4 such that da(2;)=2d:(2;), and put z=3, ¢ 2;, Z=z—y—=z. Then
Lip(f) 12 <Y Lin(H)llzill =D da(z)-

3¢S igs
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Moreover, 3 ;e s d2(21) =2 3¢ 5 d1(2:) 2di(2). Since |f(z) - f(y)|<di(2)+Lip(f)| 2] due
to (6.1), we just established (6.3).
Finally, we define our function f by

flz):= inf f(y)+d(z-y).

Since obviously |d(z—y)—d(Z -y)|<da(z—z) for any z,Z,y, we see that f(z)—f(Z)<
da(z—Z)<Lip(f)||z—Z|. Hence Lip(f)=Lip(f), and due to the w*-continuity of d; at
zero the function f is a uniformly w*-continuous one. Moreover, the condition (6.3)
ensures that f(x)=f(z) for each x€A. The function min{f(x),1} satisfies all stated
conditions. O

In the following proposition we state some basic properties of the w*-convergence.

PROPOSITION 6.3 (properties of w*-convergence). Let Y be a w*-separable dual
space and let (Tp)CMi(Y') be a bounded sequence. Then

(i) the w*-limit is unique;

(ii) Tp—T implies M(T)<liminf, M(T3);

(iii) w*-convergence is equivalent to weak convergence if all currents Ty, are supported

on a compact set S.

Proof. (i) The uniqueness of the limit obviously follows from (ii).
To prove (ii) we fix 1-Lipschitz functions 7} in E and functions f; €Lip(E) with
MNUFI<, for i=1, ..., p. By (3.7) we need only to show that

P

> T(f: dn') <liminf M(T},).

€ h—oo

=1
Let £>0 and let K. CY be a compact set such that |T]| (Y \ K:)+||0T|(Y \ K:) <e; since
the restrictions of f; and 7 to K, are w*-continuous we can find by Theorem 6.2 w*-
continuous extensions f, 7}, of fi|k., 75|k, . As the condition 3, |fic|<1 need not be
satisfied, we define fiE:q,»( fiey -y fpe), where g: RP—RP is the orthogonal projection on
the convex set ), |z;|<1. The convergence of T}, to T implies

P P
; T(fei dr}) = Jim Zl Ti(fei df) <liminf M(T},).
Since fs’i:fgiz fi on K_, by letting €0 the inequality follows.
(iii) The equivalence follows by Theorem 6.2 and the locality property (3.6). O

Another link between w*-convergence and weak convergence is given by the following

lemma.



CURRENTS IN METRIC SPACES 39

LEMMA 6.4. Let X be a compact metric space, let C,CX and jo€Lip(Ch,Y) with
sup{||jn(@)l| : z€Ch, heN} < 0.

Let us assume that (Ch) converge to C in the sense of Kuratowski and that j:C—=Y
satisfies

Th(k) € Chry 72 = w'-lim Ink)(Thcr)) = 3(2)- (6.4)

Then, jeLip,(C,Y) and Sp,—S implies that jnuSh—j#S for any bounded sequence
(Sp)CN(X) with spt S, CCh.

Proof. The w*-lower semicontinuity of the norm implies j€Lip,(X,Y) and clearly
spt SCC. Let f:Y—R be any w*-continuous Lipschitz map; we claim that for any Lip-
schitz extension f of foj we have supg, |fojn— f1—0; in fact, assuming by contradiction
that | fojn(zn)—f(xn)|>¢ for some >0 and z,€Ch, we can assume that a subsequence
(Th(k)) converges to z€C, and hence that f(zx)) converge to f(z)=foj(x); on the
other hand, jnk)(Tnk)) W*-converge to j(z), hence fojnry(Tnk)) converge to foj(z),
and a contradiction is found.

Let now fdreD*(Y) with f and m; Lipschitz and w*-continuous, and let f,7; be
Lipschitz extensions of foj, m;oj respectively with f bounded; notice that

Gt Sn(f dm)— g S(f dm)=[Sh(Foin d(mogn)) — Sn(f di))+[Sk(f d7t) = S(f d7t)].

The equi-continuity of normal currents and the uniform convergence to 0 of fojp— f and
;o jpn—; on Cp, imply that the quantity in the first square bracket tends to 0; the second
one is also infinitesimal by the weak convergence of Sy, to S. O

Definilion 6.5 (equi-compactness). A sequence of compact metric spaces (Xj) is
called equi-compact if for any €>0 there exists NN such that any space X can be
covered by at most N balls with radius e.

Using the equi-compactness assumption and the Gromov-Hausdorff convergence of
metric spaces (see [31]}, Theorem 5.2 can be generalized as follows.

THEOREM 6.6 (weak* compactness). Let Y be a w*-separable dual space, let (T},)C
Nr(Y) be a bounded sequence, and assume that for any €>0 there exists R>0 such that
K;,=Bgr(0)Nspt T}, are equi-compact and

. Il \K) + 8Tl (Y \ ) <.

Then, there ezists a subsequence (Th)) w*-converging to some TEN(Y). Moreover,
T has compact support if sptTy are equi-bounded.
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Proof. Assume first that spt T} are equi-bounded and put Kp=sptT}; since Kj
are equi-compact, by Gromov’s embedding theorem [31], possibly extracting a subse-
quence (not relabelled), we can find a compact metric space X and isometric immersions
in: Kp—X. By our extra assumption on K} the maps jh:igl are equi-bounded in
in(K1), and we denote by B a closed ball in Y containing all sets j,(X). Let d,, be a
metric inducing in B the w*-topology; since Y=(B,d,,) is compact, possibly extracting
a subsequence we can assume the existence of a compact set CC X and of j: C— B such
that Cp=i,(Kpn) converge to C in the sense of Kuratowski and (6.4) holds (for instance,
this can be proved by taking a Kuratowski limit of a subsequence of the graphs of j; in
X x B). By Theorem 5.2 we can also assume that the currents Sp=1ip4Th weakly converge
as h— 0o to some current S. By Lemma 6.4 we conclude that Tj, =j,4 S, w*-converge to
T=ju85.

If the supports are not equi-bounded, the proof can be achieved by a standard
diagonal argument if we show the existence, for any £>0, of a sequence fk still satisfying
the assumptions of the theorem, with spt T}, equi-bounded and M(T}, —Th)(Y) <e. These
currents can be easily obtained setting T,=T,_B r,.(0), where Rp€(R, R+1) are chosen
in such a way that M(8T,)(Y) are equi-bounded. This choice can be done using the
localization lemma with ¢(z)=||z||. u

7. Metric-space-valued BV-functions

In this section we introduce a class of BV-maps u: R¥— S, where S is a metric space. We
follow essentially the approach developed by L. Ambrosio in [4] but, unlike [4], we will
not make any compactness assumption on S, assuming only that S is weakly separable.
If S=Mjy(F) we use a Lipschitz approximation theorem for metric-valued BV-maps to
prove in Theorem 7.4 the rectifiability of the collection of all atoms of u(x), as z varies
in (almost all of) R*.

Let (S,d) be a weakly separable metric space and let FCLip,(S) be a countable
family such that

d(e,y) = sup lp(z)—p(y)| for all z,y€ 5. (7.1)
peF

Definition 7.1 (functions of metric bounded variation). We say that a function
u:RF—S is a function of metric bounded variation, and we write u€ MBV(RF, S), if
pou€ BV (RF) for any pcF and

| Dull:= V _|D(pou)| <oo.
pEF
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Notice that in the definition above we implicitly make the assumption that gou is
Lebesgue-measurable for any @€ Lip,(S); since S is a metric space, this condition is easily
seen to be equivalent to measurability of v between R¥, endowed with the o-algebra of
Lebesgue-measurable sets, and S, endowed with the Borel o-algebra. Notice also that,
even in the Euclidean case S=R™, the space MBV is strictly larger than BV, because
not even the local integrability of u is required, and is related to the class of generalized
functions with bounded variation studied in [22}, [55].

The class MBV(RF¥, S) and || Dul| are independent of the choice of F; this is a direct
consequence of the following lemma. It is also easy to check that uc MBV(R¥,R) if
u€BVoc(R*,R) and |Du|(R*) <00, and in this case || Dul|=|Dul.

LEMMA 7.2. Let FCLip,(S) be as in (7.1), and let uc MBV(R,S) and ve
Lip;(S)NLip,(S). Then ou€BVi.(RF) and

[D(ou)| < V_[D(pou)l.
pEF

In particular, || Dul|=\/ {|D(pou)|: p€Lip,(S)NLip,(S)}.

Proof. Let us first assume k=1. Let ACR be an open interval and let v: A—R be
a bounded function. We denote by L, the Lebesgue set of v and put |Dv|(A)=+o0 if
v€BV o (A). It can be easily proved that

p—1

|Dvl|(A) :sup{z [o(tigr)—v(ts)]  t1 <... <tp, & EA\N}

i=1

whenever £L}(N)=0 and NDA\L,. Choosing

N:= (A\L¢ou)U¢L€Jf[(A\Lwou)U{t€A: |D(peu)l({t}) > 0}]

we get
|oultivr) —peulti)| < sup |[pou(tivr) —poults)] < | Dull((fir1, t:))
pE

whenever t;,t;11 € A\N. Adding with respect to ¢ and taking the supremum, we obtain
that | D(1ou)|(A) can be estimated with || Dul|(A). By approximation the same inequality
remains true if A is an open set or a Borel set.

In the case k>1 the proof follows by the 1-dimensional case recalling the following
facts (see [23, 4.5.9(27) and 4.5.9(28)] or [4]): first

|Dv|= \/ |D,v| for all v€BV),.(R¥) (7.2)

vegk-1
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and the directional total variations |D,v| can be represented as integrals of variations on

lines, namely

IDuvlz/ V(z,v)dH*Y(z) for all vESF1,
where 7, is the hyperplane orthogonal to v, u(z,v)(t)=u(z+tv) and
Vou(z,v)(B) := |Du(z,v)|({t:z+tv€B}) for all B B(R¥).

Hence, for v€S*F~! fixed and v=1ou, using (1.8) of [4] to commute the supremum with
the integral we get

P "”':/ Volw, ) 1 @) < [V Vipealz,v) a1 (a)

T, EF

=V [ Veulz,v)dH ()= V [D(pou)| <||Dul.
wEF Jm, weF

Since v is arbitrary the inequality |Dv|<||Dul| follows by (7.2). O
Given uc MBV(RX, S), we denote by MDu the maximal function of || Dul|, namely

|Dull(By(z))

MDu(z):=sup -

o>0 Wi o

By the Besicovitch covering theorem, £¥({ MDu>\}) can be easily estimated from above
with a dimensional constant times ||Du||(R*)/); hence MDu(z) is finite for £*-a.e. z.
The following lemma, provides a Lipschitz property of MBV-functions (reversing the roles
of R¥ and S, an analogous property can be used to define Sobolev functions on a metric
space, see [33], [34]).

LEMMA 7.3. Let (S,d) be a weakly separable metric space. Then, for any u€
MBV(RF, S) there exists an L*-negligible set NCRF such that

d(u(z), u(y)) < c[MDu(z)+MDu(y)]|lz—y| for all r,yeRFA\N

with ¢ depending only on k.

Proof. Any function w€BV,.(R¥) satisfies
lw(z) ~w(y)| < c(k)[MDw(z)+MDuw(y)l|z—y| for all z,y€ Ly,

where L, is the set of Lebesgue points of w; this is a simple consequence of the estimate

1 w(@)—w@)| ,_ [* 1Dwl(Bi(z)) ol
wwk/BQ(I) — dzs/o L dt < MDw(z)
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for any ball B,(z)CR* centered at some point z€L,, (see for instance (2.5) and The-
orem 2.3 of [5]). Taking into account (7.1) and the inequality MDu>MD(pou), the
statement follows with N=RF\ peF Lpou- O

In the following we endow Lip,(E) with the flat norm F(¢)=sup |¢|+Lip(¢#), and,
by duality, we endow the space My(E) with the flat norm

F(T) :=sup{T(¢): ¢ € Lip,(E), F(¢) <1}.

If E is a weakly separable metric space it is not hard to see that My(E) is still weakly sep-
arable. In fact, assuming E=[> (up to an isometric embedding of Mg(E) into My(I*)),
by Theorem 6.2 and Lemma 2.9 we see that

F(T) =sup{T'(¢): ¢ €Lip"(E)NB>(E), F(¢) <1}
=sup{T(¢):n =1, ¢ L,(F), F(¢) <1},

where Lip*(E) is the vector subspace of w*-continuous functions in Lip(E), and L, (F)
is the subspace consisting of all functions depending only on the first n coordinates of x;
since all the sets {p€ L, (E): F(¢)<1} are separable, when endowed with the topology

of uniform convergence on bounded sets, a countable subfamily is easily achieved.

THEOREM 7.4 (rectifiability criterion). Let E be a weakly separable metric space,
let S=Mq(E) be endowed with the flat norm and let Te MBV (R, S). Then, there ezists
an L¥-negligible set NCRF such that

Ri:= | {zeK:|T(2)|({z})>0}
zERF\N

is contained in a countably H*-rectifiable set for any compact set KCE.

Proof. Let NyCR* be given by Lemma 7.3 with S=My(E), N=N,U{MDT =00},
KCE compact and ¢,4>0. For simplicity we use the notation T} for T(z), while T, (¢)
will stand for [, ¢ dT..

We define Z, 5 as the collection of points 2€ R¥\ N such that MDT(z)<1/2¢ and

IT:I({z}) >e = ITal(Bss(z)\{z}) < 3¢

for any x€K. Setting R, s={z€K:||T,|({x})>¢ for some z€Z, 5}, we notice that
Rx=\, s>0 R:s; hence it suffices to prove that R s is contained in a countably HE-
rectifiable set.

Denoting by B any subset of R. ; with diameter less than J, we now check that

3c(k)(6+1)
82

d(z,z') < |z—2'| (7.3)
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whenever z,z'€ B, ||T,(/({z})>¢ and || T, |[({z'}) 2¢ for some z,2'€ Z, 5. In fact, setting
d=d(z,z')<d, we can define a function ¢(y) equal to d(y,z) in By(z), equal to 0 in
E\ Bys(z) with sup |¢{=d, Lip(¢)<1; since

IT2(¢)| < %Ed, ITZI(¢), >€d_ %Ed,

we get
c(k)(0+1
Led(e,2) < T(¢)-To(9)] < O o
By (7.3) it follows that for any z€Z, 5 there exists at most one z=f(z)€ B such that
| 7.1l ({x}) >¢&; moreover, denoting by D the domain of f, the map f: D— B is Lipschitz
and onto, and hence B is contained in the countably #*-rectifiable set f(D). A covering
argument proves that R, s is contained in a countably H¥-rectifiable set. O

Actually, it could be proved that, for a suitable choice of N, the set R is universally
measurable in F, i.e., for any pc M(E) it belongs to the completion of B(F) with respect
to p. The proof follows by the projection theorem (see [23, 2.2.12]), checking first that
the set

k ={(z,2) €(R*\N)x K : |T.| {z}) > 0}

belongs to B(R*)®B(E), and then noticing that R is the projection of R on E. Since
the projection theorem is a quite sophisticated measure-theoretic result, we preferred to
state Theorem 7.4 in a weaker form, which is actually largely sufficient for our purposes.

8. Closure and boundary-rectifiability theorems

In this section we prove the classical closure and boundary-rectifiability theorems for
integral currents, proved in the Euclidean case by H. Federer and W. H. Fleming in [24]
(see also [58], [61]). Actually, we prove a more general closure property for rectifiable
currents with equi-bounded masses and sizes, proved in the Euclidean case by F. J. Alm-
gren in [1] using multivalued function theory. We also provide new characterizations of
integer-rectifiable currents based on the Lipschitz projections.

The basic ingredient of our proofs is the following theorem, which allows us to
deduce rectifiability of a k-current from the rectifiability of its 0-dimensional slices (for
Euclidean currents in general coefficient groups, a similar result has been obtained by
B. White in [62]). The proof is based on Theorem 7.4, the slicing theorem and the key
observation, due to R. Jerrard in the Euclidean context (see [36]), that x— (T, 7, z) is a
BV-map whenever 7€ Nx(E) and n€Lip(E, R¥).
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THEOREM 8.1 (rectifiability and rectifiability of slices). Let TENy(E). Then T€
Ri(E) if and only if

for any meLip(E,RY), (T,m,z)eRy(E) for L*-ae. zeRF. (8.1)

Moreover, T€I,(E) if and only if (8.1) holds with Io(E) in place of Ro(E).

Proof. Let meLip(E,R¥) with Lip(n;) <1; we will first prove that for any 7€ N (E)
the map z+— T, =(T, 7, z) belongs to MBV(R¥, S), where S as in Theorem 7.4 is My (E)
endowed with the flat norm. Let ¢€C3(R¥) and ¢€Lip,(E) with F(¢)<1; using (3.2)
we compute

o

(~1)i? /R Tl0) g () do = <~1>i-1TLdvr(¢ d ow) T (¢ d{om)AdFy)

2

=0T ($(ypor) dit;) —~ T(or dpAdi;)
<07 |[(spem) +(IT || (o),

where
dit; =dmiN.. Adm;_iAdm; A AdTg.

Since 9 is arbitrary, this proves that z+7T;(¢) belongs to BVj..(R*) and
|DT:(¢)| < k|| T||+kmy || 6T

Since ¢ is arbitrary, this proves that 7, c MBV(RF, 3).

Now we consider the rectifiable case. By Theorem 5.7, the rectifiability of 7" implies
the generic rectifiability of T},. Conversely, let L be a o-compact set on which ||T| is
concentrated; by Theorem 7.4 there exists an £*-negligible set NC R* such that

U {yvel:|T:lI({y}) >0}
rERM\N
is contained in a countably H*-rectifiable set R,. Now, if T,€Ro(E) for L*-a.e. z, by
(5.9) we infer

ITLdr|(E\Ry) = ITLar|(E\Re) = [ [TI(2\Ry) da =0

Hence, T dr is concentrated on a countably #¥*-rectifiable set for any w€Lip(E, RF).
By Lemma 5.4 this implies the same for 7', and hence T is rectifiable.

Finally, we consider the integer-rectifiable case. The proof is straightforward in the
special case when E=R* and p=: E-3R¥ is the identity map (in this case, representing
T as [0], (T, 7, z) is the Dirac delta at z with multiplicity 6(z) for £*-a.e. € RF).
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In the general case, one implication follows by Theorem 5.7. Conversely, let us
assume that the slices of T are generically integer-rectifiable. For A€ B(E) and p€
Lip(E, R¥) given, from (5.18) and (5.15) we infer

<g0#(TL.A),p, T) = QO#<T|—A7 0, T) = ‘P#((T’ p,T)LA)E IO(Rk)

for L*-a.e. zeR*, whence 4 (TL A)c I (R¥). O

Remark 8.2. Analogously, if E is a w*-separable dual space we can say that T'¢
Rk(E) (resp. TGI&(E)) if

(T,7,z) €Ro(E) (resp. To(E)) for L*-ae. z€R*

for any w*-continuous map m€Lip(E, R¥). In fact, this condition implies that T'L dr is
concentrated on a countably H*-rectifiable set for any such 7, and Lemma 5.4 together
with Theorem 6.2 imply the existence of a sequence of w*-continuous Lipschitz functions
nt: E—RF such that
iTh=V T dr|.
i€EN

We also notice that in the Euclidean case E=R" it suffices to consider the canonical
linear projection and correspondingly the slices along the coordinate axes (in fact, our
notion of mass is comparable with the Federer-Fleming one, see Appendix A).

The following technical proposition will be used in the proof, by induction on the
dimension, of the closure theorem.

PROPOSITION 8.3. Let (Th)CNi(E) be a bounded sequence weakly converging to
TeNi(E) and let m€Lip(E). Then, for L'-a.e. t€R there ezists a subsequence (h(n))
such that ({(Ty(n),,t)) is bounded in Ny _1(E) and

nli_,HéO<Th(")’ m,t)=(T,n,t).

In addition, if T,eRi(E) and S(T},) are equi-bounded, the subsequence (h(n)) can be
chosen in such a way that S({(Th), ,t)) are equi-bounded.

Proof. We first prove the existence of a subsequence h(n) such that (Thn),,t)
converge to (T, m,t) for £l-a.e. tcR. Recalling Proposition 5.6 (iii), we need only to
prove that

nli)m ThmyL{m >t} =TL{r >t}, lim Tyl {m >t} =0T L {m >t} (8.2)
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for £'-a.e. teR. Let pup =14 (||Th||+|0Tx||) and let gy, be a subsequence w*-converging
to pin R. If ¢ is not an atom of u, noticing that

lim lim sup {|| Ty (n) | 4+ | 0Tk () ||](7r_1([t—6, t+06]) < lim p([t—6,t+6]) =0,
50 nsoco 540

and approximating X(,~¢; by Lipschitz functions we obtain (8.2). As

n—od n—r00

/ lim inf N((Th(n),7,t)) dt <lim inf/ N((Th(ny, m,t)) dt <Lip(m) sup N(Sp) < o0
R R heN

we can also find for L!-a.e. teR a subsequence of ((Sy(n), T,t)) bounded in N_;(E).
If the sequence (S(7})) is bounded we can use (5.16) and a similar argument to obtain
a subsequence with equi-bounded size. |

Remark 8.4. If E'is a w*-separable dual space the same property holds, with a similar

proof, if weak convergence is replaced by w*-convergence, provided 7 is w*-continuous.

Now we can prove the closure theorem for (integer-)rectifiable currents, assuming
as in [1], the existence of suitable bounds on mass and size. Actually, we will prove in
Theorem 9.5 that for rectifiable currents 7" whose multiplicity is bounded from below
by a>0 (in particular, the integer-rectifiable currents) the bound on size follows by the
bound on mass, since S(T)<k*/2M(T)/a.

THEOREM 8.5 (closure theorem). Let (Th)CNy(E) be a sequence weakly converging
to TENL(E). Then, the conditions

TheRi(E), sup N(Ty)+S(Th) < oo
heN

imply TERL(E), and the conditions
TheIi(E), sup N(Tp)<oo
heN
imply Te i (E).
If E is a w*-separable dual space the same closure properties holds for w*-conver-
gence of currents.

Proof. We argue by induction with respect to k. If k=0, we prove the closure
theorem first in the case when E is a w*-separable dual space and the currents T} are
w*-converging.

Possibly extracting a subsequence we can assume the existence of an integer p, points

Zp, ...z}, and real numbers a},, ...,a} such that

Tn(f)=)_ahf(x}) for all heN. (8.3)
=1
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We claim that the cardinality of sptT is at most p. Indeed, if by contradiction sptT
contains g=p+1 distinct points z, ..., 4, denoting by X the linear span of z; we can find
a w*-continuous linear map p: E— X whose restriction to X is the identity, and consider,
for r>0 sufficiently small, the pairwise disjoint sets C;=p~(B,(z;)). Since ¢>p we can
find an integer 7 such that C;Nspt Tp=2 for infinitely many h, and since z;€C; the
contradiction will be achieved by showing the lower semicontinuity of the mass in C;,
namely

ITI(C;) < liminf || T, || (C;) =0. (8.4)

h—o0

Let f: E—[—1, 1] be any Lipschitz function with support contained in C;, and let fi: E—
[-1,1] be w*-continuous Lipschitz functions converging to f in L(||T}|) (see Theo-
rem 6.2). Choosing a sequence (¢,)CCo(X) such that ¢,>0 and ¢,1TxB, (s) We get

T(finep) = Jim T(fudnep) <liminf | T3] (C).

Letting first ktoo and then nfoo, we obtain |T(f)|<liminf ||T(/(C;), and since f is
arbitrary we obtain (8.4). In the case when T}, are integer-rectifiable, since the cardinality
of sptT}, is p, for any z€sptT we can easily find a w*-continuous Lipschitz function
f:E—[0,1] such that f(z)=1, f(y)=0 for any yesptT\{z}, and {0<f<1} does not
intersect spt T}, for infinitely many h (it suffices to consider p+1 functions f; of the form
g;op such that {0< f; <1} are pairwise disjoint). Hence

p
a:=T(f)= lim T(f)= lim > a}, f(z})
=1

is an integer.

In the metric case the proof could be easily recovered using the isometric embedding
of the closure of the union of sptT}, into l.; we prefer, however, to give a simpler
independent proof, not relying on Theorem 6.2. If £!, ..., 2" are distinct points in spt T,
we can find €>0 such that the balls B.(z') are pairwise disjoint and obtain from the

lower semicontinuity of mass that
B.(z)NsptTh#@ foralli=1,...,n,

for k large enough. This implies that T is representable by a sum )" a,6; with at most
p terms, and hence T€ Rg(E). In the integer case we argue as in the proof of the closure
property for w*-convergence.

Let now k>1 and let us prove that T fulfils (8.1): let m€Lip(E,RF), let L be
a o-compact set on which T is concentrated, and set m=(m1,7’') with 7/: E-RF1
S=TLdm, S,=TyLdm and

St:=(T,m1,t), She:={Th,m1,t).
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By Proposition 8.3 we obtain that, for £!-a.e. teR, the current S, is the limit of a
bounded subsequence of (Sh:), with S(Sk;) equi-bounded. Hence, the induction as-
sumption and Theorem 5.7 give that S;eRy_1(E) for L'-a.e. teR. For any such t,
(St, ', y) ERo(E) for LF l-ae. ycR*~1. By Lemma 5.8 we conclude that

(T,m,2)=(S;,7",y) for LF-ae. x=(y,t)cRF,

and hence that
(T, m,2) ERG(E) for L*-a.e. z=(y,t) eRF.

Since 7 is arbitrary this proves that T is rectifiable. If T}, are integer-rectifiable the proof
follows the same lines, using the second part of the statement of Theorem 8.1.
Finally, if E is a w*-separable dual space, the same induction argument based on
Remark 8.4 gives
(T,m,x)€RG(E) for L*-a.e. zcR¥,

for any w*-continuous map w€Lip(E, R*). Using Remark 8.2 we conclude. O

THEOREM 8.6 (boundary-rectifiability theorem). Let k21 and let T€1(E). Then
oTel;_4 (E) .

Proof. We argue by induction on k. If k=1, by Theorem 4.3 (i) we have only to show
that 0T (x4)€Z for any open set ACE. Setting p(z)=dist(z, E\ A) and A,={p>t}, we
notice that

IT(xa,) =0TL A1) =8(TL A)(1)+(T, 0, ) (1) = (T, p,t)(1) € Z

for £1-a.e. t>0. By the continuity properties of measures, letting tJ0 we obtain that
0T (xa)=0T(X{p>0}) is an integer.

Assume now the statement true for k21, and let us prove it for k+1. Let 7=
(m1,7)€Lip(E,R*) with m1€Lip(E), #€Lip(E,R* 1) and S;=(T,n,t); the currents
S, are normal and integer-rectifiable for £!-a.e. t€R, and hence

<8T, T, t> = —8<T, w1, t> =-05; ¢ Ik_l(E)

for £1-a.e. t€R by the induction assumption. The same argument used in the proof of
Theorem 8.5, based on Lemma 5.8, shows that (9T, 7, z)€Iy(E) for LF-a.e. ze R*. By
Theorem 8.1 we conclude that 0T €I, (E). O

As a corollary of Theorem 8.1, we can prove rectifiability criteria for k-dimensional
currents based either on the dimension of the measure-theoretic support or on Lipschitz
projections on R* or R*¥+1: we emphasize that the current structure is essential for the
validity of these properties, which are false for sets (see the counterexample in [7]}.
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THEOREM 8.7. Let TeNi(E). Then T€ Ry (E) if and only if T is concentrated on
a Borel set S o-finite with respect to H*.

Proof. Let m€Lip(E,R*) and S’C S with H*(S’)<oo; by Theorem 2.10.25 of [23]
we have

HO(S'N7~ Y (z)) dz < e(k)[Lip(m)[* H*(S") < oo,
Rk

and hence S'Nm~1(x) is a finite set for L¥-a.e. z€R¥. Since S is o-finite with respect
to H* we obtain that SN7~!(z) is at most countable for £L*¥-a.e. z€ R*. Hence, the
currents (T, ,z), being supported in SN7~1(z), belong to Ro(E) for L*-a.e. zeRF,
whence T€ R (E). O

THEOREM 8.8 (rectifiability and rectifiability of projections). Let TENy(E). Then

(1) TE€ILy(E) if and only if ¢p4T€T(R*¥*Y) for any ¢€Lip(E, RF1);

(i) TEZx(E) if and only if my(TLA)EL(R*) for any w€Lip(E,R¥) and any
AeB(E);

(iii) #f E is a finite-dimensional vector space then T€Ri(E) if and only if ¢pxT¢€
Ri(R¥*1) for any ¢cLip(E,R*+1).

Proof. (i) Let weLip(E,R*) be fixed. By Theorem 8.1 we need only to prove that
T.=(T, w,x) are integer-rectifiable for £*-a.e. € R*. Let S be a o-compact set on which
T is concentrated, let A be the countable collection of open sets given by Lemma 5.5,
and let us denote by g4, for A€ A, the distance function from the complement of A.

By applying Lemma 5.9 with n=k+1 and ¢=¢4 we obtain an L*-negligible set
NCRP such that

apTs = qp((pa, ™) T, p,z) € L(R)

for any A€ A and any t€R¥\ N. In particular, for any € R*\ N we have
To(xa)=0apTe(X(@0,00) EZ for all A€ A,

and, by our choice of A, the same is true for any A€ B(E). Then, the integer rectifiability
of T follows by Theorem 4.3 (i).

(ii) By Theorem 8.1 we need only to show that, for 7€ Lip(E, R¥) given, £*-almost
all currents T, =(T, 7, z} are integer-rectifiable. Let A be given by Lemma 5.5; by (5.15)
and (5.18) we can find an L*-negligible set NC R¥ such that

o (ToL A) =p4(TLA, ¢, z) = (pp(TLA),p,z) € Io(RF)
for any z€e RF\ N and any A€.A. By Lemma 5.5 we infer that

T (A)=T,LA(1) = pu(T.LA)(1)€Z for all AcB(E), ze R*\N.
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The integer rectifiability of T, now follows by Theorem 4.3 (i).
(ili) Assuming E=RY, the proof is analogous to that of statement (i), using the
countably many maps f; » of Lemma 4.4. O

9. Rectifiable currents in Banach spaces

In this section we improve Theorem 4.6, recovering in w*-separable dual spaces Y the
classical representation of Euclidean currents by the integration on an oriented rectifiable
set, possibly with multiplicities. Moreover, for T€ Ry (Y'), we compare || T|| with H*L St
and see to what extent these results still hold in the metric case.

The results of this section depend on some extensions of the Rademacher theorem
given in [38] and [7]. Assume that ¥V is a w*-separable dual space; we proved that any
Lipschitz map f: ACR¥>Y is metrically and w*-differentiable L*-a.e., i.e. for LF-a.e.
€ A there exists a linear map L: RF—Y such that

wilim W @) - Lly—2) _,
yo ly—z|

and, at the same time,

L @)= f@I-1Lw-2)]

=0.
yoT ly—z|

Notice that the second formula is not an obvious consequence of the first, since the
difference quotients are only w*-converging to 0. The map L is called w*-differential and
denoted by wd, f, while ||L| is called metric differential, and denoted by md,f. The
metric differential actually exists £*-a.e. for any Lipschitz map f from a subset of R*
into any metric space (E,d)}, and is in this case defined by

md, f (v) i W e+ 1), £ (@)

t—0 t]

for all veR”.

This result, proved independently in [38] and [40], has been proved in (7] using an iso-
metric embedding into I, and the w*-differentiability theorem.

(1) Approximate tangent space. Using the generalized Rademacher theorem one can
define an approximate tangent space to a countably H*-rectifiable set SCY by setting

Tan()(S, f(z)) 1= wd, f(R¥)  for LF-ae. z€ 4

whenever f; satisfy (4.1). It is proved in [7] that this is a good definition, in the sense
that H*-a.e. the dimension of the space is k and that different choices of f; produce
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approximate tangent spaces which coincide #*-a.e. on S: this is achieved by comparing
this definition with more intrinsic ones, related for instance to w*-limits of the secant
vectors to the set. Moreover, the approximate tangent space is local, in the sense that

Tan®™(S1,2) = Tan®)(Sz,z)  for H*-a.e. z€51N S,

for any pair of countably H*-rectifiable sets Si, Sa.

(2) Jacobians and area formula. Let V, W be Banach spaces, with dim(V)=k, and
L:V —»W linear. The k-Jacobian of L is defined by

B . _ H¥({L(z):z€B1})
Ji(L):= He({z: | L(z)]| <1}) Wk |

It can be proved that Jj satisfies the natural product rule for Jacobians, namely
Je(LoM) = (L) Ie(M) (9.1)

for any linear map M:U—V. If s is a seminorm in R* we define also

Wi
Ji(s):= HE({z:s(z) < 1))’

These notions of Jacobian are important in connection with the area formulas
[ 0@ mazryiz= [ Y olz)ar) (92)
R Ezef-i(w)

for any Borel function §: R*— [0, 00] and
[ 0@ 3oy o= [ o) HoAns @) ) (93
A E

for A B(R¥) and any Borel function 6: E— [0, cc].

(8) k-vectors and orientations. Let T=7{A...AT; be a simple k-vector in Y; we
denote by L,:R*—Y the induced linear map, given by
k
L (x1,...,2k) := Z z;7; for all zeR*,
=1
We say that 7 is a unit k-vector if L, has Jacobian 1; notice that L, depends on the
single 7; rather than the k-vector 7, so our compact notation is a little misleading. It is
justified, however, by the following property:

r=x" = J(L,)=|ATe(L). (9.4)
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This property follows at once from the chain rule for Jacobians, noticing that we can
represent L, as L,oM for some linear map M:RF—>RF with J,(M)=|)\|. The same
argument proves that any simple k-vector = with J;(L,)>0 can be normalized dividing
7; by constants A\;>0 such that [[, \;=Jx(L,). We also notice that (9.1) gives

|det(Li(r;))| = Ik(LoLr) = Jx(L) (9-5)

for any unit k-vector 7 and any linear function L:spanT—RF.

An orientation of a countably H*-rectifiable set SCY is a unit simple k-vector
T=Ti A...ATg such that 7;(z) are Borel functions spanning the approximate tangent space
to S for H*-almost every z€S.

(4) k-covectors and tangential differentiability. Let Z be another w*-separable dual
space, let SCY be a countably H*-rectifiable set and let 7€Lip(S, Z). Then, for H*-a.e.
x €S the function 7 is tangentially differentiable on S and we denote by

dSm: Tan®)(8,z) — Z

the tangential differential. This differential can be computed using suitable approximate
limits of the difference quotients of &, but for our purposes it is sufficient to recall that
it is also characterized by the property

wdy(mo f) = d?(y)'/rowdyf for L*-a.e. ye D, (9.6)

whenever f: DCR*— S is a Lipschitz map. Clearly in the case Z=RP the map dom
induces a simple p-covector in Tan(k)(S, z), whose components are the tangential differ-
entials of the components of 7; this p-covector will be denoted by /\p d3. Notice that,
in the particular case p=k, (9.6) gives

det(V(mof)(y)) = (s d?(ww, 7,y for LF-ae. yeD, (9.7)
where (-,-) is the standard duality between k-covectors and k-vectors, and
Ty =wdy fe1)A...Awdy f(exr).

Taking into account the chain rule for Jacobians, from (9.7) we infer that

Jk(dfw):[—dw = ‘</\kdf7r, Jk(TZT )>} for L*-a.e. yeD,

with z=f(y). Since f: D— S is arbitrary we conclude that
Ji(dim)=|(ArdSm,o(z))| for HF-ae. z€S, (9.8)

where o is any orientation of S.
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The following result shows that, as in the Euclidean case, any rectifiable k-current in
a w*-separable dual space is uniquely determined by three intrinsic objects: a countably
H* rectifiable set S, a multiplicity function #>>0 and an orientation 7 of the approximate
tangent space (notice, however, that in the extreme cases k=0 and k=m, E=R™, we
allow for a negative multiplicity, because in these cases the orientation is canonically
given).

THEOREM 9.1 (intrinsic representation of rectifiable currents). Let Y be a w*-
separable dual space and let T€R(Y) (resp. T€ Lk (Y)). Then, there exist a countably
HF-rectifiable set S, a Borel function 0: S—(0,00) (resp. 6: S—N_.) with fsﬂd’H’“<oo,

and an orientation 7 of S, such that we have
T(f dmi A Adme) = / F(@)0(@) (A, dS,7) dH*(z) 9.9)
5

for any fdneD*(Y). Conversely, any triplet (S,0,7) induces via (9.9) a rectifiable
current T'.

Proof. Let us first assume that T=yx[g] for some g€ L'(R¥) vanishing outside of
a compact set C and some one-to-one function p€Lip(C,Y). Let L=p(R¥) and let 7
be a given orientation of L; by {9.7) we get

det(V(mop)(y)) = (Ax di(y)"’ 1) Je(wdyp)
for m=(my, ..., m) €Lip(Y, R¥), where

_ wdyp(er)A...ANwdyp(er)
y = T (wdyo) €{Tow)s ~Tow) }

and ey, ..., ek is the canonical basis of R*. Defining o(y)=1 if 5, and 7, induce the
same orientation of Tan'*)(L, ¢(y)), and o(y)=—1 if they induce the opposite orientation,
the identity can be rewritten as

det(V(mop)(y)) = o(¥){ Ak 5y T To(w)) Tr(wdyp).

By applying the area formula and using the identity above we obtain

T(fdmA...Adrg) = /ng(focp) det(V(mep)) dy

- /Lf (””)( > g(y)rf(y)>(/\kd,fw,@dyk(x)

yee~ Yz}
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for any fdreD*(Y). Setting

B(z):= > gy)o), (9.10)

yep~1(x)

possibly changing the sign of 7 (which induces a change of sign of o) we can assume that
6>0. Setting S=LN{0>0} the representation (9.9) follows. The case of a general current
TeR(Y) easily follows by Theorem 4.5, taking into account the locality properties of
the approximate tangent space.

Conversely, if T' is defined by (9.9) then T has finite mass and the linearity and the
locality axioms are trivially satisfied; the continuity axiom can be checked first in the
case E=RF* (see Example 3.2), then in the case when S is bi-Lipschitz-equivalent to a
compact subset of R* and then, using Lemma, 4.1, in the general case. |

We will denote by [S,6,7] the current defined by (9.9). In order to show that the
triplet is uniquely determined, modulo H*-negligible sets, we want to relate the mass with
H*_S and with the multiplicity 8. As a by-product, we will prove that S=S7, modulo
HFE-negligible sets. The main difference with the Euclidean case is the appearance in the
mass of an additional factor Ay (V being the approximate tangent space to S), due to
the fact that the local norm need not be induced by an inner product.

Let V be a k-dimensional Banach space; we call ellipsoid any set R=L(B), where
B is any Euclidean ball and L: R*—V is linear. Analogously, we call parallelepiped any
set R=L(C), where C is any Euclidean cube and L: R*—V is linear. We will call area
factor of V and denote by Ay the quantity

2" {Hk(Bll

Ay = o H(R)

:VODRDB parallelepiped}, (9.11)

where B is the unit ball of V. The computation of Ay is clearly related to the problem
of finding optimal rectangles enclosing a given convex body in RF (in our case the body
is any linear image of By in R* through an onto map). The first reference we are aware
of on the area factor is [11]. The maximization problem appearing in the definition of
the area factor has also recently been considered in [9] in connection with Riemannian
geometry and in [55] in connection with geometric number theory. In the following lemma
we show a different representation of Ay, and show that it can be estimated from below
and from above with constants depending only on k; the upper bound is optimal, and
we refer to [51] for better lower bounds.

LEMMA 9.2. Let V be as above. Then

Ay =sup{Jpl: ¢ =(Cy, ..., C): V= RF linear, Lip(¢;) < 1}.



56 L. AMBROSIO AND B. KIRCHHEIM

Moreover, Ay =1 if By is an ellipsoid, \y =2%/wy, if B is a parallelepiped, and in general
kR 2 Oy <28/ wy,.

Proof. We can consider with no loss of generality only onto linear maps ¢; notice
that the parallelepiped {v:max;|(;(v)|<1} contains B if and only if max; Lip({;) <1
Taking into account the area formula we obtain

2k
-~ HE({v:max; |Gi(v)| < 1})

and this proves the first part of the statement, since H*(B;)=w.

Ji¢

Any parallelepiped RCV can be represented by (~}(W) for some parallelepiped
WCRF. Since, by translation invariance, £¥ is a constant multiple of (xH*, we obtain
that Ay is also given by

2* LEC) Lk :
w_ksuP{Ck(W) :RFOWDOC paralleleplped}

where C=((B;). If By is an ellipsoid so is C, and an affine change of variables reducing
C to a ball, together with a simple induction in k, shows that the supremum above is
equal to 1. If B, is a parallelepiped, choosing W=C we see that the supremum is 25/ wy.

Due to a result of John (see [52, Chapter 3]) C is contained in an ellipsoid E such
that L5(E)<kF/2L¥(C); this gives the lower bound for Ay. O

Remark 9.3. The area factor can be equal to 1 even though the norm is not induced
by an inner product; as an example one can consider the family of Banach spaces V,
whose unit balls are the hexagons in R? obtained by intersecting [—1, 1] with the strip
~t<y—x<t, with t€[1,2]. It is not hard to see that mAy,=4—(2—t)?; hence there exists
t0€(1,2) such that Ay, =1. Moreover, for t=1 the area factor equals 3/7, and in [51] it
has been proved that Ay >3/7 for any 2-dimensional Banach space V.

COROLLARY 9.4. Let Y be a w*-separable dual space and let II,(Y') be the collection

of all w*-continuous linear maps
T=(m1,....,7): Y > RF
with m;€Lip(Y') and dim(n(Y))=k. There exists a sequence (n?)CIHi(Y) such that
Lip(w])=1 for any i€{1,...,k}, jeN and
?él};\)le(W”V)ZSUP{Jk(ﬂv)ZWEHk(Y)a Lip(m;) <1}
for any k-dimensional subspace VCY.

Proof. In Lemma 6.1 of [7] we proved that II;(Y), endowed with the pseudometric

Y(m, ') = sup ||n(z)|-|n"(z)]],
(=<1
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is separable. Since (7, 7)—0 implies
H*{veV:|n(v)|<1}) :hlim H({veV:|m(v) <1})
—00

we obtain that

T Je(mly) = HF({veV: |k7r(v)| <1}

is «y-continuous, and the statement follows choosing a dense subset of

{m eIl (Y): Lip(m;) =1}. O

Using Corollary 9.4, and still assuming that Y is a w*-separable dual space, we can

casily get a representation formula for the mass of a rectifiable current.

THEOREM 9.5 (representation of mass). Let T=[S,0,7]€Rx(Y). Then
IT|| = O HELS,
where A(@)=Ap, (s 2)- In particular, S is equivalent, modulo H¥-negligible sets, to the
set St in (4.2).
Proof. The inequality < follows by (9.9) and Lemma 9.2, recalling that by (9.8)
k
(A d5m,7)| =T (d57) < Mz) H Lip(m;).
i=1

In order to show the opposite inequality we first notice that for any choice of 1-Lipschitz
functions 71, ..., 75: Y =R we have

Tl = £0({\, d5m, ) HFLS,

whence | T||>60J(d°7)H*LS. Now we choose 7 according to Corollary 9.4; since any
real-valued linear map from a subspace of Y can be extended to Y preserving the Lipschitz
constant (i.e. the norm) we have

Av = sup J(n']v)
JEN

for any k-dimensional subspace VCY', and hence

ITY >V 636(d°n7 ) HF L S =B sup Jx (@7 ) HF LS = OAqy5,0) HELS.
J j
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Now we consider the case of a current T€ Ry (F) when E is any metric space; let
S=ST asin (4.2) and let us assume, without any loss of generality, that F is separable. In
this case, as explained in [7], an approximate tangent space to S can still be defined using
an isometric embedding j of E into a w*-separable dual space Y (Y=[*, for instance),
and setting

Tan®(S, z) := Tan®(j(S), j(x)) for HF-a.e. z€S8.

This definition is independent of j and Y, in the sense that Tan®(S,z) is uniquely
determined #*-a.e. up to linear isometries; hence Tan(k)(S, z) can be thought H*-a.e.
as an equivalence class of k-dimensional Banach spaces. Since the mass is invariant
under isometries and the area factor Ay is invariant under linear isometries, by applying
Theorem 9.5 to j»T we obtain that

T = 0Aqmneos, M LS

and T is integer-rectifiable if and only if §>0 is an integer H*-a.e. on S.

In order to formulate the proper extension of Theorem 9.1 to the general metric case
we need the following definition: we say that two oriented rectifiable sets with multiplic-
ities (51,61, 71) and (Ss, 02, 72) contained in w*-separable dual spaces are equivalent if
there exist S{CS1, S5C Sy with H*¥(5:\S;)=H*(S,\S5)=0 and an isometric bijection
f:57— 5% such that §;=030f and

A5 fo(T1(@))A . AdT o (T (2)) = T)(2) A ATL(2)  for all z€S]. (9.12)

We can now state a result saying that any T€ R (F) induces an equivalence class of
oriented rectifiable sets with multiplicities in w*-separable dual spaces; conversely, any
equivalence class can canonically be associated to a rectifiable current 7.

THEOREM 9.6. Let TERL(E) and let S, 6 be as above. For i=1,2, let ji: E—Y; be
isometric embeddings of E into w*-separable dual spaces Y;, and let T, be unit k-vectors
in Y; such that

ji#T = ﬂjl(s)’ eoji—lv Ti]]'
Then (51(S),0°j7 ", m1) and (§2(8),045*,72) are equivalent.

Conversely, if (S,0,7) and (S',0',7') are equivalent, and f:S— S’ is an isometry

satisfying 0=0'of and (9.12), then

f#IIS’ 0, T]] = [[Slaeof~177-/]]~

Since our proofs use only the metric structure of the space, we prefer to avoid the
rather abstract representation of rectifiable currents provided by Theorem 9.6; for this
reason we will not give the proof, based on a standard blow-up argument, of Theorem 9.6.
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We now consider the properties of the slicing operator, proving that it preserves the
multiplicities. We first recall some basic facts about the coarea formula for real-valued
Lipschitz functions defined on rectifiable sets.

Let X be a k-dimensional Banach space and let L: X -R be linear. The coarea
factor of L is defined by the property

+o0
Ci(L)H*(A) =/ HF"HANL™Y(z))dz for all A€c B(X).
In [7] we proved that if L is not identically 0 the coarea factor can be represented as a

quotient of Jacobians, namely
I (q)

"~ Je-1(p)
with g(z)=(p(z), L(z)) for any one-to-one linear map p: Ker(L)—»>R*~1. Using (9.5) we
obtain also an equivalent representation as

Cy(L)

{Ak=1 2, 7Y CUL) = {Aras 7)), (9.13)

where 7 is any unit k-vector in X, and 7’ is any unit (k—1)-vector whose span is contained
in Ker(L), with no restrictions on the rank of p and the rank of L; moreover, representing

7 as 7'/Ae for some e€ X, since we can always choose a one-to-one map p we obtain
Ci(L) =1L (9.14)

Let now Y be a w*separable dual space, let SCY be a countably H*-rectifiable
set and let 7: S—R be a Lipschitz function. Then, we proved in [7] that the sets S, =
SNm~1(y) are countably H*~!l-rectifiable and

Tan(k_l)(Sy,z) =Ker(d;m) for H* '-ae. z€S,

for £1-a.e. ye R™; moreover

/S 8(z) C1(dS) dH*(z) = /R ( /S e d’H’“_l(:c)) dy (9.15)

for any Borel function ¢: S0, cc].

THEOREM 9.7 (slices in w*-separable dual spaces). Let T=[M,0,7]eRr(Y) and
let 7eLip(Y,R™), with m<k. Then, for L™ a.e. t€R™ there exists an orientation 7,
of MNn~Y(x) such that
(T,m,z)=[Mnx"zx),0, 7]
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Proof. By an induction argument based on Lemma 5.8 we can assume that m=1.
Let fdpeDF~1(Y) and set M,=MnNm~!(x); by the homogeneity of 7—Jx(L,) we can
assume that 7(y) is representable by £(y)A7.(y), with 7.(y) a unit (k—1)-vector in
Tan®~Y(M,, y) for H*'-a.e. y€ M,, and for L-a.e. z. Taking into account (9.13), and
possibly changing the signs of 7, and £, we obtain

(Ne—1dd=p, 72 (v)) Cl(d;"[w) =(\;dMq,7(y)) for Hae ye My,

for £'-a.e. z. Using the coarea formula we find that

TL (pom)dn(f dp)= /Mﬂwoﬂ'f(/\k dMgq, ’T> dH*

= [ ([ orth e rty arit)
- /R $(2)[M..0,7](f dp) dz

for any ¥€C.(R). From statement (ii} of Theorem 5.6 we can conclude that (T, x,z)
coincides with [M,,8,7.] for £L'-a.e. z€R. O

10. Generalized Plateau problem

The compactness and closure theorems of §8 easily lead to an existence result for the
generalized Plateau problem

min{M(T): T€Iz4,(E), 8T =S} (10.1)

in any compact metric space E for any S€I;(FE) with 0S=0, provided the class of
admissible currents is not empty. It may happen, however, that the class of rectifiable
currents is very poor, or that there is no T€I;1(F) with 9T =S5.

In this section we investigate the Plateau problem in the case when E=Y is a Banach
space, not necessarily finite-dimensional. Under this assumption the class of rectifiable
currents is far from being poor, and the cone construction, studied in the first part of the
section, guarantees that the class of admissible T is not empty, at least if S has bounded
support.

For t20 and f:Y =R we define f;(z)=f{tz), and notice that Lip(f;)=¢Lip({f) and
[0f:/0t|(x) < ||z} Lip(f) for L!-a.e. t>0 if feLip(Y).
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Definition 10.1 (cone construction). Let S€ M (Y) with bounded support; the cone
C over S is the (k+1)-metric functional defined by

k+1

C(fdm):=3 (-1)H / ( £, 2t dm) dt

i=1

where, by definition, dg;=dg1 A...Adg;—1Adgit1A...Adgr+1. We denote the cone C by
S5x[0,1].

The definition is well posed because for £!-a.e. t>>0 the derivatives dm;;/dt(z) exist
for ||S|-a.e. z€Y. This follows by applying Fubini’s theorem with the product measure
S| x £!, because for x fixed the derivatives Om;;/0t(x) exist for L!-a.e. t>0. In general
we can not say that $x[0,1] is a current, because the continuity axiom seems hard to
prove in this generality. We can, however, prove this for normal currents.

PROPOSITION 10.2. If SEN(Y) has bounded support then Sx[0,1] has finite mass
and M(Sx[0,1))<RM(S), where R is the radius of the smallest ball Br(0) containing
spt .S. Moreover, Sx[0,1]€ Nk+1(Y) and

0(Sx[0,1]) =—0Sx[0,1]+S.
Proof. Let fdneD*1(Y) with m;€Lip,(Y); using the definition of mass we find

isx(0,11(f dm) < Rk+1) [ ¢ [ 171a1s) ar

This proves that f—.Sx[0,1](fdm) is representable by integration with respect to a
measure. We also get

15x[0, 1]]1(4) < (k+1)/01tk||8||(A/t)dt for all AcB(Y),

and therefore M(Sx[0,1])< RM(S9).
In order to prove the continuity axiom we argue by induction on k. In the case k=0
we simply notice that

Sx[0, 1](f dr) / (/ ft%ds)dt_/(/ ft%dt)

and use the fact that, for bounded sequences (u;)CW1°°(0,1), uniform convergence
implies w*-convergence in L>°(0,1) of the derivatives. Assuming the property true for



62 L. AMBROSIO AND B. KIRCHHEIM

(k—1)-dimensional currents, we will prove it for k-dimensional ones by showing the iden-
tity

O(Sx[0,1})(f dm)=—-0Sx[0,1](f dm)+S(f dr) (10.2)
for any fdreD*(Y).

We first show that t— S(f; dm) is a Lipschitz function in [0, 1], and that its derivative
is given by

7] t k . 87\'“ R 9 i
S(a—i dm) +;(—1)z [s( o dfmdm) —as( ft% dmt)] (10.3)

for £1-a.e. t>0. Assume first that, for t>0, df; /0t and 9m;;/Ot are Lipschitz functions
in Y, with Lipschitz constants uniformly bounded for t€(4,1) with §>0; in this case we
can use the definition of boundary to reduce the above expression to

af k am;
S{2td —1)HS( frd =2 Adityy | 10.4
((')t 7Tt>+i:1( ) e It it ( )
Under this assumption a direct computation and the continuity axiom on currents show
that the classical derivative of t— S(f; dm,) is given by (10.4). In the general case we
approximate both f and w; by

fo(z) = /0 Tt(s5)0c(s) ds, 7 (x) = /O i) 0 (s) ds,

where g. are convolution kernels with support in (%, 2) , Wr-converging as measures to 1.
By Fubini’s theorem we get
. Off 7]
lim I3 (g = Ot

Oy,
lim 5 (2)=2¢ (@), lim =

87['“

(2)=—5, (&) for (|SI+]|85]))-ae. z,

for £1-a.e. t>0. Hence, we can use the continuity properties of currents to obtain £'-a.e.
convergence of the derivatives of t— S(ff dn§) to (10.3). As

8(Sx[0,1])(f dr)+8Sx[0, 1)(f dr)

is equal to the integral of the expression in (10.3) over [0, 1], and S(fo dmo)=0, the proof
of (10.2) is achieved.

Now we can complete the proof, showing that Sx [0, 1] satisfies the continuity axiom.
Let f*,7* be as in Definition 3.1 (ii) and let us prove that

lim Sx[0,1](f*driA...Admk,,)=Sx[0,1](f dmiA...Admki1).
11— 00
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Denoting by p the cardinality of the integers j such that 7r§-:7rj for every i, we argue
by reverse induction on p, noticing that the case p=k-+1 is obvious, by the definition of
mass. To prove the induction step, assume that 7r§z7q for every ¢ and for any j=2,...,p,
and notice that

Sx[0,1)(f* drindit) = Sx[0, 1)((f*— f) dniAdii)
+9(Sx[0,1])(fnt dit)—Sx[0,1])(nt df Ad7Y).

The first term converges to 0 by the definition of mass, the second one converges to
A(Sx[0,1])(fm d#1) by (10.2) and the continuity property of 9Sx[0,1], and the third
one converges to —Sx|0, 1](m df Ad#1), by the induction assumption. Since the sum of
these terms is Sx[0,1](f dr), the proof is finished. O

In general the stronger Euclidean cone inequality

M(Sx[0,1]) < —— M(S) (10.5)

k+1

does not hold, as the following example shows.

Ezample 10.3. Let X, be R? endowed with the {P-norm and define \,, By, as the
area factor of X, and the 1-dimensional Hausdorff measure of the unit sphere of X,
respectively. We claim that 7\, is strictly greater than %Bp for p>2 and p—2 sufficiently
small. As equality holds for p=2, we need only to check that 2w\, > B,, for p=2, where
" denotes differentiation with respect to p. Denoting by A, the Euclidean volume of the
unit ball of X,, (which is contained in [—1,1}?), we can estimate
4. A,-2 A

A= — ==
22 oy 4(p—-2) 7

b

and hence it suffices to prove that 245> Bj.

Since Ap=4 fol(l—aci”)l/ P dg, a simple computation shows that

/\/—[Qw In( 1/m “n(1-2?)| de
” (10.6)
:—2/ (cos® In cos H+sin? @ Insin 8) db,
0

with the change of variables x=cos 6.
Now we compute B,; using the parametrization 0»—>(cosz/ 79, sin?/P #) of the unit
sphere of X, we find

/2
Bp=- / (cos®> P9 sinP §+sin® P 6 cosP ) /7 db,
0



64 L. AMBROSIO AND B. KIRCHHEIM
and differentiation with respect to p gives
/2
By=—7n+2 / (sin?60— cos? ) (In sin §— In cos §) d6. (10.7)
0
Comparing (10.6) and (10.7) we find that 2A,> B) is equivalent to
/2
/ [Iln sin 6(6 sin® 6 — 2 cos? @) +In cos 8 (6 cos?§ — 2 5in* )] d < ,
0

which reduces to fol Inz(4z2—1)/v/1—z? dz< ;7 by simple manipulations. The value of
the above integral, estimated with a numerical integration, is less than 0.5, and hence
the inequality is true.

The cone inequality (10.5) is in general false even if mass is replaced by size: a
simple example is the 2-dimensional Banach space with the norm induced by a regular
hexagon HCR? with side length 1. If we take S equal to the oriented boundary of H, we
find that S(Sx(0, 1])=m, while 1S(S)=3<7 because on the boundary of H the distance
induced by the norm is the Euclidean distance.

Now we prove that the cone construction preserves (integer) rectifiability.

THEOREM 10.4. If S=[M,0,n]eR:(Y) then Sx[0,1]€Ri+1(Y ), and it belongs to
L (Y) of S€Zi(Y). In particular, if MCOB1(0) and if we extend both 0 and n to the
cone
C:={tz:t€(0,1],ze M}

by 0-homogeneity we get
Sx[0,1]=][C,0,7]

with 7(x)=(zAn(z))/Ier1(Lzn(z))-

Proof. Let X=R xY be equipped with the product metric, let e=(1,0)eX and
define N=[0,1]x M. Since the approximate tangent space to N at (¢,z) is generated
by e and by the vectors (0,v) with veTan®(M, ), setting o=(0,m1)A...A(0,n) the

(k+1)-vector

. eho(z)
T Jk+1(Lé/\0'(z))

defines an orientation of N, and we can set R=[N,0,7]€Rr+1(X). We will prove that
S5x[0,1]=j4R, where j(t,z)=tz. In fact, denoting by p(t,z)=t the projection on the
first variable, by (9.14) we get

Clo(z,t) =

oot = et
@0 Ter1(Laayne) Jet1(Lo(zne)
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Hence, using the coarea formula we find
ioR( )= [ 80 F) N @¥(meg), 7) i

_ /N 0(2) F(t2){ Ay d¥(mog), enc) ClpdHA

k+1

:;(_1)i+1/(,1</M 0(z) f(tz){ Ap dM(frioj),a>d’Hk(z)) dt

kit 1 on
_ E : qyitl it g
= 2 ( 1) A S(ft 8t dﬂ'”) dt.

The proof of the second part of the statement is analogous, taking into account that
j: N—B;(0) is one-to-one on X \(Y x{0}). a

Coming back to the Plateau problem, the following terminology will be useful.

Definition 10.5 (isoperimetric space). We say that Y is an isoperimetric space if for
any integer k>1 there exists a constant y(k,Y") such that for any S€I;(Y) with 5=0
and bounded support there exists T'€I;.1(Y) with §7'=S such that

M(T) <7y(k, Y )IM(S)| FH/E.

We will provide in Appendix B several examples of isoperimetric spaces, includ-
ing Hilbert spaces and all dual spaces with a Schauder basis. Actually, we do not
know whether Banach spaces without the isoperimetric property exist or not. For finite-
dimensional spaces, following an argument due to M. Gromov, we prove that an isoperi-
metric constant depending only on k, and not on Y, can be chosen. This is the place
where we make a crucial use of the cone construction.

We can now state one of the main results of this paper, concerning existence of
solutions of the Plateau problem in dual Banach spaces.

THEOREM 10.6. Let Y be a w*-separable dual space, and assume that Y is an
isoperimetric space. Then, for any Se€li(Y) with compact support and zero boundary,
the generalized Plateau problem

min{M(T): T€L1(Y), 8T = S} (10.8)

has at least one solution, and any solution has compact support.

Proof. Let R>0 be such that spt SC Br(0) and consider the cone C=5x[0,1]. As
dC=S, this implies that the infimum m in (10.8) is finite and can be estimated from
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above with RM(S). Let us denote by M the complete metric space of all T€I;(Y)
such that 0T'=S, endowed with the distance d(T,7")=M(T—T"). By the Ekeland-
Bishop—Phelps variational principle we can find for any >0 a current T, € M such that
M(T;) <m+e and

Tws M(T)+ed(T, T.), TeM,

is minimal at T=T,. The plan of the proof is to show that the supports of T, are equi-
bounded and equi-compact as € (O, %), if this is the case we can apply Theorem 6.6
to obtain a sequence (7,) w*-converging to T€X;,1(Y), with €;10. Since 07T, =S
w*-converge to 0T we conclude that dT'=S, and hence Te M. The lower semiconti-
nuity of mass with respect to w*-convergence gives M(T)<m, and so T is a solution
of (10.8).
The minimality of T, gives
M(T2) < %*—z M(C) < 3RM(S). (10.9)

As K=sptS is compact, the equi-compactness of the supports of T, follows by the
estimate

BGY* n
(kt+1)k+1 2
for any ball B,(z)CY \ K, with y=+(k,Y). In fact, let I, be the open p-neighbourhood
of K and let us cover K by finitely many balls B,(y,) of radius p; then, we choose

|T-\(Bo(z)) = for all zespt Ty, (10.10)

inductively points x, € spt 7. \ I, in such a way that the balls B, /2(z;) are pairwise disjoint.
By (10.10) and (10.9) we conclude that only finitely many points z; can be chosen in this
way; the balls Ba,(y;) and the balls B,(x;) cover the whole of spt .. We can of course
decompose this union of closed balls into connected components. It is easy to see that a
component not intersecting K contains a boundary-free part of T, and hence contradicts
the minimality assumption for T.. On the other hand, all components intersecting K are
equi-bounded, and therefore the whole spt T, is as well.

In order to prove (10.10) we use a standard comparison argument based on the
isoperimetric inequalities: let £>0 and z€spt T.\ K be fixed, set p(y)=|ly—z|| and

§:=dist{z, K ), glo):=||T|{By{z}} forall gc(0,4)}.

For £'-a.e. p>0 the slice (T, p, o) belongs to I,(Y) and has no boundary; hence, we
can find ReIx4+1(Y) such that R=(T,, p, o) and

M(R) <1M((Te, 0, 0))] * D75 < v[g' () 7.
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Comparing T with T:L (Y \ B,(z))+R we find
[ Te[|(Be()) < M(R)+eM(T:L Bo(z) - R),

and hence g(0)<37[g'(0)]**+1/*. As g(p)>0 for any p>0, this proves that

1/(k+1) _ (3y) K/l
9(0) B

is increasing, and hence positive, in (0, 6).
Finally, proving for any solution T of (10.8) a density estimate analogous to the one
already proved for T, we obtain that spt T is compact. |

We conclude this section pointing out some extensions of this result, and different
proofs. The first remark is that the Gromov-Hausdorff convergence is not actually needed
if Y is a Hilbert space: in fact, denoting by E the closed convex hull of spt S, it can
be proved that E is compact; hence (10.1) has a solution Tg. If m:Y — E is the metric
projection on E, since mxS=S we get

M(T) > M(n4T) >M(Tg) for all T€ L 1(Y), 8T =S;

hence Ty, viewed as a current in Y, is a solution of the isoperimetric problem in Y.

A similar argument can be proved to get existence in some nondual spaces such as
LY(R™) and C(K):

Ezample 10.7. (a) L'(R™) can be embedded isometrically in Y=Mjy(R™), i.e. the
space of measures with finite total variation in R™; since Y is an isoperimetric space (see
Appendix B) and the Radon—Nikodym theorem provides a 1-Lipschitz projection from
Y to L!(R™), the Plateau problem has a solution for any Se€Ix(L!(R™)) with compact
support.

(b) In the same vein, an existence result for the Plateau problem can be obtained
in E=C(K), where (K,8) is any compact metric space; it suffices to notice that any
compact family FCFE is equi-bounded and has a common modulus of continuity w(¢),
defined by

w(t) :=sup{|f(z)—fly)|: feF, é(z,y) <t} forall t>0.
Let @ be the smallest concave function greater than w; since for any £>0 the function
e+ Mt is greater than w for M large enough, it follows that &(0)=0, and hence & is
subadditive. Using the subadditivity of & it can be easily checked that

f(z)— min [f(y)+@(6(z,y))]
yeK
provides a 1-Lipschitz projection from E into the compact set

{feE:fllo < Slelgllgﬂoo, |f(z)— f(y)| <&(d(x,y)) for all 7,y K}.
g9

Since any function in F has w <@ as modulus of continuity, the map is the identity on F.



68 L. AMBROSIO AND B. KIRCHHEIM

11. Appendix A: Euclidean currents

The results of §9 indicate that in the Euclidean case E=R™ our class of (integer-)
rectifiable currents coincides with the Federer—-Fleming one. In this section we compare
our currents to flat currents with finite mass of the Federer—Fleming theory. In the
following, when talking of Federer-Fleming currents (shortened to FF currents), k-vectors
and k-covectors we adopt systematically the notation of [48] (see also [23], [57]) and take
the basic facts of that theory for granted. Since flat FF currents are compactly supported
by definition, we restrict our analysis to currents 7€ My (R™) with compact support. We
also assume that k>1, since Mg(R™) is simply the space of measures with finite total
variation in R™.

We recall that the (possibly infinite) flat seminorm of a FF current T is defined by
F(T):=sup{T(w): F(w) <1} (11.1)
where the flat norm of a smooth k-covector field w with compact support is given by
F(w) !=Iselg>mmax{llw(w)ll*, ldw ()"},
and || - ||* is the comass norm. It can be proved (see [23, p. 367]) that
F(T)=inf(M(X)+M(Y): X+0Y =T}. (11.2)

We denote by F(R™) the vector space of all FF k-dimensional currents with finite mass
which can be approximated, in the flat norm, by normal currents. Using (11.2) it can
be easily proved (see [23, p. 374]) that Fr(R™) can also be characterized as the closure,
with respect to the mass norm, of normal currents.

In the following theorem we prove that any current T in our sense induces a current T
in the FF sense, and that any T'€ F;(R™) induces a current in our sense. Our conjecture
is that actually Te Fr(R™), and hence that our class of currents with compact support
not only includes but coincides with Fx(R™); up to now we have not been able to prove
this conjecture because we do not know any criterion for flatness which could apply to this
situation. Since the mass of any k-dimensional flat FF current vanishes on H*-negligible
sets (see [23, 4.2.14]), this question is also related to the problem, discussed in §3, of the
absolute-continuity property of mass with respect to #*. On the other hand, for normal
currents we can prove that there really is a one-to-one correspondence between the FF

ones and our ones.

THEOREM 11.1. Any Te Mg (R™) with compact support induces a FF current T
defined by
T(w):= Z T(we dTo, N...AdZy,)
a€A(m,k)
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for any smooth k-covector field w:R™— /\’c R™ with compact support. Moreover,
M(T) < e(m, k) M(T).

Conversely, any TeFL(R™) induces a current TeMk(Rm) with compact support
such that M(JA“)SM(T) Finally, T—T and T—T, when restricted to normal currents,
are each the inverse of the other.

Proof. By the continuity axiom (ii) on currents, T is continuous in the sense of

distributions, and hence defines a FF current. Since

T@i<[ 3 w@ldrie<e [ @l e

a€A(m,k)

we obtain that T' has finite mass (in the FF sense) and M(T)<cM(T), where c is the
cardinality of A(m, k).

Conversely, let us define T for a normal FF current T first. Let us first notice that
any fdreD*(R™), with feC®(R™) and m;€C®(R™), induces a smooth k-covector
field with compact support w: Rm—>/\k R™, given by

w=fdmA..Adrg= Y fdet Omy ey me) Az, A... A2, -
AT k) NZays s Tay)

Hence, T'(f dr) is well defined in this case. Moreover, since the covectors w(z) are simple,
the definition of comass easily implies that

k
lw(@)lI* <|f(z)| ][ Lip(m;) for all zeR™. (11.3)
i=1

Arguing as in Proposition 5.1, and using (11.3) instead of the definition of mass, if
Lip(m;)<1 and Lip(w})<1 it can be proved that

T am)=T(f )| < [ |f=F1dIT]re (11.4)

k
3 [ lime il dioTles +1in(s) [ fmiaildiTlee
i=1 ™ ™

where ||T||rr and ||0T||pr are now understood in the Federer—Fleming sense.
If fdreD*(R™) we define

T(f dr) := laiﬁ)lT(f*Qa d(m*ge)).
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By (11.4) the limit exists and defines a metric functional multilinear in f dr: moreover,
since for >0 fixed the map fdm—T(f+*p. d(7xg.)) satisfies the continuity axiom (ii)
in Definition 3.1, the same estimate (11.4) can be used to show that T retains the same
property. Setting w.=f*p, d(7+*g.), by (11.3) we obtain

7S dm)| = lim | T(w,)| < lim /R lewe(@) " AT e

k
s diTlee =T[Linm) [ |f1dITler;

R

k
< | | Lip(m;) lim inf /
i:HI €l0 R =1

hence T has finite mass and IT|<|IT||gr- The locality property T(f dr)=0 follows at
once from the definition of T if f has compact support and one of the functions ; is
constant in an open set containing spt f; the general case follows now since T is supposed
to have compact support. This proves that T is a k-current. The operator T+—T can be
extended by continuity to the mass closure of normal currents, i.e. to Fi(R™).

Finally, since T( fdm)=T(fdr) if m; are smooth, for any normal FF current 7' we
get

T(w)= Z f(wad:val/\.../\dxak): Z T(wa dzo, A...Ndzo, )=T(w). O
ac€A(m,k) a€A(m,k)

12. Appendix B: Isoperimetric inequalities

In this appendix we extend the Euclidean isoperimetric inequality to a more general
setting: first, in Theorem 12.2, we consider a finite-dimensional Banach space, proving
the existence of an isoperimetric constant depending only on the dimension (neither
on the codimension nor on the norm of the space). Then, using projections on finite-
dimensional subspaces, we extend in Theorem 12.3 this result to a class of duals of
separable Banach spaces. The validity of isoperimetric inequalities in a general Banach
space is still an open problem.
We start with the following elementary lemma.

LEMMA 12.1. Let 8:10,00)—(0,00) be an increasing function, let k=2 be an integer
and ¢>0. Then, there exist A=A(k,3(0))<1 and T=T(c,k)>0 such that

(B(t)+e[B/ ()] *=D)YEFDIEL (1 B(t) [ B'(8)] ¥/ D) EFD/E > ) (12.1)
Ll-a.e. in (0,T) implies B(T)>1.
Proof. Let 6=((0)>0 and define X as sup,¢(s,1/2) ¥(T), where

1 (k+1}/k 1 (k4+1)/k
(1) = (T+ﬁ7'> +(1—7’+2—k7> .
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Since ¥ is strictly convex and ¥(0)=1, w(%) <1, it follows that A<1. Let

and assume that (12.1) holds £'-a.e. in (0,T’) and B(T-)<3; the definition of A implies
that

L'-a.e. in (0,T), and hence
k—1
1
ﬂ(T_)>( ) s L O

Now, we recall the isoperimetric inequality in Euclidean spaces: for any current
SeI(R™) with compact support and zero boundary there exists T€ 11 (R™) satisfying
0T=S and

M(T) <y(k, m)[M(8)] k7%,

This result, first proved by H. Federer and W. H. Fleming in [24] by means of the de-
formation theorem, has been improved by F.J. Almgren in [2], who proved that the
optimal value of the isoperimetric constant does not depend on m and corresponds to
the isoperimetric ratio of a (k+1)-disk.

The proof of the isoperimetric inequality in finite-dimensional Banach spaces follows
closely an argument due to M. Gromov (see [32, §3.3]): the strategy is to choose a
maximizing sequence for the isoperimetric ratio (which is finite, by the Federer-Fleming
result) and to prove, using Lemma 12.1, that almost all the mass concentrates in a
bounded region. Using this fact, the cone construction gives an upper bound for the
isoperimetric constant which depends only on the dimension of the current.

THEOREM 12.2. Let k=1 be integer. There exists a constant -y, such that for
any finite-dimensional Banach space V and any S€X (V) with 05=0 there exists T¢
Ley1 (V) with 0T=S and

M(T) <y [M(8)|E+D/,

Proof. The proof is achieved by induction with respect to k; let a=(k+1)/k and,
for Sel; (V) with S=0, define
M(T)

) ::inf{w : 8T=S}

and y(0)=0. Since V is bi-Lipschitz-equivalent to some Euclidean space which is known
to be an isoperimetric space we conclude that L=supg y(S) is finite. In the following we
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consider a maximizing sequence (S,) and normalize the volumes to obtain M(S,)=1.
A simple compactness argument proves the existence of linear 1-Lipschitz maps my, ..., Tn
in V with the property that

i=1

N
diam( Tri_l(L,-)) <2
whenever diam(L;)<1. We define 83;(t)=||S,||(7; *(—o0,t)) for any i€{1,..., N} and n
fixed.

Step 1. Let k=1; we claim that for any £€(0,1) there exist closed balls B, with
radius less than 4 such that ||S,]|(Y'\ B,)<e for n large enough. In fact, for £'-a.e. t€R
such that (Sp,m;,t)#0 we have

by the boundary-rectifiability theorem. On the other hand, if §€(0,1), 5;(t) € [%5, 1- —;—6]
and (Sy, m;,t)=0 we can decompose S, as the sum of two cycles,

Sp,=8+82 =8, L{m <t}+S,L{m >t}
to obtain
Y(Sn) KASI(Bi(1)) 2 +¥(S2)(1-Bi(t)* < L[1+6(36-1)] < L,

and this is impossible for n large enough, depending on 4. Hence, setting §=¢/N, 8.>1
L'-a.e. in I;={B;€[36,1— 18]}, which implies £!(I;)<1. Our choice of m; implies that
the intersection of m; *(I;) has diameter at most 2.

Step 2. Now we consider the k-dimensional case with k>2 and set c=~;_;. We
claim that for any e€(0,1) there exist closed balls B,, with radius less than r,=8T(c, k)
(with T' given by Lemma 12.1) such that ||S,||(V \B,)<e for n large enough. For this
purpose we set §=¢/2N and observe that

(Bi (&) +e[ B (O F=D) (1= i (8) +<[ B ()] *V)* > Ak, 8) (12.2)

for £1-a.e. t and n large enough. In fact, for any t such that L;=(S,,m;, t)€lx_1(V) we
can find by the induction assumption R,€I(V) with 8R;=L; and

M(R;) < ¢[M(L,) ¥/ *=1 L e[ gl()]*/ =D,

Writing
S, =8 +82:=(SpL{m <t} —Li)+(Li+SpL{m >1t})
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if (12.2) does not hold we can estimate v(S,) by

A(SH (Bult) +elB]F/ B ) +(S2) (1= s(t) +[ B (1)) * D),

which is less than LA, and this is impossible if v(S,)/L>X. Now we fix n large enough,
set

ti:=inf{t:G;(¢) 26}, si:=sup{t:5:;(t) <1-6},

and obtain from Lemma 12.1 that 3; (ti+T)>% and B;(s;—T)< %; hence s; —t; <27 and

IS(V () 7t s) € 3 ISV s s ) <286 =

By our choice of N, the intersection of 7; '([t;, s;]) has diameter less than 47, and this
concludes the proof of this step.

Step 3. Assuming with no loss of generality that the balls B, of Step 2 (or Step 1
if k=1) are centered at the origin, we can apply the localization lemma with ¢(z)=|z||
to choose t,€{rg,75x+1) such that the currents

L, = {8y, p,tn) =0(S, LB, )=—8(S,L(V\By,))
have mass less than e for n large (L, =0 if k=1); by the induction assumption we can

find currents R,€I(V) with OR,=L, and M(R,)<ce*/(*~1); we project R,, on the
ball B, (0) with the 2-Lipschitz map

T if fjz| < tn,
7(x):=

tnx/ ||| if |lz]| = ta,
to obtain R! €I(V) with 8R!, =L, spt R,,C B,, and M(R,)<2%ce*/ =1 Writing
Sp=(SpLB:,—Ry)+ (R, +SaL(V\B,))
and applying the cone construction to S,L B;, — R, , for n large enough we obtain
(Sn) < (rr+1)(1+2Fce®/ =D)L (2kcek/ (=D L g)e.

Letting first n—oo and then £¢—0 we conclude that L<rg+1, and ry depends only
on k. O



74 L. AMBROSIO AND B. KIRCHHEIM

THEOREM 12.3. Let Y be a w*-separable dual space, and assume the eristence of
finite-dimensional subspaces Y,,CY and continuous linear maps P,:Y —Y,,, such that
P,(z) w*-converge to T as n—oo for any €Y. Then

inf {(M(T): T€Ley1(Y), OT = S} <y CFHM(S) <D/

for any S€X(Y) with bounded support, where C=sup,, || Py, || and i is the constant of
Theorem 12.2. If S has compact support, the infimum is achieved by some current T

with compact support.

Proof. The constant C is finite by the Banach—Steinhaus theorem. Let S€I;(Y)
with bounded support, let S,=P,xS and notice that by Theorem 12.2 we can find
solutions T, of the Plateau problem

min{M(T): T€1x41(Yy), 8T =S,}
and these solutions satisfy
M(Ty) < [M(Sn)] €% i CFH M(S) IV,

Since Y;, embeds isometrically in Y we can view T;, as currents in Y and prove, by the
same argument as in Theorem 10.6 (but using Theorem 12.2 in place of the assumption
that Y is an isoperimetric space), that spt T, are equi-bounded and equi-compact. By
Theorem 6.6 we can find a subsequence T,y w*-converging to some limit T. Since
0T (ny w*-converge to T and S,(n) w*-converge to S, we conclude that T'=S, and the

lower semicontinuity of mass gives
M(T) < liminf M(T») < CHHM(S))R+D/k,
—00

Finally, since we have just proved that Y is an isoperimetric space, if S has compact
support the infimum is a minimum by Theorem 10.6. O

Any dual Banach space Y satisfying the assumptions of Theorem 12.3 is an isoperi-
metric space. These assumptions are satisfied by Hilbert spaces (in this case the optimal
isoperimetric constant is the same as for Euclidean spaces), dual separable spaces with
a Schauder basis, and also by some nonseparable spaces such as [*°.

Also the space Y=Mgy(R™) of measures with finite total variation in R™ has the
isoperimetric property: indeed, let us consider regular grids 7, in R™ with mesh size
1/n and let us define

Po(p):= Z nmu(Q)H™LQ for all pev.
QETn
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It is easy to check that || P,||=1 and that P,(u) w*-converge to u as n—oo for any peY.
More generally, any dual space Y=X* is an isoperimetric space if X has a Schauder
basis: in fact, denoting by X, the m-dimensional subspaces generated by the first n
vectors of the basis, and denoting by m,: X —X,, the corresponding projections such
that ||z —m,(z)||—0 for any z€X, we can define

P,Y oY, :={yeY :yom,=y}

setting P, (y)=yom,.

13. Appendix C: Mass, Hausdorff measure, lower semicontinuity

In this section we assume that Y is a w*-separable dual space and k>1 is an integer.
We discuss here the possibility to define lower semicontinuous functionals, with respect
to the weak convergence of currents, in I(Y). Denoting by A,Y the exterior k-product
of Y, and by A Y the subset of simple k-vectors, any function A: A} Y —{0, 00) induces
a functional Fy on Zx(Y)DI4(Y): indeed, recall that any T€Z(Y ) is representable,
essentially in a unique way, as [ S, 6, 7] through (9.9), with S=Sr given by (4.2), 8 integer-
valued and ||7||,=1on S, ie.

k
'Hk({z zimi(z): Z ziz < 1}) =w; forall ze€s.

If T=[S,0, 7] we define
Fa(T) = / ON(T) dH*.
S

Notice that, in order to define F,, A needs to be defined only on unit simple vectors; for
this reason all the functions A that we consider later on are positively 1-homogeneous.

In the following, for 7€ /\7C Y #£0, V. CY is the k-dimensional Banach space spanned
by 7 with the induced metric, and B, is its unit ball. Several choices of A are possible,
and have been considered in the literature. In particular, we mention the following three
(normalized so that they agree if Y is a Hilbert space):

(@) M) =]llm=H({Tr 2imi: T, 22<1}) /wis

(b) Aa(7)=Av.||7|im, where Ay is defined in (9.11) (see also Lemma 9.2 for a defi-
nition in terms of Jacobians);

(€) As(7)=VP(1)||7||m/w?, where VP(7) is the so-called volume product of V. (see
[59, 2.3.2]).
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The functional F; induced by A, is [ |6] dH*, i.e. the Hausdorff measure with mul-
tiplicities, while, according to Theorem 9.5, the functional F3 induced by As is the mass.
The functional F3 induced by A3 arises in the theory of finite-dimensional Banach spaces
(also called Minkowski spaces) and is the so-called Holmes-Thompson area; we refer to
the book by A.C. Thompson [59] and to the book by R. Schneider [56] for a presentation
of the whole subject; in this context, the function A; has been studied by H. Busemann,
and Ay has been studied by R. V. Benson [11].

Coming to the problem of lower semicontinuity, the following definition (adapted
from (23, 5.1.2]) will be useful. We recall that the vector space of polyhedral chains is
the subspace of I(Y') generated by the normal currents [F, 1, 7] associated to subsets
F of k-dimensional planes with multiplicity 1.

Definition 13.1 (semiellipticity). We say that A: A, Y —[0,00) is semielliptic if

q
> 0:M(m) HE(F) > 00 (7o) H*(Fo) (13.1)
i=1
whenever T=>"7_, [F;,0;,7:] - [Fo,60,70] is a k-dimensional polyhedral chain satisfying
aT=0.

Since (13.1) is equivalent to

q
> F(lFi, i, 1) 2 FallFo, 6o, 7o),
i=1
the geometric significance of the semiellipticity condition is that “flat” currents Tp=
[Fo, 6o, 70] minimize F, among all polyhedral chains T with 8T =38Ty.

By a simple rescaling argument, it is not difficult to prove that the semiellipticity of
A is a necessary condition for lower semicontinuity of Fy. At least in finite-dimensional
spaces Y, using polyhedral approximation results it could be proved, following 5.1.5
of {23], that the condition is also sufficient; we believe that, following the arguments of
Appendix B, this fact could be proved in greater generality, but we will not tackle this
problem here.

Since we know that the mass is lower semicontinuous, these remarks imply that
the Benson function A, is elliptic. We will, however, give a more direct proof of this
fact in Theorem 13.2 below (this result has been independently proved by A.C. Thomp-
son in [60]). Concerning the Busemann and Holmes—-Thompson definitions, their semi-
ellipticity is a long-standing open problem in the theory of Minkowski spaces (see [59,
Problems 6.1.1, 7.1.1]), and it has been established only in the extreme cases k=1,
k=dim(Y)—1; in these cases, as in the theory of quasiconvex functionals, semiellipticity
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can be reduced to convexity. We also mention, in this connection, the work [10] by G. Bel-
lettini, M. Paolini and S. Venturini, where the relevance of these results for anisotropic

problems in calculus of variations is emphasized.
We define

A7) 1= wik sup {L*(n(B:)) [7llm: n€A}  for all 7€ ALY\ {0}, (13.2)

where A is the collection of all linear maps 7: Y —R¥ with Lip(n;)<1, i=1,..., k. By the

area formula, the function A can also written as

A(7) =sup{Jx(m)||7llm: nEA}, (13.3)

and hence Lemma 9.2 gives that A=\,.
THEOREM 13.2. The function A: ALY —[0,00) defined in (13.2) is semielliptic.

Proof. Let T be as in Definition 13.1 and let n€ A be fixed; since
T(1dn) =8T (n dnz A...Adng—1) =0,

taking into account (9.9) we obtain

g
% / (A dPon,mo) dHM| < 65 / (N @B, i) dH®.
Fo i=1 F
Since the definition of the Jacobian together with (9.8) imply that
: L*(n(B-,
,</\k dFl"?vTiN :Jk(Lﬁlspan(Fi)) = (T(k)')_a
we obtain
0o k = 0 k
g £ (B ) HA(F) <Y _ = LEn(Br)) HH(F)-

i=1
This proves that 6o L*(n(B.,)) H*(Fo)/wi <Y 6;A\(;) H*(F;). Since 7 is arbitrary, the
semiellipticity of A follows. ]
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