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1. L e t  ] (x ,  y )  = a x  ~ + b x y  + c y2 be an  indef in i te  b i n a r y  q u a d r a t i c  form wi th  

real  coefficients and  d i se r iminan t  D = b ~ - -  4 a c > 0. F o r  a n y  rea l  number s  % ,  Yo we 

define M (/; %,  Yo) to  be the  lower b o u n d  of I] (x + %,  y + Yo)l t a k e n  over  al l  in- 

t ege r  sets  x, y. I t  is clear  t h a t  if 

t hen  
x ~ x o ,  y()~yo (rood 1) (1.1) 

M (/; ~ ,  y~) = M (f; ~ ,  yo). (1.2} 
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We identify pairs of real numbers (x, y) with the points P of the Cartesian 

plane, and say that  any two points are congruent if their coordinates differ by  in- 

tegers. Writing M (/; P)  for M (]; x o, Y0), we now define the inhomogeneous minimum 

of /(x, y) to be 
M (/) = upper bound M (/; P). (1.3) 

The upper bound is taken over all points of the plane, but  in virtue of (1.2) may 

merely be taken over any complete set of incongruent points. 

I t  follows from these definitions that  corresponding to any point P = (x0, Yo) 

and any e > 0 we can find an integer point (x, y) such that  

If  we can in fact satisfy 

]/(x + xo, Y + Y o ) ] < M ( / )  + e. (1.4) 

[](x + Xo, y + Yo)l <-- M(/ )  (1.5) 

for every (Xo, Yo) and a corresponding integer point (x, y), we shall say that  M(/)  

is an attained minimum. 

We use the customary definition of equivalent forms, without however distin- 

guishing between proper and improper equivalence. Thus two forms /(x,  y ) , / '  (x, y) 

are equivalent if there exists a transformation 

(::) (; (;) 
with integral coefficients and determinant ~ 8 - - f l y  = _+ 1 such t h a t / '  (x', y') = /(x,  y). 

Writing (1.6) as P ' =  T(P),  it is clear that  for any point P we have 

M (]; P)  = M q'; T (P)). (1.7) 

Since the points T (Px), T (P~) are congruent if and only if Px and/)2 are congruent, 

it follows that  
M (]) = M (/'). (1.8) 

Thus equivalent forms have the same minimum. We also note that,  trivially, 

M (2/) = 121M(/) (1.9) 
for any real 2. 

Let C be the set of points P for which M ( / ; P ) = M ( / ) ,  and define M s(]) as 

the upper bound of M (/; P)  taken over all P not belonging to C. Obviously 

M2 (/) -< M (/). (1.10) 
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If strict inequality holds in (1.10), we say that M if)is an/so/areal minimum, and we 

call M~ (/) a second minimum. 1 Similarly we define successive minima M 8 (/), M 4 (/) . . . .  

the sequence being strictly decreasing until a non-isolated minimum is reached. 

2. The first result on the inhomogeneous minimum M (/) was found by Min- 

kowski [1]. He showed that 
1 

M (/) ~ ~ VD, (2.1) 

the equality sign being necessary if and only if /ix, y )~  b xy. Contributions have 

since been made by many authors 2, who have found upper bounds for M (/) in terms 

of a value or values assumed by / ix, y) for integral x, y. In many cases, the bound 

determined has been precise, and more recently some particular forms have been 

examined in detail by Davenport [1], Varnavides [2, 3], Bambah [1], and Inkeri 

[3, 4, 5]. Explicit acknowledgements of these results will be made below. 

In the opposite direction, Davenport [4] has proved the remarkable result that 

1 - ( 2 . 2 )  M (/) > ~ VD 

for forms not representing zero; and Prasad has sharpened this to about 

(t) > 1 M 
OD 

(2.3) 

A particular impetus has been given to research on this problem by its close 

association with the Euclidean algorithm in real quadratic number fields. An algebraic 

number field is said to be Euclidean if for any number ~ of the field there exists 

an integer ~ of the field such that 

I norm (~ + x) l < 1. (2.4) 

The elements of a real quadratic field k(V--mm), where m is a square-free positive 

integer, are of the form x + coy with rational x, y, the integers of the field corre- 

sponding to rational integers x, y. Then norm (x + coy) is an indefinite quadratic 

form /m(x, y), where 

1 This  def in i t ion is pe rhaps  a depa r tu re  f rom convent ion ,  s ince we do n o t  exclude  t h e  possi-  
b i l i ty  of C conta in ing  an  in f in i ty  of incongruen t  po in ts .  The  reader  should  no te  t h a t  INKER! [3] 
uses M 1 and  M s to  d i s t ingu ish  be t ween  w h a t  we call a t t a i n e d  a n d  u n a t t a i n e d  f i rs t  m i n i ma .  

s See for example  H~.INHOLD [1, 2], DAVENPORT [1], VA~AVIDES [1], CASSELS [1], B~I~NES [1], 
LN~RX [3]. 
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/m (x ,  y )  = x 2 - -  m y2, co = ]/-mm i f  m ---- 2 ,  3 

1 1 
]m(X,y)  = x ~ + x y -  ~ ( m - 1 ) y ~ ,  r = ~(1  

If  we write ~ = Xo + eOyo, ~ = x + to y, (2.4) becomes 

It , (~ + ~o, y +  yo)l < 1. 

Thus k (17m) is Euclidean if and only if 

(too4 4); (2.5) 

+l/m) if m---1 (mod4). (2.6) 

for all rational points P. 

(2.7) 

M (/m; P) < 1 (2.8) 

A sufficient condition for this is clearly that  

M (tin) < 1. (2.9) 

The main interest in the problem of inhomogeneous minima has therefore been 

in proving (2.9), or disproving (2.8) for some particular rational P. In addition to 

(2.2) Davenport has shown that  if / (x,  y) has rational coefficients, 

1 V-D (2.10) M (1; P) > 1-~ 

for some rational P. Thus there are only a finite number of Euclidean fields k(Vm), 
and the set of such fields has now been completely determined. 1 

3. In this paper we shall be concerned with forms ] (x, y) with rational coeffi- 

cients which do not represent zero for integral x, y not both zero. Such forms have 

an infinity of automorphs; in this section we discuss these automorphs and their 

relation to the problem of inhomogeneous minima. 

In virtue of (1.9) we may take /(x, y) in the form 

/ ( x ,  y )  = a x  2 + b x y  + c y 2  

where a, b, c are integers with no common factor. We shall call an integral uni- 

modular transformation 

an automorph of /(x, y) if ] (x, y) is equivalent under T to either 2 +__ ] (x, y). I t  is 

known tha t  these automorphs fall into three classes: 

1 Note,  however ,  t h a t  R]~DEI is in  e r ror  in  s t a t i n g  ([1], p. 607) t h a t  k (V9-7) is Euc l idean ,  as we 
shal l  show in  t h e o r e m  15 beIow. 

2 I t  is  c o n v e n i e n t  to  m a k e  t h i s  ex tens ion  of the  t e r m  " a u t o m o r p h "  to  inc lude  al l  t r a n s f o r m a -  
t ions  of []  (x, Y) l i n to  itself. 
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I. Proper transformations of /(x,  y) into itself, given by 
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where t, u is any integral solution of the Pellian equation 

t ~ - -  D u ~ = 4. (3.3) 

II. Improper transformations of / (x ,  y) into - - / ( x ,  y) given by (3.2), where 

now t, u is any integral solution of 

t 2 - -  D u  e = - -  4. (3.4) 

III .  Improper transformations of /(x, y) into itself, and proper transformations 

of ] (x, y) into - -  / (x, y). 

Automorphs of type I always exist, and there are an infinity of them, given by 

T =  + r ~  ( n = 0 ,  +1 ,  + 2  . . . .  ) (3.5) 

where T o is given by (3.2) with t, u the least positive pair satisfying (3.3). 

Automorphs of type II  may or may not exist. If  in fact there are any solu- 

tions of, (3.4), then all automorphs of types I and I I  are expressible in the form (3.5), 

where t, u is now the least positive pair satisfying (3.4). We call T o the/undamental  

automorph of /(x, y) in each of these two cases. 

Criteria for the existence of an automorph of type I I I  are not so simple, and 

we shall merely note here that  the "ambiguous" forms /m (x, y) of (2.5), (2.6) have 

respectively the automorphs 

The properties of automorphs which are of primary interest to us are: 

T h e o r e m  A. I /  T is any automorph o~ ] (x, y), and P is any point, then 

M (/; P)  = M (/; T(P)) .  (3.6) 

Proof: The result follows at once from (1.7). 

T h e o r e m  B. Let T be an automorph o / [ (x ,  y) = ax  ~ + b x y  + cy 2 given by (3.2), 

where t~-- D u  ~ = +_4, t > O, u > O. Let {P~}(i= 1, 2, . . ., N)  be a [inite set o/ in- 

congruent points such that the set {T(P~)} is a permutation o/ {P~} modulo 1. Sup- 

pose that 
M ( / ; P , ) < K  (i = 1 ,2  . . . . .  N). (3.7) 

1 1 
T =  ( ~ t - - ~ b u  - - c u  ) 

1 1 (3.2) 
\ au  ~ t + ~ b u  
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Then there exists a point (x, y) with the properties: 

(i) (x, y) ~-- P~ /or some i, 

iii) I/ix, y)[ < K, 

(iii) D y 2 < K ] a ] ( t  + 2) // t 2 - - D u  2 = 4 ,  

t y 2 < K l a l u  2 # t ~ - - D u  2 = - 4 .  

Proof: 1 Consider the set of points satisfying (i) and (ii), which is not null 

by (3.7). Since there are only  a finite number of points P~, we can choose a pair 

(x, y) in this set for which [y[ has its least possible value. The theorem will be 

established if we show that  this value of [y] satisfies (iii). Suppose it does not. 

Then, taking first the case when t ~ - - D u "  = 4, we have 

Dy'>--K[a]( t  + 2). (3.8) 

We may suppose for simplicity that  a > 0, since we may replace/(x,  y ) b y - / ( x ,  y). 

Also, since / ( -  x, - y) -- ] (x, y), we may take y ~ 0 in (3.8). 

i.e. 

or 

I ] ( x , y ) [ . ~ K  < DY~ 
-- act + 2------))' 

x + ~a y ~a~ y~ < a s (t + 2~)' 

DY~ ( 1 - - t - ~ )  < (x + ~-a Y ~ < Dy2 

On replacing D by (t 2 -  4)/u ~ and simplifying, this gives 

y2(t--2)2 ( b )2 y 2 ( t _ _ 2 ) ( t + 6  ) yZ(t+2)~ 
4a2u ~ ~ x + -2--a y ~ 4a2u ~ ~ 4a2u ~ 

or 

Thus either 

i.e. 

o~" 

Then we have 

b ] (3.9) 
2au  [ ~aY l  < 2a-----u" 

u (t - 2) b u (t + 2) 
2 a u  < x + ~ y  < 2 a u  

I 1 I a u x - - - ~ ( t - - b u ) y  < y ;  (3.10) 

i Infinite descent, based on the method of DAVENPORT [1], Lemm~ 3. 
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i.e. 

y (t - -  2) b y (t + 2) 
2 a u  < - - x - - 2 - a Y <  2a-------u 

I 1 I a u x  + ~(t  + b u ) y  < y .  (3.11) 

1 
But the y-coordinates of T (x, y), T -1 (x, y) are respectively a u x  + ~  (t + b u ) y ,  

1 
- -  a u x  + ~ (t - -  bu)  y;  and by hypothesis each of the points T (x, y), T -1 (x, y) is con- 

gruent to some P~. Hence, since either (3.10) or (3.11) holds, we have a point satis- 

fying (i) and (ii) with a smaller value of ]y], which contradicts the initial choice of y. 

Consider now the case when t ~ - - D u  2 = - -4 .  Then we have 

tyS> K[a[u 2, 

where as above we may suppose tha t  a > O, y > O. Then 

i.e. 

It(x, y)l<K_< ty_~, 
a 2 2 

b 2 < (o 
4 a ~ + ~ a  2 + 

Replacing D by (t2+ 4) /u  2 and taking the square root, this yields precisely the 

inequality (3.9). The proof may now be completed as above. 

This theorem (which is best possible) is designed to give the least number of 

possible values of y to test. Results of this sort are, of course, not original; but  

we have not been able to find an explicit s tatement of this theorem. 

4. I t  is clear from Theorems A and B that,  for any given automorph T of 

/@, y), the set. of points F for which T (F)------F will be of special interest. Such 

points will be called /ixed :points of T.  For any integral point A, there is a fixed 

point F satisfying 
T (F) = F + A, 

and if the matrix ( T -  I) is non-singular, this equation defines a unique, rational F.  

If  ( T -  I) is singular, it  is easily seen, since IT] = + 1, that  T is of finite order 

(in fact T 2 = • I);  we shall exclude such transformations from the following dis- 

cussion. 

We now prove some important results on transformations of infinite order and 

their fixed points. For an integral unlmodular T, 
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7 
we set 

= ~ - - f i r  -- + 1, (4.2) 

~ [ ~ - ~ - V { ( ~  + ~ ) * - 4 e } ]  if ~ .  ~ > 0 ,  

= (4.3) 

5 [ ~ - - ~  + 1/{(~ + ~ ) z - -4~} ]  if ~ + ~ < 0 .  

We shall always suppose tha t  x is text/. 

I t  is convenient to define the expression 

P e R  (rood 1), 

where P is a point and R a point set, as meaning tha t  there exists a point Q con- 

gruent to P modulo 1 lying in R. 

T h e o r e m  C. 1 Let T, defined by (4.1), be o/infinite order, and let R be a bounded 

point set such that, /or some given set R* and some given integer point A,  any point 

P E ~ has the property that either T (P) E ~* (rood 1) or T (P) --  A E R. Let F = (Xo, Yo) 

be the fixed point o/ T defined by T (F) = F + A.  Then i~ P = (x, y) E R, and T n (P) 

is net congruent to a point o/ ~* /or any n = 1, 2, . . . ,  P lies on the line 

y - Yo = ~ (~  - Xo) 

through F, where ~ is defined by (4.3). Moreover, F belongs to the closure R o/ R, 

and /or each n there exists a point Q n - - T "  (P) such that Qn--> F as n-~  + co. 

For the proof of Theorem C we need two preliminary lemmas. 

L e m m a  t .  /~t  S be the trans/ormation 

( z ' , u ' )  = ( t ~ ,  + u / t ) ,  

where t is real and [t I >  1, and let R be a bounded point set. SuIypose that S" (P)E R 

/or all n :> O. Then P lies on the line x = O, the origin 0 belongs to the closure R o / R ,  

and S ' ( P ) ~ O  as n ~  + oo. 

i The reader will find the  purpose of th is  theorem clearer if he refers to the f irst  par t  of w 8, 

where there is a general account  of the  methods  used. 

Theorem C is basically the  well-known resul t :  if the  vector P P  remains  bounded under  all 
posit ive powers of the  t ransformat ion  T, then  it  is an  eigenvector of T. In  fact  the  region ~ *  and  

the  point  21 of Theorem C arise na tura l ly  in the  applications,  whereas an  explicit  boundedness  condi- 

t ion does no t ;  it  is therefore more convenient  to have  the  theorem s ta ted in th is  more complex form. 
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Proof: Let P be the point (x, y). Then S n (P) = (t n x, • t -~ y) E R, and so, since 

is bounded, t "x  is bounded as n-+ + oo. Since It I >  1, i t  follows that  x = 0. 

Finally, S" (P) = (0, + t-" y) ~ 0 as n ~ + 0% so that  0 e/~. 

L e m m a  2. Let T be defined by (4.1), and let ~ be a bounded point set. Suppose 

that P = (x, y) is a point such that T n (P)E }~ /or all n >--O. Then P lies on the line 

y ~ ,  

where ~ is de/ined by (4.3); O e ~ ;  and T ~ ( P ) - + O  as n ~  + oo. 

Proof: Let 21, 22 be the roots of the equation 

1cr fl [ = 2 2 _ ( a t + ~ ) 2 + e = 0 .  

Then it is well known tha t  the linear substitution 

X = ((~-- 2 1 ) x - -  f ly  , 

Y = ( O - - ) ~ ) x - - f l y  
reduces T to the form 

(X', Y') = (21 X, 22 Y). 

Since 2 1 2 2 = e =  + 1 ,  and 21,22 are real and not both + 1 ,  we may choose 

I)~ ] > 1. Lemma 1 now shows that  0 E }~, tha t  T" (P) -+ 0 as n -+ + 0% and that  P 

lies on the line 
X = ( ( ~ - - 2 z ) x - - ~ y  = O. 

Now a + (~ # 0, since T is of infinite order; and 

1 
21 = ~[~ + ~ + Vi(~ + (~)~-4e}] if ~ + (~>0,  

1 
21 = ~[~ + ~- -  V{(~+ 0 )~-4~}]  if ~ + ~ < 0 ,  

so tha t  the above line is y = u x, as required. 

Proof  of T h e o r e m  C: Suppose tha t  Po E R and tha t  T n (Po) is not congruent to 

a point of ~* for any n--> 0. 

Let  A be the point (a, b), and define an inhomogeneous transformation U by 

U (P) = T ( P ) -  A. Then, since U (P)----- T (P) for all P, U" (P) is not congruent to 

a point of }~* for any n > 0. 
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We now change the origin to F,  so that  the new coordinates (x', y') are given by 

(x', y') = ( x -  Xo, y -  Y0), 

or P ' =  P -  F. The transformation U then becomes 

(x' ,y ')--->(~x'  + f ly ' ,  r x '  + Oy'). 

Now by hypothesis, P0 e R, 

U (Po) = T (Po) - -  A = Q, e R, 

U2 (Po) = U (Q,) = T (Q1) - A = Q~ e R, 

and so on, so that  Qn = U n (Po)e R for all n--> 0. I t  follows at  once from Lemma 2 

tha t  F e R ,  Qn ~ F  as n - ~  + 0% and that  Po lies on the line y' = ux ' ,  i.e. on the 

line Y - - Y o  = u ( x - - x o ) .  

We note tha t  there is a simple and obvious generalization of Theorem C to the 

case of a finite number of bounded point sets: 

T h e o r e m  (]'. Let T, de/ined by (4.1), be of in]inite order, and let }~o, ~1 . . . .  , ~k-1 

be a [inite number o/ bounded point sets. Suppose that /or some ~* and some integer 

points AI  . . . . .  Ak,  every point P~ E ~ (i = 0, 1 . . . . .  k - -  1) has the property that either 

T (Pt) e R* (rood 1) or T (Pd - -  At+l e ~+1 (where ~ is interpreted to be ~o). Let 

A = A~ + T (A~_~) + T ~ (Ak-2) + " + T k-~ (A1), 

and let F = ( x o ,  yo) be the fixed point o/ T ~ de/ined by T k ( F ) = F  + A.  Then i] 

P = ( x , y )  ERo and T n(P) is not congruent to a point o/ ~* /or any n >--O, P must 

lie on the line 
Y - -  Yo = ~ (x - -  Xo). 

Moreover, F e Ro, and [or each n there exists a point - -  "~ Qn~ = T (P) such that Q,~ ---> F 

a s  n----~ -~ o o .  

Proof:  Suppose tha t  P e Ro and that  T" (P) is not congruent to a point of R* 

for any n--> 0. Then by  hypothesis, 

T ( P ) = P I + A ~ ,  P~eR~,  

T(P1)  = P2 + As, P~eR2,  

�9 . �9 �9 �9 �9 �9 . . . .  

T (Pk-1) = Pk + Ak, P~ e Rk = Ro. 
tIence 

T ~(P) = Pk + A~ + T(A~_~) + --. + T k-~(A~) = P~ + A, 

so that  T ~ (P) - -  A e Ro. 
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The required results now follow from Theorem C, on replacing T by T ~. The 

constant ~ is unchanged, since T and T ~ have the same eigenvectors. 

The essential point of Theorem C is that we consider the transformations T n 

only for positive n. If we consider also T n for n ~ 0, we have the following simpler 

result, due to Casselsl: 

T h e o r e m  D. Suppose that the hypotheses o/ Theorem C are satisfied, and ]urther 

that /or any point P E R, T -1 (P) is congruent to a point o/ either R* or o/ R. Then 

i/ P E R  and T ' (P )  is not congruent to a point o/ R* /or any n ~ O,P is the ]ixed 

point F. 

Proof: The result is most simply proved by extending Lemma 1 above to show 

that S" (P) can belong to R for all n ~ 0 only if P is the origin, and by making 

the corresponding extension in Lemma 2. The introduction of the "asymptotic line" 

Y--Yo = u ( x -  xo) is then unnecessary. I-Iowever, we may deduce the result directly 

from Theorem C. We first note that there exists an integer point B such that for 

any PER,  either T- I (P)ER * (modl),  or T - I ( P ) - - B E R .  For if P E R ,  T-~(P)ER 

(mod 1), then 
T - I ( P ) = B + Q ,  QER, B integral, 

and so 
P = T (B) + T (Q). 

The hypothesis of Theorem C now show that T (B)= - -A,  so that B = - - T  -1 (A), 

which is independent of P. 

Suppose now that P E R and that T" (P) is not congruent to a point of R* for 

any n. Theorem C shows that P = (x, y) lies on the line 

- y .  - - .  ( x  - % ) .  ( 4 . 4 )  

Also, applying Theorem C with T replaced by T -1, P must also lie on the line 

U -- Y0 = u' (x -- x0) , (4.5) 

where x' is obtained from T -~ in the same way as u is obtained from T. I t  is 

easily seen that u ' ~  u (u' being in fact derived from u by changing the sign of 

the radical). Hence P must be F, the point of intersection of the fines (4.4), (4:5). 

There is an obvious generalization of Theorem D, corresponding to the above 

generalization of Theorem C. 

$. We are now in a position to prove some general results about the inhomo- 

geneous minima of rational forms ](x,y). We shaft abbreviate M(/), M(];P)  to 

* Quoted by BAMBAII [I], 
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M, M (P) respectively; and we shall write ] (P) for /(x, y). The first result, which 

we shall quote without proof, is given by Heinhold ([1], p. 660): 

Theorem E. I /  M is an attained minimum, there is at least one point P /or 

which M (P) = M, and an integral point Q corresponding to P such t h a t / ( P  + Q) = + M. 

The proof is based on a simple application of the Heine-Borel covering theorem. 

If the minimum is unattained, the first part of the Theorem is still (trivially) true; 

the second part is true also, but we do not prove this here. 

Theorem F. M (P) is upper semi-continuous; i.e. /or any point P and any 

e > 0 ,  we can [ind a ~ > 0  such that M (P') < M (P) + e whenever I P ' - - P I < &  

The proof is immediate, since [ (P) is a continuous function of P. 

Our next result is new, and gives a criterion for the existence of isolated minima. 

1 1 
We use the (permanent) notation S for the closed unit square: Ix[--~ 2, [y[--~ ~; 

clearly any point P of the plane is congruent to a point of S. 

Theorem G. Suppose that M (P) ~ k /or all but a /inite set o/ points o/ $. 

Then there exists a number k ' ~  k such that M (P)~--k'  /or all points P E S exAcept the 

given finite set. 

Proof: Let {P~} (i = 1, 2 . . . . .  N) be the set of points P E S  for which M ( P )  >---k, 

and let T o be the fundamental automorph of [ (P). From Theorem A we see that 

T O permutes the set {P~} (rood 1), and so there is an integer r, 1 _~ r--~ N!, such 

that P~ is a fixed point of T = T ~  for each i. Let T ( P ~ ) = P ~ + A , .  

Let ~1) be the region 

I P - P , I  <~, (i=l, 2,...,N), 

where ~, is so small that no two of the sets ~1) have a common point. Now choose 

e,. ~ ~1 so that, if R~ ~) is the region 

IP-P,l<e~ ( i =  1 ,2  . . . . .  N), 

we have T (p~2)) < RI, ) + A,, T -1 (~2)) < ~ , )  _ T-~ (A,). This is always possible since 

T(Pt)  = P~ + A~, T-I(P~)= P t -  T -1 (A,), and a sufficiently small neighbourhood of 

P~ transforms continuously with P~ under T and T -~. Now let 

~* = S - ~ ~12). 
t 
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Then ~* is a closed bounded set, and since ~* contains none of the points Pt, 

M ( P ) ~  k for all P E ~*. Thus for each P E }~* there exists an integer point L such 

that P is an interior point of 
I /(P + L)I -< k. 

I t  follows from the Heine-Borel theorem that there exist a finite number of such 

sets, defined by L 1, L g , . . . ,  Ln, say, such that  any P E n *  is an interior point of 

one of them. Since min [[(P + L~)I is a continuous function of P and is strictly 
l=;$<n 

less than k in ~*, it attains its upper bound k ' ~ k .  Hence M ( P ) - - < k ' < k  for 

PE~*.  

I t  remains to show that M (P) ~ ]c' if P E }~1 ~), P ~ P~, for any i = 1, 2 . . . . .  N. 

Now by Theorem A, M ( P ) =  M ( T n ( P ) ) ~ k '  if T~(P)E}~ ~ (rood 1); also from the 

construction of the sets ~!1), ~12) we see that if P E ~}2) 

either T (P) E ~* (mod 1) or T (P) - -  As E ~ ) ,  
and 

either T -1 (P) E R* (mod 1) or T -~ (P) + T -~ (As) E ~ ) .  

Theorem D now shows that either T n (P)E ~* (rood 1) for some n, or P = P~, which 

completes the proof. 

4. Before proceeding to the evaluation of M (]) for particular forms/(x, y), we 

shall establish the following arithmetical result. 

For any real number ~, we write 

(~) = u.b. 1. b. I(x + ~l)' -- a [, (6.1) 

where the upper bound is taken over all real ~l and the lower bound over all in- 

tegers x. Thus r (a) is the lower bound of all numbers m (a) such that the inequality 

+ a ) '  - [ _< m 

can be satisfied for every real 2 and some corresponding integer x. 

Partial results on the value of ~ (~) have been known for many years, and have 

been used 1 to deduce upper bounds for M (/). Thus it has been shown that ~ (a) < 1 

5 
if 0--<-~--< 2, ~ ~ ,  a result which has an immediate application to the probIem of 

the Euclidean algorithm outlined in w 2. The strongest result has been given by 

Davenport. ~ I t  may be stated as: 

1 See for  examplo  MORDELL [1], PERRO~r [1], DAVENPORT [1], VARNAVIDW-S [1]. 
2 DAVENPORT [2], L o m m a  5. 
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1 
T h e o r e m  H. I /  B-----~ and 

] 
0 --< o~ <~ B + ~ [2 B]', (6.2) 

then 
(a) _ B. (6.3) 

This form of statement is particularly useful in the applications, since we usually 

wish to determine the ~ for which ~ (~) is less than some preassigned number B. 

I t  is, however, quite easy to find an explicit formula for ~ (a): 

1 
T h e o r e m  j.x (i) I/ o~ ~ ~, then 

1 
4' (r162 = ~. - -  o~, (6.4) 

1 
the upper bound being attained only when ~ - -~  (mod 1). 

1 let n be the non-negative integer determined by (ii) I/ ~ 8'  

1 1 1 1 1 1 n '  + 3 5 (6.5) . '  + 1) '  + + 1) + g = 

Then 

l n, 1 , ~ 1 1 , 1 1 (6.6) 

(~ )2__ 1 , 1 1 1 , 3 5 (6.7) 

Moreover, the upper bound d:(a) is attained only when ~ -  ~n (rood 1), or when 

1 n~ 1 1 = ~  + ~ n §  and 2~t - -0  (modl ) .  

1 
Proof: (i) If ~ < ~  we choose, for any 4, an integer x o to satisfy [x o + ~t I < 1 - - ~ "  

Then 

1 The graph of ~b (~) for ~ ;> 0 is easily" seen to be a zig-zag line with peaks a t  the points 
1 1 1 

= - n  2 ~ - - n  ~- - ( n = 0 ,  1 . . . .  ). To determine the values of ~ for which ~(~) does net  exceed 
4 2 2 

some given number K, the reader may find it more convenient to draw the graph of ~ (~) in terms 
of ~ and consider its intersections with the line ~ (~) = K. 
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so that  

1 
(Xo + 2)~ - -  ~ -< ~ - -  ~, 

1 
(Xo + 2 ) ~ - - a >  - - a >  ~ - - ~ ,  

1 1 
I(% + ~)2 __ a [ -< ~ - -  a, ~b (a) ----- ~ - -  ~. (6.8) 

Clearly equality can 

1 
If in fact we have X - - ~  

1 
occur in (6.8) only if l% + 2[ = ~, so that  ~----- ~ (mod 1). 

(mod 1), then for any integer x 

either [ x + 2 [ = 1 - ~ ~ - - ~ ,  

3 9 1 or I~+~1_>~, I(~+ ~)~-~1_> ~ - ~ > ~ - ~ .  

1 
Hence 6 (~ )> - -~ - - a ,  and part  (i) of the theorem is proved. 

(ii) Suppose next that  for some n--> 0, 

ln2+~n 1 ~ 1 1 +~-<~< ~ + ~ .+  ~- (6.9) 

Then for any 2 we can choose an integer x o to satisfy 

1 1 
~ n - <  Iz0 + ~ 1 - < ~ ( n +  1). 

Then 
1 1 2 (%+~t)  2 - ~ - < ~ ( n + 1 )  ~ - a ~ a - ~ n ,  using (6.9); 

Hence 

1 2 

1 1 2 (a) < ~r - -  ~ n .  (6.10) 

1 1 
Clearly equality can arise in (6.10) only if I x o + 2 ] = ~ n ,  ).-----~n (rood 1); or if 

1 , 1 1 1 1 
~ = ~ n  + ~ n + ~  and [ X o + 2 [ =  + 1 ) ,  2 - -  ( n + l )  (modl ) .  

1 
If now in fact we have 2----~ n (rood 1), then for any integer x, 

18 -- 6 3 2 0 8 1  Acta mathematica. 87 
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either 1x+2  I= ln ,  [(x + 2)~--a] = a - - ~ n  z, 

1 1 1 
or I x + a l > - , ~ ( n §  I (x+2)  ~ - ~ l  > - ~ ( n + 2 ) ' - ~ > ~ - ~ . n ' ,  by (6.9), 

1 1 1 2 or (when n - ->2 ) [x+2 l - -<~(n - -2 ) ,  I ( x + 2 ) , - ~ l > ~ - ~ ( n - 2 ) , > ~ - ~ n .  

Thus in all cases, 

1. b. I(x + 2 ) , - ~ 1 - > ~ -  ~n,, (6.11) 

1 2  ln2" so that ~(a) >-- ~ - -  ~n , and therefore ~ (a) = ~ - -  

ln~ + 1 1 It may be similarly verified that (6.11) also holds when a = ~ ~ n + ~ and 

1 
2 ~ ( n +  1) (rood 1). 

(iii) Suppose finally that 

1 1 n2 3 5. (6.12) n~ + ~ n +  ~ <Gr + ~ n +  8 

For any 2 we can choose an integer x o to satisfy 

1 1 
~(~+ 1)-< Ix. + 21-< ~(~ + 2). 

Then 
1 1 

(x0+2) ~ - ~ > ~ ( n + l )  ~ - ~ > ~ - ~ ( n + 2 )  2, using (6.12); 

1 
(Xo + 2) z - ~ _< ~ (n + 2)~ - ~. 

Hence 
1 1 

I(x0+2) 2 - ~ 1  ~ < ~ ( n + 2 )  2 - ~ ,  ~(a) g ~ ( n + 2 )  2 - a .  (6.13) 

Equality can arise in (6.13) only if ]% + 21 = 1 ~(n + 2), i.e. if 2 ~  I n  (rood 1). 

If in fact we have 2 ~ ~ n (rood 1), then for any integer x, 

either Ix + 4[ = 1 (n + 2), 

1 
or Ix + 21 -> ~ (n + 4), 

1 or Ix+21-<~n, 

I(x + X)~ - ~1 = 1 ~ ( n  + 2 ) ~ -  ~,  

1 1 
I ( z  + a)~ - ~1 -> ~ (n + l)~ - ~ > i (n  + 2)'  - ~,  

l ( n + 2 )  z-or by (6.12). I (x + 2 ) ~ -  ~I -> ~ - n~ > 
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Thus in all cases 
1 

1.xb. I(x + 2)' - -  ~ ] >--- ~ (n + 2)' - -  a, 

1 1 
so tha t  ~ (~) >_ ~ (n + 2) 2 - -  ~, and therefore r (~) = ~ (n + 2) ~ - -  ~. 

We note tha t  Theorem H may be simply deduced from Theorem J, though we 

do not give the deduction here. 

7. A weaker form of Theorem t t  was used by Davenport  [1] to obtain an 

estimate for M (/) in terms of a value a assumed by ] (x, y) for coprime integers 

x, y; and Theorem H itself was applied by Varnavides [1] in the same way to 

deduce a correspondingly stronger estimate. We shall not  go into details of these 

results, bu t  we shall make frequent applications of Davenport 's  method. 

Let  / i  x , y ) = a x ' + b x y + c y  ~ be a real non-zero form, so tha t  a ~ 0 .  Then 

b ' D 
'](x,Y)[ = la'l (X + ~a Y) ---4-~a2Y I" 

If P = (x0, Y0) is any point, we have 

I( I/(u +xo, yo)l=la[ U +Xo + ~aYo --~a~Y$ ' 

from which we deduce at  once 

(~ M(/;P)<__ lale ~ a ~  �9 (7.1) 

As a corollary, we have 

T h e o r e m  K. Suppose that ]or some K > 0 the inequality 

~a ~ y ~ [ a-~[ 

holds /or a complete set o/ incongruent values o/ y (rood 1). Then M(/)~--K, and 
moreover M (/; P ) ~  K exce~at possiSly /or those points (i] any) /or which there is 
equality in (7.2) and also in the relevant equality clause o] Theorem J, where 

b 
~t -- x + ~ a  y" (7.3) 

I t  is sometimes possible to obtain the precise value of M (/) by using Theorem K.  

As Varnavides [1] has pointed out, Heinhold's results, [1], for norm-forms [m (X, y) 

1 
may be deduced very simply from Theorem K and the case B = ~  of Theorem H;  
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and these estimates are known 1 to be best possible for many general classes of forms 

/m (x, y). By applying the stronger Theorem J, we have been able to find simple 

proofs for the minima of some further classes of norm-forms. 

T h e o r e m  t .  Let 

where 

Then 

/m(x ,y)  = x 2 + xy  

m = (2n + I)~-- 4, 

M (/) 

and is attained only /or points 

§ 

m - -  1 y2 ,  

4 

n ~ 3 .  

n ~ +  n--1 
2 n + 3  

n + 2  n + l t .  
2 (~ n + ~)' ~-~! 

Proof: (i) Take / (x, y) = / m  (x, y), 

[ 2 K ] = n - - 1 ,  we have 

by Theorem It, provided that 

and let K = ( n  2 + n - 1 ) / ( 2 n + 3 ) .  Since 

(7.4) 

1 
4 y '  --<K + i ( n - -  1)', (7.5) 

and, by Theorem J, also, provided that 

1 1 2 1 2 ~(n+l)2--K<--~my <--K+~n.  (7.6) 

Substituting for K and m, (7.5) becomes 

and (7.6) becomes 

where 

n + l  l y l -  < ~, 
2 n +  

n + 2  
k n < l Y l - - ~ 2 n + 3 '  

2n a + 3 n  ~ §  7 
(2n + 3)2(2n - 1) 

1 
< ~, since n ~ 3. 

We may therefore replace (7.8) by the smaller range 

(7.7) 

(7.8) 

1 See INX~RX [3], pp .  17--26, where  a n  omis s ion  in  V a r n a v i d e s '  p roof  is a lso rect i f ied.  
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l__<lyl < n + 2  (7.9) 
2 - - 2 n + 3 "  

The intervals (7.7), (7.9) clearly include a complete set of incongruent values of y, 

so that by Theorem K, M(/)--< K, and M(/ ;  P ) ~  K except possibly when 

n + l  1 1 
Y------ • x+~y- -~ (n - -1 )  (modl) ,  

which gives the points stated in the Theorem. 

(if) I t  remains to show that M (/; P ) =  K where 

P =  + 2 ( 2 n + 3 ) '  2 n + 3 !  

For this we use Theorem B. 

The fundamental solution of the Pellian equation t ~ --mu 2 = 4 is clearly given 

by t = 2 n + 1, u = 1, giving the fundamental automorph 

�9 : (r  ~ 
n + l  

of / (x, y). 
M (/; P) < K, there exists a point (x, y) ~ • P with ] / (x, y) [ < K and 

y~ < K(t  + 2) n ~ + n - -  1 1 
D = ( 2 n + 1 )  3 - 4  < 4 '  

i.e. 

Now it is easily verified that T (P) ------ --  P. Hence by Theorem B, if 

i.e. 

g(u)=lu~+(n+l )u - -n~+n- -1  <K=n'+n--12n+3 (7.10) 

But it is easily seen that g(O)=g(--n--1)=K, and that g(u)>K for u ~ 0 ,  

- - n - - 1 .  Hence (7.10) cannot be satisfied, and so M(/; P)~--K. In view of (i) we 

now have M(/; P)= K, as required. 

T h e o r e m  2. Let 
fro(x, y) = 

Where 
m = (2n + 1)~--2, n_>2. 

1 
lyl< " 

Since /(x, y ) = / ( - - x , -  y), it follows that there is an integer u for which 

/ u § 2 4 7  2 n + 3 ]  < K ,  
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Then 

2 m  = n - -  I-- , 

and is attained only /or points 

p - -  + , -2-- �9 

Proof: (i) Take ](x, y) = 2x I + 2(2n  + 1)xy  + y~, which is equivalent to ~re(x, y) 

under the transformation (x, y) -+ ((2 n + 1)x + y, x). Write 

K ~ 8 n a + 6 n ' - - 6 n + 2 m  l = ( n - - ~ ) ( 1 - - 1 )  " 

Since [K] = n -  1, we have 

by Theorem H, provided that 

r (~ m y  2) _ ~ l (7.11) 

I (7.12) Imv'-< i(n-1)~ + ~K, 
and also, by Theorem J, provided that 

1 1 1 ~. 
~ ( n + l ) ~ - - ~ K < ~ t m y  

Substituting for K and m, (7.12) reduces to 

l y l - <  n(2n + 1}, 
m 

and (7.13) reduces to 

where 

1 (7.13) --< n 2 + ~ K. 

k n - < l v l - <  
2n 2 + 3n -- 1 

m 

1 
k ~ = l { ( n + l )  ~ - 2 K } < ~ ,  when n-->2. 

m 

(7.14) 

(7.15) 

Thus (7.15) may be replaced by 

1 2n  ~ + 3 n - -  1 n ( 2 n  + 1) 
- < [ y l - <  = 1 - �9 (7 .16)  

m m 

The intervals (7.14), (7.16) clearly include a complete set of incongruent values of y, 

so that by Theorem K, M (/)--< K; and M (/; P ) <  K except possibly when 

Y + n ( 2 n +  1) 1 1 1 ----- m , x +  ~ ( 2 n +  ) y - - ~ ( n - - 1 )  (mod 1), 

which gives the points stated in the theorem. 
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(ii) Returning to the form /~ (x, y), we have to show that M (tin; P ) =  K when 

1 

For this we use Theorem B, as in the proof of Theorem 1. The analysis is rather 

more complicated, since the bound provided by Theorem B is not an absolute con- 

stant, but depends on n. 

The fundamental solution of the Pellian equation t~--4mu ~= 4 is given by 
t = 8 n (n + 1), u = 2 n + 1, yielding the fundamental automorph 

[4n(n + l) m(2n + l)) 
T= ~ 2n + 1 4n(n + 1) 

of ]m (x, y). Now it is easily verified that T ( P ) -  P. Hence by Theorem B, if 

M (]~; P) < K, there exists a point (x, y) ----- P with I fm (x, y) I < K and 

so that crudely 

y ~ K ( t + 2 )  1(  ~ ) (  1 )  4 n 2 + 4 n + 1  
D = ~  n - -  1 .  4n z + 4 n  1' 

Since (x, y ) -  P, we may set 

1 y2 < ,~ n. (7.17) 

1 1 n 
x = u + ~ ,  y v + ~  m 

where u, v are integral, and then 

1 ~ + 1  

We subdivide the argument into two main cases, according as v--> 0 or v < 0. 

Suppose first that v >--0, and that 

1 (v + �9 u + , 2 1 ~ ( 2 n +  1 ) ~ )  

Then 

/m (x, Y) --> (2 n + l)5 v +  { ( 2 n +  v ~ - -  

( = 2  v +  + n ( 2 v + l ) - - - ~ >  1 - ~ + n -  mnz>n>K. 

If, however, 

11~(2  + 1)(v + ~ ) - - 1 ,  l u + ~  n 
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1 (v + - -  

=(n+l) (2v+l) - -2  v+~ - - l + - - -  
m 

For v = 0, (7.18) gives 
1 n 2 --/m(x,y)>--n--~ +--= K; 

m 

if v >--1, we write (7.18) in the form 

1 n 2 --[m (x, y) ~-- n(2v + 1) + v --  ~ - - 2 v  2 + - - ,  
m 

where by (7.17) 

Then 

( 1 ~). 1 

1 n 2 n 2 
--/m(x,y)~--n(2v+l)+v--~--n+-->---2n+ 1 + - - > K .  

m m 

(7 .is) 

Suppose next tha t  v - - < - - l .  Write v = - - w - - 1 ,  so that  w>---0 and 

1 2 + i  1 2 

If  now 

[u + ~l>--(2n+ l)(w + ~) + l, 
w e  have 

- t  n. /m(X,Y):> (2n + 1) w +  + 1 { ( 2 n +  1) 3 w 
m 

~2 

m 

( ~) n2 3 > 5 n2 
= ( n +  1 ) ( 2 w +  1 ) +  1 + 2  w+ - - - - n + - - - - - ~ K .  

m 2 m 

I f ,  however, 

then we have 

. .  
--/m(x,y)>----(2n+l) ~ w+~ + 1 ( 2 n + 1 ) 2 - - 2 }  w +  + n ( 2 w + l ) + - - m  

= ~ ( 2 w + 1 ) + - - - - 2  w +  �9 ( 7 . 1 9 )  
m 
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For w = 0, (7.19) gives 
1 n 8 -/m(x,y)>n-~ + - = g .  

m 

For w ~ 1, we have by (7.17) 

w+~ < w+5+ =y'<~n, 

and so, from (7.19), 

281 

T h e o r e m  3. I /  

then 

and is attained only /or points 

]21 (x,  y )  = x ~ -~ x y - -  5 y2, 

5 
M (/21) = ~'  

Proof:  Par t  (if) of the proof of Theorem 2, together with the fact tha t  

5 

shows that  M (/21" P) = 5 , ~ for the points P quoted in the enunciation. 

Making the transformation (x, y ) ~  (x + y, y), we have therefore to show tha t  

for the form 

/ ( x ,  y) = x 2 § 3 x y - - 3 y  ~ 

n 2 n 2 
- - / m ( x , y ) > n ( 2 w +  1 ) §  

m m 

In all cases, therefore, we have proved that  the inequality I/m (X, Y) I ~ K cannot 

(x, y) ~ P,  y2 < ~ n. This contradiction shows that  M (/m; P)  :> be satisfied with K. 

I t  now follows from (i) tha t  M (/m; P) = K, as required. 

For  the positive values of n excluded in Theorems 1 and 2, we note tha t  

1 
(i) Theorem 1 is false when n = 1, m = 5; Heinhold [1] gives in fact M (/~) = ~- 

The results are, however, valid for n = 2, m = 21, as we shall show in our next  

theorem. 

(if) Theorem 2 is true for n = 1, m = 7, but  it  is more convenient to deduce 

the result as a particular case of Theorem 5 below. 
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5 
M (/; P) < 

whonovorP +( 
Now 

[ / ( x , y ) ]=] (x+3  ~2 21 1 
, 

and so, applying Theorem J, we see that (7.20) holds if P = (x, y) satisfies 

1 5 1 5 7 5 
y 2 < ~ + ~ ,  or 4 21 < x ~ < ~  ' 

and therefore if 
3 l < l x [ < l  lYI< ' or 

(7.20) 

8. The proofs of Theorems 1, 2 and 3 above may serve as a model for many 

of the proofs which will be given in this and later sections. Although there may 

be considerable variation in detail, the basic pattern is as follows: 

(i) Taking K as the supposed value of M (/), we apply Theorem J to /(x, y) 
(or suitably chosen equivalent forms) and so find a set ~* of points P for which 

M (/; P) < K. 

Since M (]; P ) =  M (/; T(P)), it follows that any exceptional point must also satisfy 

l < x + 3 y <  1 - - ~  -- - ~ (mod 1). (7.22) 

But the only points satisfying (7.21) and (7.22) are 

1, 

which are congruent to the excluded points + - - ~ ,  �9 

Now the fundamental aut~morph of ] (x, y) is 

Any exceptional point P (i.e. a point for which (7.20) does not hold) must therefore 

lie (rood 1) in the region 
l < x < l  ' 3 4 

- -7- -  --7 7--<Y--<7-" (7.21) 
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(if) We call P an exceptional ~oint if it satisfies M(/ ;  P) -- K. Since M(/;  T(P)) = 

= M (/; P), it follows that an exceptional point cannot transform (rood 1) into the 

set ~* under any automorph T of /(x, y). 

Occasionally (as in Theorem 3 ) w e  need use this principle for a finite number 

only of transformations T in order to determine all the exceptional points. More 

often, however, we must use Theorems C or D, the transformation T of these 

theorems usually being taken as the fundamental automorph T O of /(x, y). 

(iii) When the set C of incongruent exceptional points has been found, it re- 

mains only to establish the value of M (/; P) for these points. If now C is finite, 

it may clearly be divided into subsets, each of which consists of a point and its 

transforms under powers of To; Theorem B may then be applied to each subset, 

precisely as in Theorems 1 and 2. 

The method fails if C is infinite. We shall meet this case only in Theorem 7, 

where we have to deal with a set {Tn(p)} (n = 0, 1, 2 , . . . ) a r i s ing  from an applica- 

tion of Theorem C. A modification of Theorem B proves to be sufficient, together 

with the fact that the set has a fixed point F of T as its limiting point. 

I t  is clear that the applications of Theorem J in (i) yield a set ~* which is 

strictly contained in a finite number of hyperbolic regions 

I](u + x, v + Y)I < g  (u, v integral). (8.1) 

Two obvious objections can therefore be made to the method outlined above. First, 

would not the use of the hyperbolic regions themselves, combined with (if) if ne- 

cessary, give a simpler proof of the result ? Secondly, what guarantee is there that 

a set ~*, obtained either from Theorem J or from consideration of a finite number 

of regions (8.1), is large enough to enable one to carry through part (if) of the 

method ? 

The answer to the second objection is provided by Theorem B. For suppose 

that Theorem B (iii) gives the bound [y] < C. Then if }~* is the part of the unit 

1 
square $ contained in the finite number of regions (8.1) with Ivl < c + 2, it follows 

that any point P either is exceptional or transforms into ~* (rood 1) under some 

power of the fundamental automorph T 0. In some cases, in fact, the set $ -  R* 

obtained in this way consists of a finite number of isolated points only, and then 

the use of automorphs is unnecessary; as examples, we may quote the proofs of 

M (]7) and M (hi) given by Inkeri [5]. 

However, it may be very difficult to specify the set ~* obtained from hyper- 
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bolie regions, particularly if the number of these is large. The use of Theorem J, 

which defines a set ~* by means of linear inequalities, is therefore preferable, in 

general, from the point of view of numerical detail. 

Thus the essential question is whether, by using Theorem J instead of con- 

sidering the regions (8.1), we are left with too large a set $ -  ~* to eliminate by 

applying the automorphs of ] (x, y). The answer to this question seems to depend 

mainly on the magnitude of the fundamental solution of the Pellian equation 

t 2 - - D u  2 = _ 4. If  this solution is large (in comparison with D), the set $ -  ~* 

must  be correspondingly small before the hypotheses of Theorems C or D can be 

satisfied, and the loss involved in using Theorem J may be too great. Clearly, also, 

par t  (ii) of the method will not  normally succeed if the set $ -  ~* contains fixed 

points of T O or - - T  o which are not  exceptional points; and the number of such 

fixed points is very large when t, u are large. 

In the proofs given below, in which the method outlined above is stfccessful, 

either the solution of the Pellian equation is fairly small (t being always less than 

2 D), or (as in Theorem 8) i t  is not  necessary to apply the fundamental automorph. 

Finally it  may be noted that ,  with an appropriate choice of the constant K, 

the above method may clearly be used to isolate the minimum M ( / )o r  to establish 

the value of M s (/), M a (/), . . .  However, the arithmetical details become very com- 

plicated if too small a value of K is chosen, and for this reason we investigate only 

first minima, except when the second minimum can be obtained without a great 

deal more trouble. 

T h e o r e m  ~. Let 

where 

Then 

/m (X, y )  = W ~ --- m yZ 

m = ( 2 n + l )  2 + 2 ,  n>---1. 

8 n  a + 6 n  2 + 6 n - - 1  2 n  2 + 1 
= n 2 m  M (/m) 2 m 

and is attained only /or points 

P-----+ ' - 2 +  m " 

Proof:  (i) Take / ( x ,  y) = x ~ + 2 (2n + 1 ) x y - - 2 y  ~, which is equivalent to/re(x,  y) 

under the transformation (x, y) -~ (x + (2 n :t- 1) y, y). Write 

8 n  a + 6 n  2 + 6 n - - 1  2 n  ~ + 1 
g ~ ~ n - - - -  

2 m  2 m  
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Since 

we have 

provided that 

I/(x, y)l = I{x + (2~ + 1)y}2-my2 I, 

M (/; P) < K 

(m yD < K. 

Clearly [2K] = 2 n -  1, so that (8.3) holds if 

1 (2 n -- 1) 2 m y 2 < K  + 

or if 

~(2~ + 1)2-K <my2<~  + ~(2 ~)2. 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

On substituting the value of K, (8.4) becomes 

l y l < ~ _ n +  1 
m 

Also, using the inequalities 

1 :), 
i ( 2 n + l ) 2 - - K < m  ~-- , n2+K>m 

(8.6) 

which may easily be verified for n ~ 1, we may replace (8.5) by the smaller region 

Next, since 

1 n _ ~ l y l < l  1 (8.7) 
2 m - 2  m 

(8.2) also holds if 

Since [K] = n -  1, (8.8) is true if 

1 2 = + I 

1 < ~ K .  (8.8) 

I 2 1 1 ~mx <-~K + ~ ( n - - 1 ) '  (8.9) 

or if 
1 1 1 1 1 2 
~(n + 1) 2 -  ~ g <  ~mx 2 < ~K+ ~n. (8.10) 

Using the inequality 

m { 2 K + ( n - - 1 )  ~ } >  2n 2 + n + l + 2 n + - - - - i  ' 

which con be easily verified for n--> 1, we may replace (8.9) by the smaller region 
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,( + n + l + - -  
1 \ 1 2 n + l  1 

2 n  + 1) 2 2m + m ( 2 n  + 1) 

Also (8.10) may be written as 

(2n ~ + n + 2)~ < m~x2 < m ( n  ~ + 2 n ) - - 2 n  ~ -  1 

1 
where the expression on the right is greater than ~m ~ for n >--2. 

we may replace (8.12) by  
2 n ~ + n + 2  1 

< [ x J  < 
m - - ,~*  

(8.n) 

(8.12) 

Thus for n >->- 2 

(8.13) 

(ii) If  n = l ,  m = l l ,  the results 

inequality gives only 
2 n ~ + n + 2  < l x l < - -  

m 
However, using the automorph 

of (i) hold as far as (8.12), but  this latter 

(8.13)' 
I1 

of / (x, y) = x 2 + 6 x y  - -  2 y2, it is easily shown that  (8.2) still holds for all points P 

satisfying (8.13). For, by (8.13)' and (8.6), we need consider only points satisfying 

V-~  ~ 7 15 
- - _ < x < l - - -  , 22 11 - -  ~--  ~ - - < Y - - < - - "  

These inequalities give at once 

1 3 x _ y _ i l <  4"13 

whence, by (8.6), U ( P ) =  (x, 3 x -  y) is not exceptional. 

(iii) We have therefore shown that,  for any n - - 1 ,  (8 .1)holds if P = (x, y) 

satisfies (8.6), (8.7), (8.11) or (8.13). Any exceptional point must  therefore lie (rood 1) 

in one of the six regions: 

I 1  2 n + l +  1 1 2 n - - 1  
m - - "  m ( 2 n  + l)  < X < - - 2  m 

~ 1  : " 

1 n + l < y < l  n 
2 m 2 m 

R2: 

1 2 n + l  1 1 2 n - - 1  
+ < x _ <  

2 m m ( 2 n  + 1) 2 m 

1 1 1 1 - - - - - < y <  + -  
2 m 2 m 
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1 2 n + l  1 1 
§ < x _  ~ 

2 m m(2n + 1) 2 

1 n 1 

and the images ~ ,  ~ ,  ~ of these in the origin. 

We now use the transformations 

U =  2 n + l  --  ' 

which are automorphs of [ (x, y) of finite order. 

(a) Suppose that P E ~1. Then we have 

1 n + 2  
( n - l )  + + - -  

m 

2 n - - 1  
m 

n + l  
m 

--2 ( 2 n +  1)~, 
1 ! 

1 3 n + 3  
< ( 2 n +  1)x - - y  ~ - ( n - 1 ) +  ~ + - - , m  

and so U (P) = (x, (2 n + l) x --  y) cannot be congruent to a point of any of the 

above six regions. Hence no point of }~1 is exceptional; by symmetry, no point of 

~ is exceptional. 

(b) Suppose next that P E R3. Then we have 

1 2 n - - 1  1 6 n + 7  1 
--(2n+3)+2 - -m ~- - - -x - -2 (2n+l )y<- - (2n+3)+~ +.--2m ( 2 n + l ) m '  

with equality on the left only if 

( x , y ) = ( ~  2 n - - 1  1 n + l )  
2 m  + m = P o .  (8.14) 

This inequality shows that V (P) = (--  x --  2 (2 n + 1) y, y) cannot be congruent to a 

point of ~2, ~ ,  ~a or ~ unless P = Po. Hence the only exceptional points of ~a 

and ~ are 4-P0. 

(c) Suppose finally that P E ~ .  Then we have 

1 1 1 2 n + 3  
n - - ~  + - < (2n + l ) x - - y < n - - ~  + 

m m 

so that U ( P ) =  (x, (2n + 1 )x - -y )  cannot be congruent to a point of ~ or ~ .  

Also, since U (Po) -~ Po, U (P) cannot be congruent to +_ Po. Hence no point of 

~ or ~ is exceptional. 

(iii) We have now shown that (8.2) holds for all P, except possibly when 

P ~ + Po. To complete the proof of the theorem, we have therefore only to show that 

M (/; Po) = g .  (8.15) 
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Now the fundamental automorph of ] (x, y) is 

( 1 2 ( 2 n + 1 )  )=--UV, 
T - -  2 n + l  2 ( 2 n + 1 ) 2 + 1  

corresponding to the solution t = 2 (2 n + 1)8 + 2, u = 2 n + 1 of t 8 --  4 m u s = 4. I t  is 

easily verified tha t  T (Po) -- - -  Po. 

If  now M (/; Po) < K, Theorem B shows that  there exists a solution of I/(x, y)]<= K 

with (x, y) -- _ P0 and 
y s < K ( t  + 2) 1 1 

D ~ K < ~ n ;  

and, since / (--x, --y) = / (x, y), we need consider only solutions with (x, y) ~ Po- 

But  it  may easily be shown that  I/(x, y ) l ~  K for all such points (x, y); we omit 

the details, since they are exactly parallel to those of Theorem 2 (ii). 

Thus M (/; Po) >- K. Since 

(~ 2 n - - 1  1 n +  1) 
/ 2m ' - - 2 +  m = - - K ,  

it  follows that  M (/; Po )=  K, as required. 

T h e o r e m  5. Let 

Then 
/ (x ,y)  = nx  8 + n x y - ( 2 n - 1 ) y  8, where n >--2. 

(2 n --  1) 8 
M (l) 9 n -- 4 ' 

and is attained only /or ~oints 

/ 2 n - - 1  

Proof: Set K = ( 2 n - - l )  8. 
9 n - - 4  

(i) We have 

( 1 ) ~ 9n-4 
[ /(x,y)]  = n  x +  ~y  4n  

I-Ienee 

either if 

or if 

9 n - -  

M (/; P) < K 

1 9 n - - 4  8\ K (2 n --  1) 8 
n (9 n --  4) 

n ( 9 n - - 4 )  x8 . 
4 (2 n - -  1) 8 

(8.16) 

(8.17) 
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( 2 n - - l )  2x~ <:2n---~--I = 9n-- ----4" 

1 
The r .h.s ,  of (8.17) lies between 

1 
less than ~. Theorem J now shows 

or if 

and so certainly if 

and ~, since n ~ 2 ,  and the r .h.s,  of (8.18) is 

that  these inequalities hold if 

9 n - - 4 y 2 <  ( 2 n - -  1) ~ 
4n  n ( 9 n - - 4 )  

1 2 n - - 1  n ( 9 n - - 4 )  ~ 2 n - - 1  
4 9 n - - 4 < 4 ( 2 n - - 1 )  ~x < 9 n--------4' 

4 n - - 2  2 n - - 1  1 
lyl < 9 n - Z ~ '  o r  9n--------4 < -< 

(ii) Any exceptional point P must therefore lie (rood 1) in the region R defined by 

Now 

ix 1 < 2 n - 1 4 ,  4 n - - 2 < y < 5 n - - 2 .  
9 n - -  9 n - - 4 - -  - - 9 n - - 4  

is an automorph of /(x, y), and if P = (x, y ) e  ~ we have 

2 n - - 1  2 n - - 1  
- -  --< x + y < 1 �9 ( 8 . 1 9 )  9 n - - 4  -- 9 n - - 4  

Hence U (P) can be congruent to a point of )~ only if there is equality on either 

side of (8.19), i.e. only if 

( x , y ) =  - - 9 n _  9 n - - 4 ]  or ~9--n--4 9 - ~ - 4 /  

(iii) The only possible exceptional points are therefore those congruent to - P  o, 

where 

We complete the proof of the theorem by  showing that  M ([; Po) = K. 

I t  is convenient to make the transformation: X = x, Y = x -  y, so that  

/ (x, y) = X ~ + (3 n - -  2) X Y  -- (2 n - -  1) y2 = F (X, Y), say, 
1 9  - -  6 3 2 0 8 1  Acta mathematica. 8 7  
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and Po becomes 
d 2 n - - 1  6 n - - 3 1  

Qo = (xo, I1o) = ~ ,  ~ I "  

The fundamental automorph of F (X, Y) is 

T = ( 2 3  6 n - -  

corresponding to the solution t = 9 n - -  2, u = 3 of t 2 - -  n (9 n - -  4) u 2 = 4. I t  is easily 

verified that  T (Qo) --- Qo. 

Suppose if possible that  M (F; Qo)~  K. Then, by Theorem B, there exists a 

solution of [ F (X, Y) [ < K with (X, Y) ~ Qo and 

K ( t  + 2) ( 2 n - -  1) z 9 n  
Y~ 

D 9 n - - 4  n ( g n - - 4 ) '  
i.e. 

6 n - - 3  
I YI < 9n------ ~ �9 

We need therefore consider only the values 

3 n - - l /  2 n - -  14, (u integral). 
(X ,  Y)  --- u + 9 n - -  9 n - - 4 !  

Then 

F ( X , Y ) =  u 4 ( 9 n - - 4 )  ' 

and it is easily seen that  
n ( 3 n - - 1 )  ~ 1 

mm IF (x, r ) ]  4 (9 n - 4) ~ (n - 1)' = K. (8.2o) 

This contradiction shows that  M (F; Qo) ~ K;  and from (8.20) we see that  there- 

fore M (F; Qo) -~ K. 

The form [(x, y) = n x  2 + n x y - -  (2n + 1)y 2 (n ~ 2) may be treated by exactly 

the same argument as that  used in Theorem 5, taking now K (2n + 1) 2 Parts  
9 n + 4  

(i) and (ii) of the proof of Theorem 5 go through, with only changes of sign required, 

to show that  M (/; P ) ~  K except possibly for P - ~  • Po, where 

[ 2 n + l ,  4 n + 2 4 )  
Po = ~ 9 n + 4  - - 9 n +  " 

However, the proof that  M(/ ;  Po)= K breaks down if n ~  4; the result is in fact 

not true if n = 2, 3 or 4. 
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We therefore state without proof: 

T h e o r e m  6. Let 

/ ( x , y ) = n x 2 + n x y - - ( 2 n +  l ) y  2, n>_5. 
Then 

(2 n + ! )  s 
M ( / ) =  9 n + 4  ' 

and is attained only /or points 
/ 2 n + l  4 n + ~ )  

P ~ - +  ~ 9 n + 4 '  - - 9 n +  " 

291 

We may note that  the values n = 2, 3 g ive / (x ,  y)equivalent  to the norm-forms 

/11 (x, y) = x 2 --  11 y2, 

/93 (x, y) = x 2 + x y - -  23 y~, 

respectively. The first of these has been dealt with in Theorem 4 (the particular 

case n = 1), and the second will be considered in Theorem 10 below. If  n = 4, 

/ (x, y) = 4 x 2 + 4 x y --  9 y~, and it may be proved tha t  

79 (2 n + 1) ~ 81 
M (/) = ~-~ < 9 n-----~4 49 

In each of these cases, though the value of the minimum is less than that  

given by Theorem 6, it is in fact taken at  the points quoted in the theorem and 

at  no others. 

9. As a final example of a general class of norm-forms /m (x, y}, we shall con- 

sider the forms 
1 

/m (x, y) = x ~ + x y  ~ (m --  1) y~ (9.1) 

with 
m = ( 2 n + l )  ~ + 4 ,  n > - - l .  (9.2} 

These are the only non-zero forms known to us for which the inhomogeneous 

minimum M(/ )  is unattained. The "particular case n = 1, m = 13 has been investi- 

gated by Inkeri ! [4], who proves, using the technique of Davenport [1], tha t  

M (/13) = 3 and is unattained. He also states that  M (/la; P) -~ for all points P 

1 4 
at  which M (/is; P ) ~ ;  so tha t  in our notation M 2 (/la)<=T3" 

1 We are grateful  to  Professor  L. J .  I~IORDELL for br inging INXERfS resul ts  to  our  notice. An  

1 
announcemen t  t h a t  M 0Fla) ~ 3 '  and  is una t ta ined ,  is made  in the  final footnote  of INKISRI [3]. 
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4 
We shall show that  in fact M z (/xa)= 13 '  and that  entirely analogous results 

hold for the general form (9.1), (9.2). The first part of the proof (Lemmr 3), in 

which Theorem C plays a fundamental role, goes through generally for n--> 3, and a 

slight modification deals with the cases n = 1 and 2. The final investigation of the 

minima at the exceptional points (Lemmas 4, 5, 6) is valid for all n >--1. 

The complete theorem is most conveniently stated in terms of the form ] (x, y) = 

= # + (2 n + 1) xy  --  y~, which is equivalent t o / ~  (x, y) and has an obvious symmetry. 

T h e o r e m  7. 

] ( x , y ) = x  2 + ( 2 n +  1) x y - - y 2 ,  n-->l .  (9.3) 
Then 

2na + n2 + 2 n - - 1  2na + na + 2 n - - 1  
= , (9.4) (i) M ( ] ; P )  < 4 n ~ + 4 n + 5  m 

except when P is congruent to a point o/ one o/ the /ollowino three sets: 

CI: - 2n + - ' 

) C2: +- ( 2 # + n + 1  2 n ~ + n + 3 ) m  ' m ' -+ ( 2 n ~ + n + 3 m  ' 2n2+n+l -m ; 

(~ 1 )~P0 (10 --~)  (~ 1 ) t' 
Cs: -+ 2 n + l  ' -+ 2 n + l  Po, 

where k is any integer and 

Po 2l~m' 2n + l + (2n + l) Vm ' 

(ii) For these exceptional points we have 

n 2 

M ( I ; P )  2 n +  1 M (I) il P e Ct or P e C 3 ,  

M (1; e )  = 
2n  a + n ~ + 2 n - -  1 

m 
= M, (/) i ] P  E Cz; 

and i] P e Cs the minimum M (I; P ) =  M (]) is unattained. 

Lomxna 3. Apart ]rom the exceptional points quoted, (9.4) holds /or all n >--1. 

2na + n ~ +  2 n - - 1  
Proof: ' Set K = 

m 

(i) We have 



The Inhomogeneous Minima of Binary Quadratic Forms. 293 

I t / (~ ,y ) l=  ~ + ~ ( 2 . + 1 ) y  - ~ y ' ,  

so that  (9.4) certainly holds if 

1 2 
(9.6) 

Clearly [2K] = n -  1, so that  by Theorems H and J (9.6) holds if 

or if 

1 2 1 ~ m y  < K +  ~ ( n - -  1)' 

l ( n  + 1 ) ~ _ K <  1 ~ 1 ~my < ~ n  + K, 

and these inequalities simplify respectively to 

and 
2 n 2 + n + 3  

m 

, , [ Y l < 2 n  2 + n + 1  (9.7) 
~b 

- -  < lyJ < ~ V(4,~, + 12n 3 + 9n, + s n -  4). (9.8) 

1 
(ii) If now n >--3, the r .h.s ,  of (9.8) is greater than ~. Then (9.7) and (9.8) 

show that  any exceptional point must  satisfy 

2n  ~ + n + l _ < [ y [ < 2 n  2 + n + 3  ( m o d l ) ;  (9.9) 
m m 

and s ince/(x~ y ) = / ( - - y ,  z), it follows that  also 

2n  2 + n + l _ _ _ ] x [ _ < 2 n  ~ + n + 3  (mod l ) .  (9.10) 
m m 

This result is also true for n = 1, 2 as we now show. 

(a) I f  n = I, m = 13, (9.7) is 
4 l y l < ~ ,  

and the interval (9.8) no longer exists. Thus exceptional points must satisfy 

4 < I~I, lyl -< 1 (rood 1). 
1~-  '~ (9.11) 

We now use the fundamental automorph 
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of /(x,  y) for n = 1. For points P. = (x, y) satisfying 

4 9 6 

we have 
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7 
- -  < x < < y < , (9 .12)  
13- -  - - ' i '3 '  "i3 i 3  

22  30  
l--g < z  + 3y < i g ,  

i.eo 

4 (9.13) I~+ 3y -21<  l-g. 

Since T (P) = (y, x + 3 y), (9.13) shows tha t  T (P) does not satisfy (9.11) and so is 

not exceptional. Hence no exceptional point lies in the region defined by (9.12). 

By symmetry, it  follows tha t  no exceptional point lies in the region 

6 7 

1--~ < x < ]-~, 

Thus (9.11) may be strengthened to 

• 

w h i c h  is (9.9) and (9.10) exactly. 

(b) If  n = 2, m = 29, (9.7) and (9.8) are 

11 
]Yl<2~ 

and 
13 V2o8 
2-~ < l y l  < -SV 

We now use the fundamental automorph 

4 9 
_~ y --~ ~ -  (9.14) 

(rood 1), 

1 
<2"  

For points P = (x, y) satisfying 

11 18 - - < x _ <  
29 - ~ '  29 

V2-~ (9.15) 
- - - - < y - - < l - -  2 ~ '  

of ](x, y) for n = 2. 

we find as in (a) above 
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7 6 -  5 V 5 0 8  4 
I x + 5 y - 3 1 <  < 

- -  29  ~ '  

so tha t  T (P) = (y, x + 5 y) is not  exceptional; and by  symmet ry  no point of the 

region obtained from (9.15) by  interchanging x, y can be exceptional either. Thus all 

exceptional points must  satisfy 

11 < I~l, lyl < 1~ 
2-9 - -  - -  ~-~ (mod 1), 

which is precisely (9.9) and (9.10). 

(iii) We have now shown tha t  for n ~ 1 any exceptional point mus t  be con- 

gruent to a point of one of the four regions 

2 n 2 + n + l  2 n 2 + n + 3  2 n ~ + n + l  2 n ~ + n + 3  
~ :  ~ x_< , ~ y ~  ; 

m m m m 

2 n  ~ + n +  1 2.n ~ + n + 3  2 n  2 + n +  1 2 n  2 + n + 3  
~2:  --< - - x  ~ , < y < ; 

m m m m 

2 n  2 + n +  1 2 n  ~ + n + 3  2 n  2 + n +  1 2 n  ~ + n + 3  ~ :  ~ - - x  --< , <-- - - y  - -  
m m m m 

2 n Z + n + l  2 n ~ + n + 3  2 n Z + n + l  2 n ~ + n + 3  
~ :  _< x< :  , ~ - - y  _< 

m m m m 

We now use the automorphs 

of / (x ,  y). U is of finite order, while 

clear tha t  

1,) 
T is the fundamental  automorph.  

~t~ 2 = U (~1),  ~:~ = U2 (~1),  ~2  = U s  (~1),  U4 = I .  

I t  is 

(9.16) 

(a) Let  now P = (x, y) be any exceptional point of ~1. Then 

2 n 2 - - n  + 2 
- - x  + ( 2 n  + 1)y- -n<--  

m m 

2 n ~ + 3 n + 6  

Since T (P) = (g, z + (2 n + 1) y) is congruent to a point of one of the four regions, 

we see tha t  either 
T (P) + (0, - -  n) e }~, (9.17) 

or  

T (P) + (0, - -  n - -  1) e ~ .  (9.18) 
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(b) Consider now T -1 (P) = (-- (2 n + 1) x + y, x). Since 

2 n ~ - - n - - 2  2 n  z + n + 3 
--< - -  (2n  + 1 )x  + y + . - -< 1 , (9.19) 

where we have equality on the right only for the one point 

~ 2 n 2 + n + l  2n  2 + n + 3 ~  
(~, Y) , , (9.20) / m ~y~ 

i t  follows from (9.19) tha t  except for the point (9.20) we have 

T -1 (P) + (n, 0) E ~1. (9.21) 

(c) The point, (9.20) and the points obtained from it by powers of U are pre- 

cisely the set Cz. We exclude them from consideration for the rest of this proof, 

so tha t  (9.21) holds for all exceptional points in ~1. The fixed point which satisfies 

T -1 (F)  + (n, 0) = F 
is 

Theorem C now shows tha t  any exceptional point of ~1 lies on the line 

n ( n ) (9.23) 
Y 2 n + l  ~ x 2 n + l  

through F, where 

1 1 
= ~ [2n  + 1 + V i ( 2 n  + 1) 2 + 4}] = ~ (2n  + 1 + ]/m). (9.24) 

By applying powers of U to (9.24) we obtain the lines on which exceptional 

points of ~2, ~ ,  ~ must lie. In particular, the exceptional points of ~2 lie on 

x 2 n + l  ~ y + " (9.25) 

(d) We now go back to the results found in (a). If  of the two alternatives 

(9.17) and (9.18), (9.17) holds for P, T (P), T 2 (P) . . . . .  then it follows from (9.17), 

(9.21) and Theorem D tha t  P is the fixed point F of (9.22). The points obtained 

from F under powers of U are precisely the set C1. 

If, however, (9.18) holds for some exceptional point P e ~1, then from (c), P -- (x, y) 

lies on the line (9.23) and T (P) + (0, - -  n --  1) = (y, x + (2 n + 1) y --  n - -  1) lies on 

the line (9.25). This gives two equations for P, whose solution is easily found to 

be the point P0 of (9.5). 
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This proves the Lemma, and we have only to establish the values of M (]; P)  

at the exceptional points. This we do by Theorem B, or a modification of it. 

Lemma 4. I/ P E Ct, then 
n 2 

M (]; P)  = 2 n + 1" (9.26) 

Proof:  As appeared in the proof of Lemma 3, the points of C1 are all fixed 

points of T, and are equivalent under powers of U, so that  it is sufficient to prove 

{9.26) for the point F of (9.22). Now 

' 2 n +  1' 
so that  

n $ 
M (1; F) _< 2 n + 1" (9.27) 

Suppose if possible that  there is strict inequality in (9.27). Then by Theorem B 

there is a solution of 
n 2 

I/(x, < 2 n  +----i 
with (x, y) --  F and 

i.e. 

and this is clearly impossible. 

n 2 u s n 2 1 

2 n §  t 2 n + l  2 n + l '  

n 

lyl<2n +---i; 

L e m m a  5. I] P E C~, then 

M (] ;P)  = K = 
2 n a + n  ~ + 2 n - - 1  

m 

Proof:  The points of C~ are permuted (mod 1) by T, and therefore give the 

same value of M (/; P). Since 

m m 

it follows that  

M (]; P) --~ K. (9.28) 

Suppose that  there is inequality in (9.28). Then by Theorem B there is a solution 

of [[ ix, y) l <  K with (x, y) congruent to a point of C~ and 
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K u  2 K y2 < _ _  
t 2 n + l  

I t  is easily verified that  this gives a ]ortiori 

2 n * + n + 3  
l y l <  

m 

Since /(x, y ) = / ( - - x , -  y), it follows that  there is a solution of 

J / ( u  2 n 2 + n + 3 m  ' 2 n * + n + l ) ] m  < K  

with integral u. But 

/(u 2 n * + n + 3  2 n s + n +  1) 
m m 

u(u + n - -  1) - -K ,  

1 
and since K < ~ n, the least value of I/I is given by u = O, 1 - -  n, I/I = K, which 

contradicts the assumption above and so proves the Lemma. 

I ~ m m a  6. I! P ~ C3, then 
n2 

M ( / ; P )  = 2 n +  1" (9.29) 

However, this lower bound M (!; P) is not attained /or amy ~oint P o/ the set. 

P r o o f :  From the construction of the set C3 in terms of automorphs of /(x, y), 

all points of Ca give the same value of M (/; P). Further, from the final clause of 

Theorem C we see that  the fixed points C, are limiting points of Ca. Hence from 
Lemma 4 and Theorem F, 

n 2 

2 n +----1' for P E Ca. (9.30) M (1; P) _< M (1; Q) 

We next prove that  the inequality 

n 2 

/ (x, y) >--/2 (9.31) 
n + l  

holds for all (x, y) congruent to a point of C8. For suppose not. Then for some 
n z 

number C < 2n +-----1 and some (x, y) congruent to a point of C3, we have 

n ~ 

I/(~, y) l < v < 2 n +----5" (9.32) 
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Since T permutes the points of Ca (mod 1), the argument of Theorem B shows that 

if Y is the lower bound of values of l Yl such that, for some x, (x, y) is congruent 

to a point of Ca and satisfies (9.32), then 

Gu ~ C n ~ y2_< _ _  < 
t 2 n + 1  ( 2 n + l )  a' 

whence 
n 

Y < 2 n +------]" (9.33) 

But this is impossible, since it is easily verified that 

n 

lyl > 2n +------ i 

for all points of C3; thus, for example, each point T ~ (Po) (k--< 0) is congruent to a 

point on the segment F P o of the line (9.23). 

This establishes (9.31) and therefore (9.29). It  remains only to show that there 

cannot be equality in (9.31). From the formation of C3, if this were possible, it 

would be possible with (x, y ) -  Po. But if we write 

1 1 n 2 
x = u + ~ - - 2 V  m' Y=V+ 2n+------l +(2n+l)~m'  

then 

m 4 n + 2  v +  

which is clearly irrational for integral values of u, v. 

Theorem 7 now follows at once from Lemmas 3-6, on noting that 

n a 2 n a + n a + 2 n - -  1 - - > K =  
2 n + 1  m 

10. The general classes of norm-forms /m (x, y) discussed in the preceding three 

sections include, many forms of small discriminant for which the value of M (fro)was 

not previously known. 

As we remarked above, general estimates for M (]) have been given by various 

authors, and these have been shown to be precise for many forms /~ (x, y); while 

certain other values of m have been examined in detail. If we combine the results 

above with those of Heinhold [1] 1, we find that the value of M(],,) is now known 

for all m--< 101 except the following: 

1 Note  however  t h a t  there are some omissions and  inaccuracies in Heinhold ' s  table  (namely 

for m ~ 23, 34, 43, 55 and  82) as has  been po in ted  ou t  by  INKERI [3]. 
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]~ (x, y )  = x ~ -  m y  z, m = 19; 22, 31, 43, 46, 58, 59, 67, 70, 71, 86, 94; (10.1) 

1 
/ , ,  (x, y )  = x s + x y  - -  ~ ( m  - -  1) yS, m = 33, 41, 57, 61, 73, 89, 93, 97. (10.2) 

We have also obtained the values of M (/m) for most - -  though not  all - -  of 

the forms (10.1)~ (10.2). They can be proved by the technique developed above 

(described at  the beginning of w 8), combined in some of the more difficult cases 

with a direct consideration of hyperbolic regions [ /(x + xo, Y + Yo) [ < K. We give 

as specimens the cases m = 31, 41, 93 and (in the next  section) 61. 

45 
Theorem 8. I /  ]m (x, y)  = / a l  (x, y)  = x ~ - -  31 y~, then M (/al) = - ~  and  i s  a t ta ined 

on ly  /or  Iaoints P ~ O, • - ~  �9 

Proof:  We use the equivalent form 

](x,  y) = 5 x  ~- + 2 x y - -  6yS 

which is obtained from fal (x, y) by the transformation (x, y) -~ (6 x - -  5 y, x - -  y). The 

exceptional points of the Theorem now become • , --~-~ �9 

1 2 31 1 2 x ~], 
+ gg 

so that  M (/; P ) <  45 if either 

/31 s~ 15 /31 ~ 9 
o r  

By Theorem J,  these inequalities are equivalent to 

1 15 31 2 15 3 1 y S ~  9 
~ - - 6 - ~ < ~ x  <~-~ and ~-~ ~-~, 

which are implied by  the stronger 

3 1 15 
3 <Ixl-< lyl < 3--i-" 

(ii) Any exceptional point is therefore congruent to a point of the region 

3 < x _ < 0 ,  15 16 
~ :  31 3-1 < Y--~ 

or to a point of R', its image in the origin. 
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I t  is easily verified by partial differentiation that  / (x  + 2, y - - 2 )  is a strictly 

increasing function of x and y in ~, so that  

31 / ~ - ~ , - - ~ -  < 1 @ + 2 ,  y - - 2 ) < /  2 , - - - ~  < - ~ ,  

with equality at  the lower end only for (x, y) = --~-~, ~-~ �9 Thus this point is the 

only possible exceptional point of ~. 

(iii) I t  only remains to prove that  

( 3  15) 45 
M l;gi,  - -3 i  = ~ "  (10.3I 

Now 

t u+g i,v--fff =5u2+2uv--6v2+6v--~, 

so that  (10.3) holds unless we can find integers u, v for which 

5 u 2 + 2 u v - - 6 v ~ + 6 v = l  or 2. 

The second alternative is clearly impossible, by considering congruences modulo 4. 

The first gives 
31 (5 u + v) ~ - -  (31 v - -  15) ~ = - -  70, 

which is also impossible since 31 is a quadratic non-residue of 7. 

23 
T h e o r e m  9. 1/ /m (x, y) = hi (x, y) = x 2 + xy -- 10 y2, then M (t41) = and is 

attained only /or points congruent t o + _ ( 5 '  :---6)' +_ ( ~ ' - ~ ) "  

Proof: We use the equivalent form 

](x,y) = 2x ~ + 5 x y - 2 y  ~ 

which is obtained from ]41 (x, y) by the transformation (x, y)-+ (3 x + 8 y, x + 3 y). 

and so 

if 

(i) We have 
5 ]/(x,Y)I= 2] (x + ~Y)2--41y2 

23 
M (/; P) < 3-2 (10.4) 

41 ) 23 
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41 y2 < 23 
1-6 ~ '  

I u l -< 0"3744. 

By the obvious symmetry properties of /(x,  y), (10.4) also holds if 

In the same way, since 

(10.4) holds if 

(lO.5) 

I~l -~ 0.3744. (10.6) 

and hence by Theorem J if 

and so certainly if 

x+ 1---~y)2--4---~ (x+ 3y)~l, 

31 
32 

(x + 3 y)~ < ~ ,  

4-41(x + 3y)~ < 4+321 23 

Ix + 3y[--<0"3074. (10.7) 

By symmetry,  (10.4) also holds if 

13 x - -  Y l -< 0"3074. (10.8) 

(ii) By (10.5) and (10.6), any exceptional points must be congruent to a point 

of the region 
}~: 0"3744 < x, y < 0"6256. 

For points of }~ we have 

1"4976 < x + 3 y < 2"5024, 0"4976 < 3 x - -  y < 1"5024. 

Thus in view of (10.7) and (10.8), any exceptional points in }~ must satisfy 

x + 3 y < l " 6 9 2 6  or x + 3 y > 2 " 3 0 7 4 ,  
and 

3 x - - y < 0 " 6 9 2 6  or 3x--y>1"3074. 
This leaves us with four regions ~i ,  ~2, Ra, }~4, in one of which any exceptional 

point of R must lie. R1 is defined by 

x > 0"3744, y > 0"3744, x + 3 y < 1"6926, 3 x - -  y < 0"6926. (10.9) 

/~2, ~a and ~4 may be obtained from }~1 by applying powers of the trivial auto- 

morph U (x, y) = (y, - -  x). 
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The inequalities (10.9) give easily, in RI: 

0"3744 ~ x ~ 0"3771, 0"4306 ~ y ~ 0"4394. (10.10) 

Applying the transformation U, we have also 

in R~: 0"4306 ~ x ~ 0"4394, 0"6229 ~ y ~ 0"6256; (10.11) 

in R3: 0"6229 ~ x ~ 0"6256, 0"5606 ~ y ~ 0"5694; (10.12) 

and in R4:0"5606 ~ x ~ 0"5694, 0"3744 ~ y ~ 0"3771. (10.13) 

(iii) We now use the fundamental automorph 

( 9 . 0 )  
T = 20 57 

of /(x, y), obtained from the fundamental solution t = 64, u = 10 of the Pellian 

equation t ~ --  41 u 2 = --  4. 

If P = (x, y) is an exceptional point of RI, then from (10.10), 

11"2328 < 7 x + 20 y < 11"4277, 

32"0322 < 20 x + 57 y < 32"5878, 

4"4122 < 20 x - -  7 y < 4"5278. 

Since T(P) and T -1 (P) are exceptional points, the above inequalities show in view 

of (10.10)-(10.13): 
T (P) - -  (11, 32) e R~, 

and 
T -1 (P) E R~ (mod 1). 

From Theorem D, the only exceptional point of R1 is therefore given by 

T (F) -- (11, 32) = F, 
i.e. 

Applying powers of the transformation U, we now see that  the only possible 

exceptional points of R are 

•  and _ _ + ( 7 , - - 8 ) ,  

which correspond to the points cited in the statement of the Theorem. 

(iv) I t  remains only to establish the value of the minimum at the exceptional 

points. Since they can all be obtained by applying powers of U to any one of 
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them, we need only consider one. Reverting to the original form, we need thus 

only show 

( M 1,1; ]-~' = ~-~- (10.14) 

Now 
23 

so that  if (10.14) is false, by Theorem B there is a solution of 

with (x, y) ~- + ( 5  , 5 )  and 

23 
11,1 (~, y) l < 3-~ 

23 u ~ 575 
Y~ < 3--2" - / =  512" 

This last inequality shows that we need only consider the values 

and 

If (10.15) holds, 

5 5 
-- ~ + ] ~ '  Y = ]-d' (10.15) 

5 11 
x = u + T6' y 16 (10.16) 

15 25 
t,1 (x, y) = u~ + ~ ~ -  ~ ,  

23 
and the least value of 1/41 (x, Y)I is ~-~, attained at u = - -1 .  

1 155 
h i  (x, y) = u" - ]-d " -  - ~ '  

If (10.16) holds, 

23 
and the least value of I[~1 (x, Y) I is ~-~, attained at u = -  2. 

These results together establish (10.14) and hence the Theorem. 

44 
T h e o r e m  t0 .  I /  /m (x, y) = ]ga (x, y) = x 2 + x y - -  23y 2, then M(/ga ) = - ~  and is 

attained only at points congruent to ++_ , - - - ~  �9 

P r o o f :  We use the equivalent form 

/ ( x , y )  = x 2 + 9 x y - - 3 y ~ ,  
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which is equivalent to /93 (x, y) under the transformation (x, y) --> (x + 4 y, y). The 

_I14' ~10) exceptional points become _ i~-~ �9 

(i) We have 
3 ~ 31 

so that 
44 

M (1; P) < ~ (10.17) 

if 

By Theorem J, these hold respectively if 

and 

31 ~ 44 
i ~  x <~ 49 44 31 x~ 1 44 269 

or ~-~ = 1 --  ~-~ < ]~ < 4 + 9 3  372' 

93 44 75 80 44 ~ 9 44 455 
4 - Y ~ < 1 + 3 1  31 or ~ = 4 - - ~ - ~ <  y ~ < ~ + 3 - ~ = 1 2 4 ;  

and so a [ortiori (10.17) holds if 

or if 

i x [ < 1 3 . 2 6  14 1 -- 1 ~  or ~ - ~ < l x l ~  < 2' (10.18) 

10 1 0 . 3 3  < ]y] < 1 2 . 3 1  (10.19) 
lUl < ~ or 3----T-- --  3---T-" 

(ii) Automorphs (of finite order) of /(x, y) are 

 :(10 ?) ?) 
Suppose now that P = (x, y) satisfies 

Then 

13-26 14 10 18.69 12.31 
-3---1-<x--<3-1 ' 3 - 1 < Y <  3--~ - = 1 -  3 ~  (10.20) 

21.09 32 
3 ~  < 3 x - - y - - < ~ ,  

so that in view of (10.19), V(P)  and therefore P cannot be exceptional. Combining 

this, and its image, with (10A8) and (10.19), we see that any exceptional point 

must be congruent to a point of 
2 0  - -  6 3 2 0 8 1  Acta mathematica. 8 7  
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13.26 14 10.33 10 
~: 3----i--- < x < 3-1 ' 3 ~  <Y--< -- 3-1-' (10.21) 

or of ~', its image in the origin. 
Suppose now that P =  (x, y) is an exceptional point of ~. Then from (10.21), 

14 17.71 
- -  < - -  x - -  9 y - -  2 < 3---I-- (10.22) 
31 

By consideration of the y-coordinate, it is impossible to have U(P)e}T (mod 1); 
and from (10.22) and (10.21), we can only have U (P) E ~ (rood 1) if there is equality 

on the left in (10.22), i.e. for the point ~ '  --3i-  " Thus the only possible excep- 

tional points are those named above. 

(iii) It  remains only to show that 
44 

M (/; P) = gi- (10.23) 

[ 1 4 ,  
when P = [ ~ -  - - - ~ ) .  

and T (P) ------- - -  P. Since 

Now the fundamental automorph of /(x, y) is 

I14, 10) 44 

31' 
44 

Theorem B now shows that (10.23) holds unless there exists a solution of 1/(x, Y) I < ~  

with (x, y) =--- _+ P and 
44 t + 2  44 

Y~<31 --D- = 9~" 

Since ] (x, y )=  ] (--x,--y),  we need only examine the sets 

14 10) (~, y) = u + ~ , - ~  , 

( 1 4 2 1 )  
(~, y) = u + ~ i ,  ~ f  �9 

But if (10.24) holds, 

I/(z,y)l = (u--l)~--~i- > ~ ,  

and if (10.25) holds, 
[(  ~) '  113243 j [49 l ~ a  I 49 

I I (~ ,y ) l - -  u +  - -  > . . . .  - -  4 31 

(10.24) 

(10.25) 

This contradiction proves the Theorem. 
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11. We next consider the form 

/61 (x, y )  = x ~ + x y  ~ 15 y2. 

This form has occupied the attention of several writers ~, mainly in connection with 

the problem of the Euclidean Algorithm (el. w 2). R4dei [1] was the first to prove 

that  k (V6-1) is not Euclidean, by finding (in our notation) a rational point P 

for which 

(/el; P) = ~ > 1. (11.1) M 

He also stated ([1], p. 601, footnote) that  for every rational point either (11.1)holds 
41 

or else M (]el; P ) <  1; and on this basis Inkeri [3] conjectured that  M (/el)= 3-9" 

Both the statement and the conjecture are false, as we shall now show; the 
4 1 .  

constant ~-~ is in fact the second minimum. 

then 

T h e o r e m  t t .  I ]  

/m (x, y) = ]ex (x, y) = x z + x y - -  15y ~, 

1611 41 
M (/el) = 1-~-5' M2 (/el) = 3 - 9 "  

(11.2) 

Moreover, M (/ei) is attained only at points conaruent to 

(3_605 132~ (3~5 134~. 
-+ ' - -  3051 or +_- ' - -  -3-~1' (11.3) 

and the only rational points at which M e (~el) is attained are those congruent to 

(11.4) 

Proof: We use the equivalent form 

/ ( x , y )  = 3 x  ~ + 5 x y - -  3 y  ~, 

which is obtained from ]el (x, y) by the transformation (x, y) -> (7 x -- 3 y, 2 x -- y). 

The points (11.3), (11.4) become respectively 

/148, 141~ /141 148], (ll.5) 
- ~,3--~ --3-65! and • ~ - ~ ,  3-0--5l 

and  1819) (19 18) ,116, 
_+ ~--~ ~-~ and + ~-9, --~-~ �9 

x See R~.D~.I [1], HUA and StIx- [1], INFd~X [2]. 
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(i) 

so that  

if 

We have 
5 2 I 

41 
M (/; P) <-~  

(61) 41 

(11.7) 

(11.8) 

By Theorem J, this is equivalent to 

61 ~ 41 

so that  (11.7) holds a /ortiori if 

lyl < 0"4547, 
or by symmetry if 

<- 0"4547. 

Thus any exceptional point is congruent to a point of the region 

~:  0"4547 < x ,  y<0"5453.  

(ii) We now use the automorphs 

(11.9) 

where T is the fundamental automorph corresponding to the solution t = 39, u = 5 

of t 2 - 6 1 u  s = - 4 .  

Let  P = (x, y) be any exceptional point of R. Using (11.9), we find tha t  

10"0034 < 7 x + 15 y < 11"9966, (11.10) 

3 " 0 0 3 4 < 1 5 x - -  7 y <  4"9966. (11.11) 

Since T (P) is exceptional, we must have either 

10"4547 < 7 x + 15 y < 10"5453, 
o r  

11"4547 < 7 x + 15 y < 11"5453, 

(11.12) 

(11.13) 

by (11.10) and (11.9); 

must have either 

o r  

and since T-'(P) is exceptional, by (11.11) and (11.9) we 

3"4547 < 15x --  7 y < 3"5453, (11.14) 

4"4547 < 15 x - -  7 y < 4"5453. (11.15) 
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These last four inequalities enable us to specify four incongruent regions 

R, (i = 1, 2, 3, 4), to one of which any exceptional point of R must belong. We 

choose the notation so that R, is defined by (11.12) and (11.14), R2 by (11.13)and 

(11.14), Ra by (11.13) and (11.15), and R4 by (11.12) and (11.15). It  is easily seen 

that the regions R, are permuted cyclicly by the transformation U (mod 1). 

The inequalities (11.12) and (11.14) give the bounds 

0"4562 < x < 0"4635, 0"4817 < y < 0"4891 (11.16) 

for points of R,. Applying U repeatedly, we therefore have 

in ~ 0"4817 < x < 0"4891, 0"5365 < y < 0"5438; (11.17) 

in Ra 0"5365 < x < 0"5438, 0"5109 < y < 0"5183; (1!.18) 

and in ~a 0"5109 < x < 0"5183, 0"5462 < y < 0"4635. (11.19) 

Since T(P)6 }~ (rood 1) for any exceptional point PC )~1, we see from (11.12) 

and (11.16) that 
T (P) --  (10, 22) 6 R, (11.20) 

and from (11.14) and (11.16) that 

r -~ (P) --  (--8, 3) e R. (11.21) 

Similar results hold, of course, for the other regions ~t. 

(iii) We now consider which of the regions }~ an exceptional point P E ~,  can 

transform into (mod 1) under T and T -~. We show that in fact T(P)must lie 

(rood 1) in ~3 or ~4, and that T -I (P) must lie (rood 1) in ~ or ~3. 

For suppose T(P) is congruent to a point of ~i or ~ .  Then from (11.16), 

(11.17) and (11.20) we have 

7 x + 15 y < 10"4891, 15 z + 32 y > 22"4817, 
and so 

y = 15 (7x + 1 5 y ) - - 7 ( 1 5 x  + 22y) 

< 15 • 10"4891 --  7 • 22"4817 = --  0"0354, 

which is impossible. 

For convenience, we shall assume through the rest of this proof that all suffixes 

are taken modulo 4. Then applying U repeatedly to the above result, we see that 

if P, is any exceptional point of }~t then 

T(P,)6R,+2 or ~+a (rood 1). (11.22) 
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An obvious formal argument from the four results (11 22) now shows tha t  

T -1 (P~) E R~+I or R~+2 (mod 1). (11.23) 

We now define the sets $~.~ (i, ~', k = 1, 2, 3, 4) by the rule: P ~ t . ~  ~ c(~) if P ~ ~ ,  

T(P)e}~j (rood 1), r - l ( P ) e ~  (rood 1). Thus $~t.)k is a subset of ~ .  

In view of (11.22) and (11.23), many of these sets are empty. Thus for i = 1 

only four of these sets need be considered, namely 

S(1) e(1) S(1) c(1) 
3.1, ~J3.3, ~.2 and ~J4.3. 

We next show that  r ~4.a can contain no exceptional points, since it is entirely con- 

41 c(~) 
tained in the hyperbolic region I/(x, y)[ < ~-~. For let P = (x, y) be any point in ~4.a. 

Then from (11.19) and (11.20), 

10"5109 < 7 x + 15 y < 10"5183, 

22"4562 < 15x + 32y < 22"4635; 

while from (11.18) and (11.21), 

- -  7"4635 < --  32 x + 15 y < --  7'4562, 

3"5109 < 15 x - -  7 y < 3"5183. 

Combining (11.24) with (11.26) and (11.25) with (11.27) we have 

17"9671 < 39 x < 17"9818, 

18"9379 <: 39 y < 18"9526. 

We now change the coordinates, writing 

18 19 

so tha t  (11.28) and (11.29) become 

0"0182 < 39 ~ < 0"0329, 

0"0474 < 39 ~ < 0"0621. 
Since 

~93 24 41 / ( x , y ) = 3 ~ + 5 ~ - - 3 ~  2 -  ~ + - ~ l + - ~ ,  

the inequalities (11.30) and (11.31) show at once tha t  

41 41 
> 1 (x, y) > - 3-~" 

(11.24) 

(11.25) 

(11.26) 

(11.27) 

(11.28) 

(11.29) 

(11.30) 

(11.31) 
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(iv) We are now in a position to apply the transformation theory of Theorems 

~(~>- if P ~ $(o is an exceptional point, then C and D. By the definition of the 5j.~, ~ j.~ 

T (P) e S~),~ (mod 1), T -1 (P) ~: ~t,,r (mod 1) 

for some m, n. Thus 

PE$(~)2 implies T(e)e$14,)l or S (-4)~.1 (mod 1), T-l(p)esl,2)s (mod 1); (11.32) 

PE ca) implies T(P) ~e(~) (mod 1), -1 (3) $(s) T (P)e$~.l or (mod 1); (11.33) 'o3.3 1,4 ~: ~1,1  

p=ca)  implies T ( P ) e $  ()) (modl) ,  T -1 $(2) (rood 1); (11.34) ~3.~ ,.1 ( P )  e 1,3 

with the corresponding results obtained from these by cyclic permutation of the in- 

dices; and the shifts are in every case unique, being given by (11.20) and (11.21), 

and their analogues. 

We now apply Theorem C' to the set $(_1)~.2 + $(1)3.s and those obtained from it by 

cyclic permutation of indices. The relevant fixed point is obviously the solution of 

T (F) -- (10, 22) = (1, 1) -- F, 

; and so the only possible exceptional points of ~z.r + os.r lie on 
( 19) which is ~S 9, 

the line 

5 --_ W ~  ( 18) 19 (11,35) 
x - - ~  = y 39 

Similarly, we apply Theorem C' (with T -1 for T) to the set Sa)s.2 + o4.~r and 

those obtained from it by cyclic permutation of indices. The relevant fixed point 

is the solution of 
T -1 (F) --  (-- 8, 3) = (0, 1) + U (F) 

/141 148  
,o3,2 -{- 4.2 which is \305 305]'  and so the only possible exceptional points of ca) $(1) lie 

on the line 
5 + ] / ~  ( x - -  141] 148 (11.36) 

6 305/ = y 305 

In particular we may deduce from this that the only possible exceptional point 

of osca).2 is given by the intersection of (11.35) and (11.36), that is 

P I =  ~-~+ 7930 ' 3--9-- 23 790 I 

The transforms of P1 under positive and negative powers of T, their transforms 

under U, U S and U a, and the points congruent to them form a set at every point 

of which M (/; P) has the same value. We call this set C. 
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Now consider the possible exceptional points not in the set C. Then none of 

their transforms under (positive or negative) powers of T can lie in any $~1+)2.~+1, so 

that we must always take the first alternative in (11.32), (11.33) and the analogous 

results. We can now deduce from the extension of Theorem D analogous to Theorem C' 

that the only other possible exceptional points in any $~~ are the points (11.5) 

and the only other possible exceptional points in any $~i+)2.,+2 are the points (11.6). 

(v) I t  remains only to establish the value of M(/; P) at the various possible 

exceptional points we have now obtained. It  is convenient to return to the original 

form (11.2), the sets (11.5) and (11.6) now becoming (11.3) and (11.4) respectively. 

(a) As appeared in the above work, the set (11.3) is permuted modulo 1 by 

the fundamental automorph. Since 

1 0 i l  
]~ + 2, - -  305/ 1 525' 

it is sufficient to prove that the inequality 

1 611 
I/., (x, y)[ < "1 525 (11.37) 

is impossible for points (x, y) congruent to any point of the set (11.3). But Theorem B 

shows that if {11.37) has such a solution, it has one with 

1 6 1 1  u S 

Y~ < 1 525" ~ < 1. 

Since/6, (x, y)=/~1 ( - -x , - -y) ,  we need only consider the cases 

66 132 
x = u + 3 - d 5 ,  Y= 305' 

66 173 
x = u + ~ - ~ ,  Y = 3 0 5 '  

67 134 
x = u + 3 - ~ ,  v = - -  3o---5; 

67 171 

Ot) O 

where u is integral. However, none of these values of (x, y) satisfy (11.37), since 

they give respectively 
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]s~ u + ' -- 305/ 152-5 -> 1525' 

6 6 1 7 3 ~  (u + 29 2 I]'~( u+ 3-0-5' 30-5] I = I ~)' 61009291 -- > "1049525; 

3-~' --30-5! = - - i 5 2 5 J ~ 1 - ~ 5  ; 

(b) A precisely similar argument holds for the set (11.4). 
permuted by the fundamental automorph and 

Since this set is 

, ,  
h, + 2, - ~  = ~ ,  

it is sufficient to prove that the inequality 
41 

[I.I (x, y)[ < 3-6 (11.38) 

is impossible for points (x, y) congruent to any point of the set (11.4). 
we need only consider the cases 

8 17 
x=u+-~, y= 39' 

As above, 

8 22 �9 = u + ~ ,  y = ~ ;  

9 17 �9 = u + ~ ,  y = - - ~ ;  

9 22 �9 = u + ~ ,  y = ~ ;  

where u is integral. However, none of these values of (x, y) satisfy (11.38), since 
they give respectively 

8 17 u--~-~ > --" 
/nl u + ~ - ~ , - - ~ - ~  = - - 3 9 '  

I( i( /,1 u +  ,~-~ = u+39]--152---~ --3--9; 

{ ( 9 17)] {( 1 ) '  17629i > 41 
hi u + ~ , - ~  = u + ~  608~ -3-6; 

I/,,(u§247 73811521] -> 3--9"52 
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(c) I t  remains only to consider the set C. It  is clear that it contains no 

rational points, and the argument which gave (11.35) shows further that the points 

(11.6) are limit points of C. Thus from Theorem F we have 

41 
M (/; C) -< ~-~. (11.39) 

By an obvious extension of Theorem B it is possible to show that we have in 

fact equality in (11.39) and that the minimum is unattained; but the proof, while 

introducing no new ideas, involves such a mass of arithmetic that we do not give it. 

A slight extension of the ideas of this proof would show that there are an in- 

finity of incongruent rational points having 

M (/el; P) > - -  > 1 ; 
390 1 586 

but we have no satisfactory way of specifying these points, or the values of the 

minimum at them. Indeed, we are even unable to show that this constant is best 

possible, though this is probably so. 

12, Of the forms listed in (10.1) and (10.2), we have also obtained the values 

of M (]z) when 
m = 19, 22, 43, 58, 59, 70; 33, 89, 97; (12.1) 

and the values of M s (/a) for 

m = 3, 6, 10, 15, 26, 30, 35, 42, 43, 82; 17, 33, 37, 65, 101. (12.2) 

We omit the proof of these results, since no essentially new principle is involved. 

The table below gives all results which are now known for the first and second 

minima of forms /m (x, y) with m--< 101. The second column of the table gives the 

theorem in this paper in which a result is proved. The last column consists mainly 

of acknowledgements to previous work, references being to the bibliography at the 

end of the paper. All results for which no acknowledgement is given are here stated 

for the first time. The entries under the values (12.1) and (12.2) of m contain a 

complete set of incongruent points P for which M(/m; P)= M(/m) or M(],,,; P)= 
= Ms(]~); these we denote by C1, C~ respectively. 

The value of M (]a) is not yet known when 

m = 4 6 , 6 7 , 7 1 , 8 6 , 9 4 ;  57, 73. 

In these cases we have given the best upper bound known for M (/m). 
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] m ( X , y ) = x  ~ - m y  ~', m - ~ 2  or 3 ( m o d 4 ) .  

315 

Theorem M (jm) M~ ( I r a )  Acknowledgements and Remarks 

2 

3 

6 

7 

10 

11 

14 

15 

19 

22 

23 

26 

30 

31 

34 

35 

3 8  

39 

42 

43 

1 

1 

1 

1 

39 
4O 

O7 
O4 

29 
20 

17 
7 

41 
24 

5 902 
3 483 

Varnivides [2] gives all Mt (]) (i = 1, 2, 3 . . . .  ). 

~o~o,~  ~,~ ~vo~ ~ ;  ~_-  _+ (o, ~) 

Bambah [1] gives Mz; Varnavides [3], Inkeri [3, 5] give M. '  

/ 

Varnavides [2] states result; Bambah [1]; Inkeri [5]. 

Heinhold [1]. 

tteinhold [1] for M;  C 2 = _+ (1,  2 ) .  

(25) (_1,~ 
Heinhold[1] g ivesM;  C 2 ~  + 0 , ~  , + 

- - \ 2  52] 

Heinhold [1]. 

Heinhold [!]. 

I-Ieinhold [1]. 

Heinhold[1] gives M; C z ~ _ + ( 0 , 7 )  �9 

(1 1 / ~o l ~  
C 1=-4- ~-~,  ; C z =  +- \ '387]  
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fYt 

46 

47 

51 

55 

58 

59 

62 

66 

67 

70 

71 

74 

78 

79 

82 

83 

86 

87 

91 

94 

95 

Theorem M ( / , , , )  

253 
94 

287 
102 

9 
4 

3 

125 
59 

13 
4 

15 
4 

891 
500 

5 

7 

585 
"158 

9 

631 
"166 

169 
58 

5 

7 

Mz (,fro) 

1 311 
328 

Acknowledgements and Remarks 

7) 
M < ~ Varnivides [1], Inkeri [3]. 

Inkeri [3], states result only. 

Heinhold [1]. 

• 

Heinhold [I]. 

Heinhold [1]. 

9 
M ~ ~ Inkeri [3]. 

M ~ 2.40, Inkeri [3]. 

Heinhold [1]. 

Heinhold [1]. 

Heinhold [1J gives M;  Cj ~ • (0, i ~ 4 ) ,  + ( I ,  I~4)"  

M < 2.24, Inkeri [3]. 

Heinhold [1]. 

5 
M < - .  

2 

Heinhold [1]. 
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1 
/ m ( x , y )  = x 2 + x y - ~ ( m - 1 ) y s ,  m ~ l  ( m o d 4 ) .  

5 

13 

17 

21 

29 

33 

37 

41 

53 

57 

61 

65 

69 

73 

77 

85 

89 

93 

97 

101 

Theorem 

11 

10 

M(/m) 

1 

1 

1 

5 

4 

29 
44 

3 

23 
32 

9 

1 611 
1 525 

1 

25 
23 

M2 (Ira) I 
1 

4 
13 

8 
17 

23 
29 

6 
11 

27 
37 

68 
53 

41 
39 

Acknowledgements and Remarks 

Davenport [1] gives all M~ (]) (i = 1, 2, 3 . . . .  ). 

Inkeri [4]. 

Heinhold [1] for M; C 2 = _+ ( 5 ,  7 1 , _ +  ( 3 ,  6 ) .  

- -  ' - 3 7 /  - -  \ 3 7  - ~  " 

64 
65 

M <: 0.89, Inkeri [3]. 

41 
Rddei [1] proves M 

39 

Heinhold[1] gives M; C 2~_+ \6-5 6-5 ' -+ \65 ~ " 

Inkeri [3]. 

M < 1; Inkeri [3], Rddei [1]. 

19 
11 

16 
9 

1 004 287 
1 000 004 

44 
31 

33 679 354 
31 404 817 

5 

151 
85 

- 434 47171 - 434 4 717/ 

125 
101 

C, = + ~14 845 29690~,  + (15 529 31 058~. 
- \55 193' 55193/  - ~ 1 9 3  - ~ 1 9 - 3 ]  
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All minima given in the table are isolated. This follows from Theorem G, 

except in the cases m = 61 (Theorem 11), m = (2n + 1) 2 + 4 (Theorem 7), where a 

slight modification in the proof will clearly isolate M 2 (/m). 

I t  will be noted that  the results stated in the table for m = 97 show tha t  the 

field k (V~-) is not Euclidean. In view of the interest of this fact, we now give a 

direct proof of the existence of a rational point P for which (2.8) is false. We could 

of course use the points quoted in the table, but  these require the consideration 

of a larger number of cases. 

T h e o r e m  12 .  I] 
/ (x, y)  = / 9 7  (x, y)  = x 2 + x y - -  24 y~, 

then 1 
374 2587 t 3001 

m /; 140-1" 5--6~! 2 802 
(12.3) 

The field k (V-~) there~ore does not Vossess a Euclidean Alaorithm. 

Proof:  W r i t e  

Since 

374 , 2 587~ 3001 
P =  1401 K 2 802 

374 2 5871 / 2 + K, 

we have 
M (1; P) --< K. 

Hence if (12.3) is false there exists a solution of 

It( ,u)I<K, 
We now apply Theorem B. The fundamental automorph of ] (x, y) is 

, 

corresponding to the solution t = 11 208, u = 1 138 of t 2 - -  97 u 2 = - -  4. 

verified tha t  
T (P) = (13 952, 3 153) + P --  P. 

Theorem B now shows tha t  if (12.4) has a solution, it  has one with 

3001 u 2 971 606 761 y2 < _ _  - 
2802 t (2 802) 2 

(12.4) 

I t  is easily 

3 001 
1 The cons tan t  - -  

2 802 
interest .  

is p robab ly  M 2 (]07}; b u t  the  verif icat ion of th i s  conjecture  is of no real  
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and so with 
lyl < 31 171 2 587 (12.5) 

2 80----2 < 11 + 5 60---4" 

To prove the theorem, it is therefore sufficient to show that  the inequality 

I/(x, y)l< K has no solution with 

374 Z = U + ~ ,  

where u, v are integers and, by (12.5), 

We write 

g (u, v) = / (u 
\ 

2 587 
Y = v + 5 ~ 0 ~ '  

- - 11  < v - - < 1 0 .  

374 2587 / = 
+ 1-4-~' v + 5 604/ 

( 25 ~ 30 670 6 893 
= u s + u v + 1 5 604] - -  24 v ~ - -  1 40-------i- v - -  1 40----1" 

(12.6) 

For each integer v satisfying (12.6), it is a simple matter  to determine the value 

of u for which I g (u, v)] is a minimum. The results are tabulated below, and show 

that  in all cases we have 

I g ( u ,  ~)1 >-- ~ ~176 = K.  2 802 

25 ) 112 
g(u, 0 ) = u  s +  1 5 ~ 4  u - - 5 +  1--~1'  

3 001 
Ig (2 ,  0)1 2 s 0 2  K; 

25 i 1 137 
g(u, 1 ) = u  s +  2 - - 5 6 0 4 ] u - - 5 0 - - 1 4 0 i ,  

50 
Ig( - -8 ,  1)[ = 2 - -  1 40-----1 

1 137 
+ i-~O~ > 2; 

25 ) 985 
g(u, 2 ) = u  s +  3 56-04 u - - 1 4 4  1 4 0 1 '  

l a ( l l ,  2)1 = lO 
275 985 

5 604 1 401 

a (u, 3) = u s + ( 4  - - -  25 ) 833 
5 ~ 4  u - 2 s 6  - 140---7' 

2 857 3 
Ig(-19,3)1 = 1 + 5--6-0~ > ~; 

- - > 9 ;  



320 E. S. Barnes and H. P. F. Swinnerton-Dyer. 

a(u, 4) = u~ + (5 25~04 ) 681 
- -  u - -  476 1 4 0 1 '  

150 
Ig(- -  24, 4)] = 20 - -  140------1 

681 
+ ~ > 2 o ;  

g (u, 5) = u' + 
25 ) 529 

6 56-04 u - - 7 1 4  1401 '  

150 529 
1a(24, 5)[ = 6 1 401 1 401 > 5 ;  

g(u ,  6 ) = u ~  + 
25 ) 377 

7 56--04 u - -  1 000 - -  140----1' 

875 
[g (--35,  6)[ = 20 --  560----~ 

377 
+ 1---~i- > 20; 

g (u, 7) = u~ + ( 8 - -  25-~04) 225 u -  1334 - -  140-----1' 

lg(33, 7)[ = 19 
825 225 

5 604 1 401 
- - >  18; 

g(u ,  8) = u~ + 
25 ) 73 

9 -  5 ~ 4  u -  1 716 --  1 40----1' 

1 150 
]g (--46, 8)] = 14 --  5 60----4 

73 
+ 1---~ > 13; 

25 ) 79 
g(u, 9 ) = u ' +  10 5 ~ 4  u - - 2 1 4 6 +  1--401' 

[g (42 ,9 ) [  = 38 1 050 79 
- -  5 60-----4 + ~ > 37; 

g ( u ,  lO) = u ~+ ( 1 1 - - - -  
25 ) 1 170 

5 6-04 u - -  2 623 - -  1 40-----1' 

{g(--57, 10)] = 1 1425 1 170 3 
- 5 60---~ + i q - ~  > ~; 

g(u , - -1 )  = u~ 
25 40 

5 604 u - -  7 --  1 40---~' 

75 40 3 
l g ( 3 , - 1 ) l = ~  5 6 0 4  14o~ > ~ ;  
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g ( u , - - 2 ) = u  ~ -  1+ u - -57  1401' 

la(-7,-2)1 = 1 175 
- 5 6o---~ + 

192 6 197 
1 401 5 604 

25 ) 1 057 
g ( u , - - 3 ) = u  z -  2 + ~  u - - 1 5 6 +  1 - ~ '  

]g(14,--3)1 = 1 2 -  350 
5 604 

1 057 
+ 1 - ~ > 1 2 ;  

25 ) 905 
a (u, - - 4 )  = u 2 - -  3 + ~ u - -  302 + 1--40~' 

475 
I g (19, - 4 )  1 = 2 - -  5 60----4 

905 
+ 1-T~> 2; 

25 ) 753 
g ( u , - - 5 ) = u  2 -  4 + ~  u - - 4 9 6 +  1 - - ~ '  

[ g ( - - 2 o , - 5 ) 1  = 1 6  
500 753 

5 604 1 401 - - > 1 5 ;  

25 ) 601 
g ( u , - - 6 ) = u  ~ -  5 + ~  u - - 7 3 8 +  1 - ~ '  

75O 
I g (30, - 6 ) [  = 12 - 5 60--~ 

601 
+ 1 - ~ >  12; 

25 ) 449 
g ( u , - - 7 ) = u  ~ -  6 + 5 - ~  u - -1028  + 1 - ~ '  

725 449 
I g ( - 2 9 , - 7 ) 1  = l a  5 6 0 4  1 4 0 1  > 12; 

25 ) 297 
g(u,--8}=u z -  7§ ~ u - -1366  § 1 - ~ '  

I O25 297 
[g(41,--8)] = 28 -- 5 60-----4 + ~ >  28; 

25 ) 145 
a(u, - -9)=u z -  8 + 5 ~  u- -1752  +~-~-~, 

950 145 
1 a ( - - 3 8 , - 9 ) 1  = 4 5 604 1 401 

2 1 -  632081 Acta mathematica. 87 

- - > 3 ;  

- - > K ;  

321 
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25 ) 7 
g ( u , - - l O ) = u  2 -  9 +  5--~0 ~ u - - 2 1 8 6  1401 '  

I g ( - 4 2 , - l O ) I  = 4 4 - - -  
1 050 7 
5 6 0 4 + I ~  >43; 

25 ) 159 
g ( u , - - l l )  = u * -  10 +5--6-~ u - - 2  668--1--~0 ~ ,  

1 425 159 
Ig(57, --11)] = 11 5604 1 401 > 10. 

In conclusion, we should like to express our gratitude to Dr J. W. S. Cassels, 

Prof. L. J. Mordell and Dr C. A. Rogers, who have offered detailed criticisms of 

our manuscript and helped to remove several obscurities. 
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