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1. Let f(z,y) =ax®+bzy + cy® be an indefinite binary quadratic form with
real coefficients and discriminant D = b2 —4ac¢>0. For any real numbers z,, y, we
define M (f; z,, 4,) to be the lower bound of |f(z + z,, ¥y + y,)| taken over all in-
teger sets z, y. It is clear that if

=@, Yo=1% (mod 1) (L.1)
then

M (f; x5, y0) = M (f; @0, %o)- (1.2)
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We identify pairs of real numbers (z,y) with the points P of the Cartesian
plane, and say that any two points are congruent if their coordinates differ by in-
tegers. Writing M (f; P) for M (f; z,, ¥,), we now define the inhomogeneous minimum

of f(z,y) to be
M (f) = upper bound M (f; P). (1.3)

The upper bound is taken over all points of the plane, but in virtue of (1.2) may
merely be taken over any complete set of incongruent points.

It follows from these definitions that corresponding to any point P = (z,, ¥,)
and any €>0 we can find an integer point (z,y) such that

I/(x+zo,y+yo)|<M(f)+5- (1.4)

If we can in fact satisfy

|/ (@ + 20, ¥ + )| = M (f) (1.5)

for every (z,,%,) and a corresponding integer point (z, y), we shall say that M (f)
is an attained minimum.

We use the customary definition of equivalent forms, without however distin-
guishing between proper and improper equivalence. Thus two forms f(z, %), /' (=, ¥)
are equivalent if there exists a transformation

-0 :

(y) (y o/ \y (18)
with integral coefficients and determinant ad — gy = =+ 1 such that ' (z’, ¥') = f (z, v).
Writing (1.6) as P’ = T(P), it is clear that for any point P we have

M(f; P)=M(; T (P). (1.7)

Since the points T (Py), T (P,) are congruent if and only if P, and P, are congruent,

it follows that :
M(f)=M(f). (1.8)

Thus equivalent forms have the same minimum. We also note that, trivially,

M@f) =AM (1.9)
for any real A.
Let C be the set of points P for which M (f; P) = M (f), and define M, (f) as

the upper bound of M (f; P) taken over all P not belonging to C. Obviously

M, (f) = M (/). (1.10)
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If strict inequality holds in (1.10), we say that M (f) is an ssolated minimum, and we
call M, (f) a second minimum.! Similarly we define successive minima M, (f), M, (f), . ..
the sequence being strictly decreasing until a non-isolated minimum is reached.

2. The first result on the inhomogeneous minimum M (f) was found by Min-
kowski [1]. He showed that

M= ;liVl_l 2.1)

the equality sign being necessary if and only if f(z,y) ~ bzy. Contributions have
since been made by many authors?, who have found upper bounds for M (f) in terms
of a value or values assumed by f(x,y) for integral z,y. In many cases, the bound
determined has been precise, and more recently some particular forms have been
examined in detail by Davenport [1], Varnavides [2, 3], Bambah [1], and Inkeri
[3, 4, 5]. Explicit acknowledgements of these results will be made below.

In the opposite direction, Davenport [4] has proved the remarkable result that

M) > %Vﬁ (2.2)

for forms not representing zero; and Prasad has sharpened this to about
1 —
1y 2.
M(f)> 55 VD (2.3)

A particular impetus has been given to research on this problem by its close
association with the Euclidean algorithm in real quadratic number fields. An algebraic
number field is said to be Euclidean if for any number » of the field there exists
an integer p of the field such that

|norm (o + )| < 1. (2.4)

The elements of a real quadratic field k(Vm), where m is a square-free positive
integer, are of the form z + wy with rational z, y, the integers of the field corre-
sponding to rational integers z, y. Then norm (z + wy) is an indefinite quadratic
form fn (z, y), where

1 This definition is perhaps a departure from convention, since we do not exclude the possi-
bility of C containing an infinity of incongruent points. The reader should note that INEKERI [3]
uses M, and M, to distinguish between what we call attained and unattained first minima.

2 See for example HEiNHOLD [1, 2], DAVENPORT [1], VARNAVIDES [1], CassELs [1], BArNEs [1],
Inxer1 [3].
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Im (@, y) = 22 — my?, w=Vmift m=23 (mod 4); (2.5)
f,,.(a:,y)=x3+zy-}(m—l)y2, w=%(1+V;z) if m=1 (mod4). (2.6)

If we write x = a, + wy,, 0 = 2 + wy, (2.4) becomes

|fm(x+xo, y+?/o)|<1' (27)
Thus %(Vm) is Euclidean if and only if
M (fa; P)<1 (2.8)

for all rational points P. A sufficient condition for this is clearly that
M (fn) < 1. (2.9)
The main interest in the problem of inhomogeneous minima has therefore been
in proving (2.9), or disproving (2.8) for some particular rational P. In addition to
(2.2) Davenport has shown that if f(z, y) has rational coefficients,
1
; — A
M(/,P)>128VE (2.10)

for some rational P. Thus there are only a finite number of Euclidean fields k(V%),
and the set of such fields has now been completely determined.!

3. In this paper we shall be concerned with forms f(z,y) with rational coeffi-
cients which do not represent zero for integral z, ¥ not both zero. Such forms have
an infinity of automorphs; in this section we discuss these automorphs and their
relation to the problem of inhomogeneous minima.

In virtue of (1.9) we may take f(z,y) in the form

f@ y) =az?+bzy + cy?

where @, b, ¢ are integers with no common factor. We shall call an integral uni-

modular transformation
T (“ ﬂ) (3.1)
y o

an automorph of f(x,y) if f(x,y) is equivalent under T to either? * f(x,y). It is
known that these automorphs fall into three classes:

1 Note, however, that REDEI is in error in stating ([1], p. 607) that & (V97) is Euclidean, as we
shall show in theorem 15 below.

% Tt is convenient to make this extension of the term “automorph” to include all transforma-
tions of |/ (z, y)| into itself.
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I. Proper transformations of f(z,y) into itself, given by

1 1

“t—-bu —cu
r=|%2 2 (3.2)
au L t+ 1bu
2 2
where ¢, u is any integral solution of the Pellian equation
2—Du? =4. (3.3)

II. Improper transformations of f(z,y) into —f(z,y) given by (3.2), where
now ¢, 4 is any integral solution of

£#—Dut = —4. (3.4)

III. Improper transformations of f(x,y) into itself, and proper transformations
of f(z,y) into —f (z, y).

Automorphs of type I always exist, and there are an infinity of them, given by

T=+TF (n=0,%1,+2 ..) (3.5)
where T, is given by (3.2) with ¢, » the least positive pair satisfying (3.3).

Automorphs of type Il may or may not exist. If in fact there are any solu-
tions ofe(3.4), then all automorphs of types I and II are expressible in the form (3.5),
where ¢, w is now the least positive pair satisfying (3.4). We call T, the fundamental
automorph of f(z,y) in each of these two cases.

Criteria for the existence of an automorph of type III are not so simple, and
we shall merely note here that the “ambiguous” forms fn,(z,y) of (2.5), (2.6) have
respectively the automorphs

1 0) 1 1) )
0 —1/7 \o —1

The properties of automorphs which are of primary interest to us are:

Theorem A. If T is any automorph of f(x,y), and P is any point, then
M(f; P)= M(f; T (P)). (3.6)
Proof: The result follows at once from (1.7).
Theorem B. Let T be an automorph of f (x,y) = ax® + bxy + cy? given by (3.2),
where 12— Du?= +4,t>0, u>0. Let {P}(4=1,2,...,N) be a finite set of in-

congruent points such that the set {T (P:)} is a permutation of {Pi} modulo 1. Sup-

pose that
M(f;P)<K (:1=12,...,N). (3.7)
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Then there exists a point (x,y) with the'propem'es:
i) (z,y)=P; for some ¢,
(i) |/ (= 9)l<K,
(iti) Dy*<Kla|(t+2) if 2—Du =4,
tyt < K|a|u? if 2—Du?=—4.

Proof:1 Consider the set of points satisfying (i) and (il), which is not null
by (3.7). Since there are only a finite number of points P;, we can choose a pair
(x,y) in this set for which |y| has its least possible value. The theorem will be
established if we show that this value of |y| satisfies (iii). Suppose it does not.
Then, taking first the case when 2 — Du? = 4, we have

Dyr=K|a|(t + 2). (3.8)

We may suppose for simplicity that a > 0, since we may replace f (z, ¥) by —f (z, ¥).
Also, since f(—z, —y) = f(z,y), we may take y >0 in (3.8). Then we have

2
ie,
(x -+ iy)z__gyz << _?E_,
2a 4 q? a®(t + 2)
or

Dy 4 b\ @( 4
4a2(1 t+2)<(z+2ay)<4a2 1+ s
On replacing D by (22— 4)/u® and simplifying, this gives

yz(t-—2)2<(z +;&y)2<y2(t—2)(t+6)<z/’(t+2)2,

4 q? u? 4 a2 y? 4 a®u?
or
y(t—2) b | _y+2)
2au <|z+2ay < Sau (39)
Thus esther
y(t—2) b y(t+2)
2au <x+2ay< 2au
le.
1
aux~§(t—bu)y <y; (3.10)
or

! Infinite descent, based on the method of DAVENPORT [1], Lemms 3.
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b= __ b _yt+2
2au <=z 2a< 2au
ie.
aux+%(t+bu)y <y. (3.11)

. 1
But the y-coordinates of T (x,y), T *(, y) are respectively auz + 5 (¢t +dbu)y,

—auz + %(t —bu)y; and by hypothesis each of the points T (z, y), T~ (=, y) is con-

gruent to some P;. Hence, since either (3.10) or (3.11) holds, we have a point satis-

fying (i) and (ii) with a smaller value of |y|, which contradicts the initial choice of y.
Consider now the case when 2— Dy? = —4, Then we have

ty* = K|a|u?

where as above we may suppose that a >0, y>0. Then

ty?
<7,
If(z, y)l<K‘_au2

¥ (p_4t b\ _yi( 4_t>
4(1,2(1) u“‘)<($+.‘2ay)<4a2 D+u2
Replacing D by (2 + 4)/u? and taking the square root, this yields precisely the

inequality (3.9). The proof may now be completed as above.
This theorem (which is best possible) is designed to give the least number of

1.e.

possible values of y to test. Results of this sort are, of course, not original; but
we have not been able to find an explicit statement of this theorem.

4. It is clear from Theorems A and B that, for any given automorph T of
f(x,y), the set. of points F for which 7 (F)=F will be of special interest. Such
points will be called fized points of T. For any integral point 4, there is a fixed

point F satisfying
T(F)=F + A,

and if the matrix (7 — I) is non-singular, this equation defines a unique, rational F.
If (I'—1I) is singular, it is easily seen, since |T']= + 1, that T is of finite order
(in fact 7%= + I); we shall exclude such transformations from the following dis-
cussion.

We now prove some important results on transformations of infinite order and
their fixed points. For an integral unimodular 7,
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_(= B
T = (y 6)’ (4.1)
we set
e=ad—fy=*1, (4.2)

21[6~a——]/{(a+(5)2—48}] if «+6>0,

B

*=1] - (4.3)
ﬁ[é—a + V{(a+ 8 —4e}] if & +6<0.

We shall always suppose that x is real.
It is convenient to define the expression

P€R (mod 1),

where P is a point and R a point set, as meaning that there exists a point § con-
gruent to P modulo 1 lying in R.

Theorem C.! Let T, defined by (4.1), be of infinite order, and let R be a bounded
point set such that, Jor some given set R® and some given integer point A, any point
PE€R has the property that either T (P)€R* (mod 1) or T (P)— A€R. Let F = (x,, %)
be the fized point of T defined by T (F)=F + A. Then if P = (z,y)€R, and T" (P)
18 not congruent to a point of R* for any n=1,2, ..., P lies on the line

Y— Yo = x(z— %)
through F, where » s defined by (4.3). Moreover, F belongs to the closure R of R,
and for each n there exists a point Q= T"(P) such that Q. — F as n— + oo,

For the proof of Theorem C we need two preliminary lemmas.

Lemma 1. Let S be the transformation
(@', ¥') = (tz, Lylt),

where ¢ is real and |t|> 1, and let R be a bounded point set. Suppose that S"(P)€R
for all n=0. Then P lies on the line z = 0, the origin O belongs to the closure R of R,
and S"(P)—>0 as n— + oo,

! The reader will find the purpose of this theorem clearer if he refers to the first part of §8,
where there is a general account of the methods used.

Theorem C is basically the well-known result: if the vector FP remains bounded under all
positive powers of the transformation T, then it is an eigenvector of 7. In fact the region R* and
the point A of Theorem C arise naturally in the applications, whereas an explicit boundedness condi-
tion does not; it is therefore more convenient to have the theorem stated in this more complex form.
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Proof: Let P be the point (z,y). Then S"(P)= (t"z, +¢ "y)€R, and so, since
R is bounded, t"z is bounded as m — + co. Since |t|> 1, it follows that x = 0.
Finally, S"(P) = (0, ¢ "y)—>0 as n— + oo, so that O€R.

Lemma 2. Let T be defined by (4.1), and let R be a bounded point set. Suppose
that P = (z,y) is a point such that T" (P)ER for all n=0. Then P lies on the line
y ==z,
where x is defined by (4.3); O€R; and T" (P)->0 as n— + oo,

Proof: Let 4;, A, be the roots of the equation

a—A4 f
y 6—24

=R—(e+d8)A+e=0.

Then it is well known that the linear substitution
X=0—A)z— Py,

Y=(0—4)z—By
reduces 7' to the form
(X, Y)=(4LX,4Y)

Since 4,4, =e= +1, and A, 4, are real and not both + 1, we may choose
|4,]>1. Lemma 1 now shows that O €R, that T™(P)— O as n— + oo, and that P
lies on the line

X=0—4)z—py=0.

Now a + 6#0, since T is of infinite order; and

b= gl 8+ Vit oF —Le)] if « +8>0,

2 =%[a+6-—V{(a+6)z—4s}] if a+8<0,

go that the above line is ¥ = xx, as required.

Proof of Theorem C: Suppose that Py€R and that T (P,) is not congruent to
a point of R* for any n=0.

Let 4 be the point (a, b), and define an inhomogeneous transformation U by
U(P)=T(P)— A. Then, since U(P)= T (P) for all P, U"(P) is not congruent to
a point of R* for any » = 0.
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We now change the origin to F, so that the new coordinates (z’, y’) are given by
(x,’ y,) = (z_ Ty, Y — ?/o),
or P'=P—F. The transformation U then becomes
(&, ¥)=> (a2 + By, yo' + 6y).
Now by hypothesis, P,€ R,
U(Po) = T(Po)_A = Q1€Rs
U2(Py) = U(Q)=T(Q)— 4= Q:€R,
and so on, so that @, = U" (P,)€R for all n=0. It follows at once from Lemma 2
that Feﬁ, @, —F as n— + oo, and that P, lies on the line ' = xz’, i.e. on the
line y —yp = x (z — x,).
We note that there is a simple and obvious generalization of Theorem C to the

case of a finite number of bounded point sets:

Theorem C'. Let T, defined by (4.1), be of infinite order, and let Ry, Ry, .. ., R 1
be a finite number of bounded point sets. Suppose that for some R* and some integer
points Ay, ..., Ay, every point P,€R; (1 =0, 1, ..., k—1) has the property that either
T (P)€R® (mod 1) or T (P;)— Ai41€ Riy1 (where Ry is interpreted to be R,). Let

A=Ax+ T(Ax_1) + T2(Ar_s) + - + T*(4,),
and let F = (x,, y,) be the fized point of T* defined by T*(F)=F + A. Then if
P=(zx,y)€R, and T"(P) is not congruent to a point of R* for any n =0, P must

lie on the line
Y— Yo = %(T— ).

Moreover, Feﬁ.,, and for each n there exists a point Qux = T™ (P) such that @u. — F

as n—> + 00,

Proof: Suppose that P€ R, and that 7" (P) is not congruent to a point of R*
for any # =0. Then by hypothesis,

T(P)=P, + 4,, P,eR,,

T(P1)=P2+Az, PzERz,

T(Pk_1)=Pk +Ak, PkERk =R0'
Hence

Tk(P)=Pk+Ak+T(Ak_1)+"'+Tk—1(A1)=Pk+A,
so that T (P)— A €R,.
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The required results now follow from Theorem C, on replacing T by T%. The
constant » is unchanged, since 7 and T* have the same eigenvectors.
The essential point of Theorem C is that we consider the transformations 7™

only for positive n. If we consider also 7" for » <0, we have the following simpler
result, due to Cassels!:

Theorem D. Suppose that the hypotheses of Theorem C are satisfied, and further
that for any point PE€R, T (P) is congruent to a point of either R* or of R. Then
if PER and T"(P) is not congruent to a point of R* for any n =0, P is the fixed
point F.

Proof: The result is most simply proved by extending Lemma 1 above to show
that S” (P) can belong to R for all #=0 only if P is the origin, and by making
the corresponding extension in Lemma 2. The introduction of the “asymptotic line”
Y — Yo = %(x — %) is then unnecessary. However, we may deduce the result directly
from Theorem C. We first note that there exists an integer point B such that for
any P€R, either T7*(P)€R* (mod 1), or 77'(P)— B€R. For if PeR, T"'(P)ER

(mod 1), then
T (P)=B+Q, Q€R, B integral,

P=T(B)+ T(Q).
The hypothesis of Theorem C now show that T (B) = — 4, so that B = — T7!(4),

which is independent of P.

Suppose now that P€R and that T™(P) is not congruent to a point of R* for
any n. Theorem C shows that P = (z, y) lies on the line

and so

Y— 1Yy = x(x— ). (4.4)
Also, applying Theorem C with 7 replaced by 77, P must also lie on the line

Y— 1Y = % (z— ), (4.5)
where x' is obtained from 7! in the same way as x is obtained from 7. It is
easily seen that x'>%x (x' being in fact derived from x by changing the sign of

the radical). Hence P must be F, the point of intersection of the lines (4.4), (4.5).

There is an obvious generalization of Theorem D, corresponding to the above
generalization of Theorem C.

5. We are now in a position to prove some general results about the inhomo-
geneous minima of rational forms f(z,y). We shall abbreviate M (f), M (f; P) to

! Quoted by Bamsau [1],



270 E. 8. Barnes and H. P. F. Swinnerton-Dyer.

M, M (P) respectively; and we shall write f(P) for f(z, y). The first result, which
we shall quote without proof, is given by Heinhold ([1], p. 660):

Theorem E. If M is an altained minimum, there is at least one point P for
which M (P) = M, and an integral point Q corresponding to P such that f(P + @) = T M.

The proof is based on a simple application of the Heine-Borel covering theorem.
If the minimum is unattained, the first part of the Theorem is still (trivially) true;
the second part is true also, but we do not prove this here.

Theorem F. M (P) is upper semi-continuous; i.e. for any point P and any
£>0, we can find a 8> 0 such that M (P') < M (P) + ¢ whenever |P' — P| < 4.

The proof is immediate, since f(P) is a continuous function of P.
Our next result is new, and gives a criterion for the existence of isolated minima.

1

. . 1
We use the (permanent) notation § for the closed unit square: |z| < 5’ |y|$§;

clearly any point P of the plane is congruent to a point of §.

Theorem G. Suppose that M (P)<k for all but a finite set of points of §.
Then there exists a number k' <<k such that M (P)=<Fk’ for all points PE€S except the
gwen finite set.

Proof: Let {P;} (¢=1,2,..., N) be the set of points P € § for which M (P) =k,
and let T, be the fundamental automorph of f(P). From Theorem A we see that
T, permutes the set {P;} (mod 1), and so there is an integer », 1 <r <N, such
that P; is a fixed point of T = T} for each ¢. Let T (P) = Pi+ 4;.

Let R be the region

|P—Pl<e (=1,2 ...,N)

where &, is so small that no two of the sets R{"> have a common point. Now choose
& =< & so that, if R® is the region

|[P—P|<e (=1,2,...,N),

we have T (R®) < R® + 4, T (R®) <R®— T-'(4;). This is always possible since
T(P)=P + 4y, T'(P) = Pi— T7'(4)), and a sufficiently small neighbourhood of
P, transforms continuously with P; under T and 7~'. Now let

R*=S —E‘:Ri’).
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Then R* is a closed bounded set, and since R* contains none of the points P;,
M (P) <k for all PeR*. Thus for each P€R* there exists an integer point L such

that P is an interior point of
|{(P+ L)| <k.

It follows from the Heine-Borel theorem that there exist a finite number of such

sets, defined by L,, L,, ..., Lp, say, such that any P€R* is an interior point of
one of them. Since 1min [f(P + L)| is a continuous function of P and is strictly
si<n

less than % in R*, it attains its upper bound %' <k. Hence M (P) <k’ <k for
PeR".

It remains to show that M (P)<#k' if PeR®, P#P,, for any:=1,2,...,N.
Now by Theorem A, M(P)= M (T"(P)) <k’ if T*(P)€R* (mod 1); also from the
construction of the sets B, Rf® we see that if PeR®,

either T (P)€R* (mod 1) or T (P)— 4,€R®,

and
either T (P)€R" (mod 1) or T7*(P) + T7*(4,) € R®.

Theorem D now shows that either 7™ (P)€ R* (mod 1) for some n, or P = P;, which

completes the proof.

6. Before proceeding to the evaluation of M (f) for particular forms f(z, ), we
shall establish the following arithmetical result.
For any real number «, we write

¢(a)=u.lb. Lb. |(x+ A2 —af, (6.1)
where the upper bound is taken over all real A and the lower bound over all in-
tegers x. Thus ¢ (x) is the lower bound of all numbers m («) such that the inequality

|+ 22— a| < m (x)

can be satisfied for every real 2 and some corresponding integer z.
Partial results on the value of ¢ («) have been known for many years, and have
been used! to deduce upper bounds for M (f). Thus it has been shown that ¢ () <1

. 5 . . . ..
if 02a<2 o v result which has an immediate application to the problem of

the BEuclidean algorithm outlined in § 2. The strongest result has been given by
Davenport.2 It may be stated as:

1 See for example MorpELL [1], PERRON [1], DavENPORT [1], VARNAVIDES [1].
2 DaveNPorr [2], Lemma 5.
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Theorem H. If B _>_-}t and

0<a<B+ 111[2 Bp, (6.2)
then
é(x) < B. (6.3)

This form of statement is particularly useful in the applications, since we usually
wish to determine the « for which ¢ («) is less than some preassigned number B.
It is, however, quite easy to find an explicit formula for ¢ (a):

Theorem J.1 (i) If u<%, then
1 (6.4)
¢(G) - 4 o, .

the upper bound being aitained only when lE% (mod 1).

(i) If azé, let n be the non-negative integer determined by
1 1 1 1 1 1 1 3 5
“m2 - o - 2 - o e~ m2 - —
Pt gTa<i+ 1P+ I+ +g=gnttInt g (6.5)
Then
1 1 1 1 1 1 1
= — T m2 o f Zp2 Z < << 2 _ =, K
d(a)=a 1" if i +4n+8_a_4n +2n+2 (6.6)
1 2 1 1 1 1 3 5}
={= —a 4} SmE a4 = = “pe 4 2 z.
¢ (o) (2n+1) a if ik +2n+2<a<4n +4n+8 (6.7)

Moreover, the upper bound ¢ (a) is attained only when lE%n (mod 1), or when

1 1 1
= _m2 st - =
o= n +4'n+8 and 2A=0 (mod 1).

Proof: (1) If a<%
Then

DO | =i

we choose, for any A, an integer z, to satisfy |z, + 4| <

1 The graph of ¢ (x) for «=0 is easily seen to be a zig-zag line with peaks at the points
1 1 1
o= an + ;n + 2 (n=0,1,...). To determine the values of o for which ¢ (x) does not exceed

some given number K, the reader may find it more convenient to draw the graph of ¢ («) in terms
of « and consider its intersections with the line ¢ (x) = K.
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(2 + 2)2—1Si—a,
1
(xO + z’)2'—_“2 —o0 > a——'—4'7
so that
I(wo+/1)2—alsji—a, ¢(a)sfi-a. (6.8)
. . . 1 1
Clearly equality can occur in (6.8) only if |z, + A] = g» 50 that 1= 3 (mod 1).

. 1 .
If in fact we have 4 =3 (mod 1), then for any integer z

, |+ 1 —al =i—a,

DO | =t

either |z + A| =

-+ > - 2 o> - —
or |$ }.l——2, |(x+).) ocl_ o> o.

Hence ¢ () = i— a, and part (i) of the theorem is proved.

(ii) Suppose next that for some n =0,

1 1 1 1 1 1
" m2 Z <y << p2 — —.
n* + n+8_a_ n +2n+2 (6.9)

Then for any 42 we can choose an integer z, to satisfy

1%£|x0+1|$%(n+1).

2
Then
(g + A2 —a < i(n +1R—a<q— in“’, using (6.9);
(o + AR —a= in‘*——a.
Hence

|(x0+/1)2—a|s°c—in2, ¢(«)Sa—in2. (6.10)

Clearly equality can arise in (6.10) only if |z, + 4] = %n, A== %n (mod 1); or if

1 1 1 1 1
= Z p2 - = [ = _
a=gmt+Intg and |z, + 4| 5(n+1), A—z(n-’rl) (mod 1).
1

If now in fact we have A= 5" (mod 1), then for any integer =,

18 — 632081 Acta mathematica. 87
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. 1 1
e’ithe’r lz+l|=§n, I(x+2)2—al=a-—1n2’

or |x+l|2%(n+2), l(x+l)2—a|24}:(n+2)2—ocZoc—jinz, by (6.9),

or  (when n=2) |z+l|$%(n—2), [(z + 42 — «| 2a—i(n—2)2>a—in2.

Thus in all cases,

1 b. |(z+1)2—a|2a—in2, (6.11)

so that ¢ (a) = o — inz, and therefore ¢ (a) = a — inz.

It may be similarly verified that (6.11) also holds when o = inz + in + 8 and
A= %(n + 1) {mod 1).

(iii) Suppose finally that

1 1 1 1 3 ]
St 4= - i S 2.
" +2n+2<a<4n +4n+8 (6.12)

For any 1 we can choose an integer z, to satisfy
1
%(n+ 1) S|x0+).|§§(n+ 2).
Then
(g + A2 —a = i(n +12—a>« —i(n + 2)2, using (6.12);
(g + A2 —« Si(n + 22— a.
Hence
[(zo + A2 — | < i(n +22—a, ¢(a)= %(n + 22— a. (6.13)
. . . 1 . 1
Equality can arise in (6.13) only if |z, + 4] = é("’ +2), ie. if A= 5" (mod 1).

If in fact we have 4 E%n (mod 1), then for any integer z,

etther |z+1|=%(n+2), |(x+l)2—*a|=i(n+2)2—a,
or  |z+ A= (n+4), I(x+}.)2—a|2£(n+4)2—a>i(n+2)2—a,

or |z +A|=<_n, |(x+1)2—a|_>_a—in2>i(n+2)2—a, by (6.12).

DO b=t DO
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Thus in all cases

Lb. |(x+1)2—a|zi(n+2)2—a,
so that ¢ (a) = i(n + 2)2—«, and therefore ¢ (o) = %(n + 2)2—a.

We note that Theorem H may be simply deduced from Theorem J, though we
do not give the deduction here.

7. A weaker form of Theorem H was used by Davenport [1] to obtain an
estimate for M (f) in terms of a value a assumed by f(z,y) for coprime integers
z,y; and Theorem H itself was applied by Varnavides [1] in the same way to
deduce a cdrrespondingly stronger estimate. We shall not go into details of these
results, but we shall make frequent applications of Davenport’s method.

Let f(z,y) =ax® + bxzy + cy® be a real non-zero form, so that a # 0. Then

, 2
11 )] = lal| (s + 55 0) — g0

If P = (z,,4,) is any point, we have

D

b 2
|f(w + 2y, 90)] = |a] (u + % + 2_‘ayo) —myﬁ

H

from which we deduce at once
D
M (5 P) < lal o () @)
As a corollary, we have

Theorem K. Suppose that for some K >0 the inequality
D K
2] < 7.2)
¢ ( ta Y ) l al (7.2)

holds for a complete set of incongruent values of y (mod 1). Then M (f)< K, and
moreover M (f; P) < K except possibly for those points (if any) for which there is
equality in (1.2) and also in the relevant equality clause of Theorem J, where

A=z + —y. (7.3)

It is sometimes possible to obtain the precise value of M (f) by using Theorem K.
As Varnavides [1] has pointed out, Heinhold’s results, [1], for norm-forms f. (z, )

may be deduced very simply from Theorem K and the case B =i of Theorem H;
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and these estimates are known?! to be best possible for many general classes of forms

Im(z, y). By applying the stronger Theorem J, we have been able to find simple

proofs for the minima of some further classes of norm-forms.

Theorem 1. Let

—1
fn (@ y) = 2* + 2y — 92,
where
m=02n+12—4, n=3.
Then
nt+n—1
M) =373
and is attained only for points
n n+2 n+1
= 4+ {= ’ .
P _(2+2(2n+3) 2n+3)

Proof: (i) Take f(z,%) =[m(z,¥), and let K= (n2+n—1)/(2n + 3).

[2K]=n—1, we have
¢ (2—: yg) =K
by Theorem M, provided that
%”yzsln i(n—l)z,
and, by Theorem J, also, provided that

1 1 1
= 2 — <7 = 2 <7 L g2
4(n+1) K_4my_K l—4n.

Substituting for K and m, (7.5) becomes

n+1
9n+ 3’

lyl=

and (7.6) becomes
n+ 2
2n+3

b <lyl=

where
2nP+3mE+4n+ T

1
- L >3,
@n+3p@En—1) & "PC"

B o

We may therefore replace (7.8) by the smaller range

Since

(7.4)

(1.5)

(1.6)

(1.7)

(1.8)

1 See INKERI [3], pp. 17—26, where an omission in Varnavides’ proof is also rectified.
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n+ 2

< < .
lvl <5553

(1.9)

DO | =

The intervals (7.7), (7.9) clearly include a complete set of incongruent values of y,
so that by Theorem K, M (f) < K, and M (f; P) < K except possibly when

n+1 x+1
2n+ 3

Il

y=*t yE%(n—l) (mod 1),
which gives the points stated in the Theorem.
(i) It remains to show that M (f; P) = K where

P=(Z"+ n+ 2 n+1).
2 2(2n+3) 2n+3

For this we use Theorem B.
The fundamental solution of the Pellian equation £ —mu? =4 is clearly given
by t=2n+1, u =1, giving the fundamental automorph

n m
T= (1 n+ 1)
of f(x,y). Now it is easily verified that T (P)= — P. Hence by Theorem B, if
M (f; P) < K, there exists a point (z,y)= + P with |f(x, )| <K and

K(it+2) nt+n—1 1
2 - =,
v<—p @nrip—4 -1
ie.

IM<1-
2

Since f(z,y) = f(—z, —y), it follows that there is an integer u for which

n n+2 n+t+1
|4u+§+4n+§2n+9 <K
ie.
nt+n—1 nt+n—1
= |2 _mrr—1 —
gu)=J]u*4+n+1u 2n 13 |<K Im 3 (7.10)

But it is easily seen that ¢g(0) =g(—mn—1)= K, and that g(u) > K for u >0,
—n— 1. Hence (7.10) cannot be satisfied, and so M (f; P)= K. In view of (i) we
now have M (f; P) = K, as required.

Theorem 2. Let

fm(x’ y) = xz_myz’
where
m=02n+12—2, n=2,
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Then

M(/m)=8n3+6n2-—6n+l=( 1)( 1)’

5m "\ w

and s attained only for points

11 =»
E+ ~y - T =1
P "(2 2 m)

Proof: (i) Take f(z,y) = 222+ 2(2#n + 1)zy + ¥*, which is equivalent to /n{(z, ¥)
under the transformation (z,y)—> (2% + 1)z + y, z). Write

3 2 _
K=8n + 6 6n+1=(n—l)(l——1~)-
2m 4 m

Since [K] =n—1, we have

1 1
s 2) < Z .
s(3me) = 3K (7.11)
by Theorem H, provided that
1 1 1
- 2 <7 — 2 =
™y _4(n 1)2 + 2K, (7.12)

and also, by Theorem J, provided that

Loy lg (7.13)

1 1 1
- 2‘—‘—K<‘ 2 <7
g P K= myt= gt +g

Substituting for K and m, (7.12) reduces to
n(2n+1)

< 7.14
|yl o (7.14)
and (7.13) reduces to
2 —
kn5|y|s2_uﬂ’_1, (7.15)
m

where »

k= 7—2{(% + 12— 2K} <1, when n = 2.
Thus (7.15) may be replaced by

1 2n2+3n—1 ni2n+1)

e 7] et L S N LA G L) .

p<lysiEinzl_ i (1.16)

The intervals (7.14), (7.16) clearly include a complete set of incongruent values of v,
so that by Theorem K, M (f) < K; and M (f; P) < K except possibly when

4 n(2n+ 1),

y==x m+%(2n+l)yzé(n——l) (mod 1),

which gives the points stated in the theorem.
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(ii) Returning to the form fn(z, y), we have to show that M (fn; P) = K when

11 =n
P= (5’ h ;) '
For this we use Theorem B, as in the proof of Theorem 1. The analysis is rather
more complicated, since the bound provided by Theorem B is not an absolute con-
stant, but depends on #.

The fundamental solution of the Pellian equation 2 —4mu? =4 is given by
t=8n(n+1), wu=2n+ 1, yielding the fundamental automorph

_[(¢n(n+1) m(2n+1)
T‘(2n+1‘ 4Mn+D)

of fm(z,y). Now it is easily verified that T (P)= P. Hence by Theorem B, if
M (fm; P) < K, there exists a point (z,y) = P with |fa (2, )| <K and

Kg+2) 1 1 1)4n2+4n+1
Rt L LY P 22 =t o
v < D 2(” 4)(1 m) 4nt 4+ 4n—1
so that crudely

YR < s n. (7.17)

Since (z,y)= P, we may set

where u, v are integral, and then

1\2 1 =)\®
(u-i—é) —m(v+§-;b)

We subdivide the argument into two main cases, according as v =0 or v <<O0.
Suppose first that v =0, and that

|fm (2, 9)| = <K.

u+%|2(2n+1)(v+l)-

2
Then
fn(@ )= 2n+ 1)2('v+ })2—{(2n+ 1)’—2}(v+ 1—2)2
’ 2 2 m
= 2(v+})2+ n(2'v+1)—@—221+n-n—2>n>K.
2 m 2 m

If, however,

1 1
1< — )} —
u+2|_(2n+1)(v+2) 1,



280 E. 8. Barnes and H. P. F. Swinnerton-Dyer.

then

_f,,,(x,y)z{(2n+1)2—2}(v+%—%)2~{(2n+1)(v+%)—1}2

=(n+1)2v+1)—2 +13_1+__2 7.1
n+1)(2v+1) ('v é) . (7.18)
For v =0, (7.18) gives

1 =
J— =2n—= —_— M
In@mo)Zn—g + > = K;

if v=1, we write (7.18) in the form

—fm(® )>n(2v+1)+v——1—2vz+n—2
m 7y— 2 m

where by (7.17)

1 =n)\? 1
o2 oL R S
<(v+2 ) y<2n.
Then
—fm@y)=n@o+ 1)+ Ll +nj>2n+l+@—2—>K
m (%, Y) = v 3 n = .
Suppose next that v<<—1. Write v = —w—1, so that w=0 and

Im(2, y) = (u + %)z—m(w + % + ’%)2= (u + %)2—m(w + %)z—n&w + 1)*‘75'

If now

u+%l2(2n+1)(w+%)+l,

we have

2

f,,,(w,y)Z{(2n + 1)(w +%) + 1}2— (@n + 1)2—2} (w + %)2—n(2w+ 1)~%

1\2 n? 5 n?
= + + -} ——= —_—— ——
(n 1)(2w+1)+1+2(w 2) _n+2 > K.

If, however,

1 1
il =4
u+2‘_(2n+1)(w+2)

then we have

—fm(@y) = — (2n + 1)2 (w + %)2+ {2n+ 1)2—-2}(w + %)2+ n2w+1) +%

=n(2w+1)+’£—2(w+%)2- (7.19)
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For w =0, (7.19) gives
__f (w )>n_l+n_2=K
m\%, Y¥) = 2 .

For w=1, we have by (7.17)
1)2 1 n\2 1
= Z — ) = 92 =
(w+2)<(w+2+ ) y<2n,
and so, from (7.19),

n? n?
—_ —_——y > —_—
fon(@,y)>n@w+ 1)+ n=2n+ —> K.

In all cases, therefore, we have proved that the inequality | fm (, ¥)| < K cannot

be satisfied with (z,y)=P, 2 < %n This contradiction shows that M (f.; P) = K.

It now follows from (i) that M (fm; P) = K, as required.

For the positive values of n excluded in Theorems 1 and 2, we note that
1
1

The results are, however, valid for n = 2, m = 21, as we shall show in our next

(i) Theorem 1 is false when n =1, m = 5; Heinhold [1] gives in fact M (f;) =

theorem,

(ii) Theorem 2 is true for n =1, m = 7, but it is more convenient to deduce
the result as a particular case of Theorem 5 below.

Theorem 3. If

fa (z,y) =2+ zy— 592,
then

M(le) = ?’

2 3
P=J_r(;1,-).

and s aitained only for points

Proof: Part (ii) of the proof of Theorem 2, together with the fact that

() -
a\p’q 7’

shows that M (fy; P) = ? for the points P quoted in the enunciation.

Making the transformation (z,y)— (z + y,y), we have therefore to show that

for the form
f(@,y) =2*+3zy—3y?
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we have
M(; P)<, (7.20)

-3 QO

whenever P = + (—;{1, ,—?)
Now
[ (=, 9)| =

3.\t 21,
(x + 2y) n Y| =
and so, applying Theorem J, we see that (7.20) holds if P = (z, y) satisfies

o0, 1.5 1 5 _1._5
gV gty T 1T 1% <o

and therefore if

[a—

3 1
— = < -
];l/|<7 or 7<|:t:[ 5

Any exceptional point P (i.e. a point for which (7.20) does not hold) must therefore

lie (mod 1) in the region

<g<3, S<y=<-. (1.21)

-3 -
3
-2 W
-3

Now the fundamental automorph of f(z, y) is
13
- (1 8
Since M (f; P) = M (f; T (P)), it follows that any exceptional point must also satisfy
—%Sx+3y£%(mdl) (7.22)

But the only points satisfying (7.21) and (7.22) are

o= (33 (9

which are congruent to the excluded points + ( — 1, §)

7
8. The proofs of Theorems 1, 2 and 3 above may serve as a model for many
of the proofs which will be given in this and later sections. Although there may
be considerable variation in detail, the basic pattern is as follows:
(i) Taking K as the supposed value of M (f), we apply Theorem J to f(z, y)
(or suitably chosen equivalent forms) and so find a set R* of points P for which
M (f; P) < K.
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(ii) We call P an exceptional point if it satisfies M (f; P) = K. Since M (f; T(P)) =
= M (f; P), it follows that an exceptional point cannot transform (mod 1) into the
set R* under any automorph T of ! (z, y).

Occasionally (as in Theorem 3) we need use this principle for a finite number
only of transformations T' in order to determine all the exceptional points. More
often, however, we must use Theorems C or D, the transformation 7T of these
theorems usually being taken as the fundamental automorph 7T, of f(z, ).

(i) When the set C of incongruent exceptional points has been found, it re-
mains only to establish the value of M (f; P) for these points. If now C is finite,
it may clearly be divided into subsets, each of which consists of a point and its
transforms under powers of 7;; Theorem B may then be applied to each subset,
precisely as in Theorems 1 and 2. ‘

The method fails if C is infinite. We shall meet this case only in Theorem 7,
where we have to deal with a set {T"(P)} (n =0, 1, 2, ...) arising from an applica-
tion of Theorem C. A modification of Theorem B proves to be sufficient, together
with the fact that the set has a fixed point F of T as its limiting point.

It is clear that the applications of Theorem J in (i) yield a set R* which is
strictly contained in a finite number of hyperbolic regions

|f(u+z, v+ y)|<K (u, v integral). (8.1)

Two obvious objections can therefore be made to the method outlined above. First,
would not the use of the hyperbolic regions themselves, combined with (ii) if ne-
cessary, give a simpler proof of the result? Secondly, what guarantee is there that
a set R*, obtained either from Theorem J or from consideration of a finite number
of regions (8.1), is large enough to enable one to carry through part (ii) of the
method ?

The answer to the second objection is provided by Theorem B. For suppose
that Theorem B (iii) gives the bound |y| < C. Then if R* is the part of the unit

square $ contained in the finite number of regions (8.1) with [v| <C + %, it follows

that any point P either is exceptional or transforms into R* (mod 1) under some
power of the fundamental automorph 7T,. In some cases, in fact, the set § —R*
obtained in this way consists of a finite number of isolated points only, and then
the use of automorphs is unnecessary; as examples, we may quote the proofs of
M (f;) and M (f,,) given by Inkeri [5].

However, it may be very difficult to specify the set R* obtained from hyper-
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bolic regions, particularly if the number of these is large. The use of Theorem J,
which defines a set R* by means of linear inequalities, is therefore preferable, in
general, from the point of view of numerical detail.

Thus the essential question is whether, by using Theorem J instead of con-
sidering the regions (8.1), we are left with too large a set $ —R*® to eliminate by
applying the automorphs of f(z,y). The answer to this question seems to depend
mainly on the magnitude of the fundamental solution of the Pellian equation
2—Du?= +4. If this solution is large (in comparison with D), the set § —R"*
must be correspondingly small before the hypotheses of Theorems C or D can be
satisfied, and the loss involved in using Theorem J may be too great. Clearly, also,
part (ii) of the method will not normally succeed if the set § —R* contains fixed
points of T, or — 7T, which are not exceptional points; and the number of such
fixed points is very large when ¢, u are large.

In the proofs given below, in which the method outlined above is successful,
either the solution of the Pellian equation is fairly small (¢ being always less than
2 D), or (as in Theorem 8) it is not necessary to apply the fundamental automorph.

Finally it may be noted that, with an appropriate choice of the constant K,
the above method may clearly be used to isolate the minimum M (f) or to establish
the value of M, (f), M;(f), ... However, the arithmetical details become very com-
plicated if too small a value of K is chosen, and for this reason we investigate only
first minima, except when the second minimum can be obtained without a great

deal more trouble.

Theorem 4. Let
fm(zy) = 22— my?

where
m=_2n+12+2, n=1
Then
8n®+6n2+6n—1 2nt+1
M (/m) - 2m =n— Am ’
and 1is attained only for points
11 »n+1
=+ (z, 2 + °—
P=4 (2 2 + m )

Proof: (i) Take f(x,y) = 2% + 2(2n + 1) zy — 242, which is equivalent to fu (%, y)
under the transformation (z,y)— (¢ + (27 + 1)y, y). Write

8n3+6n2+6n—1=n_2n2+1.

K= om Im
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Since
/@) ={e+@n+1)y}2—my],
we have
M(; P)<K (8.2)
provided that
¢ (my?) < K. (8.3)
Clearly [2K] = 2n—1, so that (8.3) holds if
my* < K + i(2n—1)“’ (8.4)
or if
i(2n+1)2—K<my2<K+i(2n)”. (8.5)

On substituting the value of K, (8.4) becomes

1 n+1_

lyl<§——— (8.6)
Also, using the inequalities
1 1 =n)\? 1 1\2
= 2 _ S%), p2 229,
4(2n+1) K<m(2 ) n+K>m(2 )

which may easily be verified for » =1, we may replace (8.5) by the smaller region

<lyl=;—-- ®7
Next, since

b

sr@al={y—F@n+ naf'~ Imes

(8.2) also holds if

¢ (i ma;2) < % K. (8.8)
Since [K]=n—1, (8.8) 18 true if
imx2<%K+ i(n—l)* (8.9)
or if
i(n+l)2~—%K<-}imx3<%K+in2. (8.10)

Using the inequality
2
m{2 K + (n—1)2}>(2n2+n+ 1+ 1 ) )

2n+1

which can be easily verified for n =1, we may replace (8.9) by the smaller region
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1 1 1 2n+1 1
< = 2 - . .
|z] (2n +n+1+2n+1) 3 5 Gni ) (8.11)
Also (8.10) may be written as
2nt4+n+22<miP<m@n®+2n)—2n2—1 (8.12)

. . . 1
where the expression on the right is greater than Zm’ for n =2. Thus for n =2

we may replace (8.12) by
2n2 +n + 2
m

L

<l|s|=3 (8.13)

(i) If n=1, m =11, the results of (i) hold as far as (8.12), but this latter
inequality gives only

&ﬁiﬁi§<hp<ﬁ§. (8.13)
m 11
However, using the automorph
U-— (1 0)
3 -1

of f(z,y) =2®+ 6xy— 29?2, it is easily shown that (8.2) still holds for all points P
satisfying (8.13). For, by (8.13)" and (8.6), we need consider only points satisfying

—§~0S$Sl——§—9, igyﬁl—5-°
11 11 22 2
These inequalities give at once
|3x—-y—~1|<4——'13,
22

whence, by (8.6), U(P) = (x, 3x —y) is not exceptional.

(i) We have therefore shown that, for any » =1, (8.1) holds if P = (z, y)
satisfies (8.6), (8.7), (8.11) or (8.13). Any exceptional point must therefore lie (mod 1)
in one of the six regions:

1 2n+1 1 __ 1 2n—1
2 m m2n + 1) T=3 m
Rai: 1 a+1 1
n n
_ <7 - —
2 m y<2 m
1 2n+1 1 < 1 2n—1
2 m m@2n+1) 2 m
R,:
11 _ 1.1
2 ¥=3
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1 2n+1 1 1 22—1
i <> __
2 Tm Tm@ni]) "3 T a
Rs: 1 1 n+1l
n n
S+ 2 <-4 2=
2+m<y 2+ m

and the images Ri, Rz, R: of these in the origin.
We now use the transformations

(1 0 ! —2(2n+1))
U_(2n+1 —1)’ V"‘( 0 1 ’

which are automorphs of f(x, y) of finite order.
(a) Suppose that P€R,. Then we have

(n——l)+%+n;;2<(2n+1)x—yﬁ(n—l)+%+3n+3

and so U(P)= (z,(2n + 1)z —y) cannot be congruent to a point of any of the
above six regions. Hence no point of R, is exceptional; by symmetry, no point of
Ri is exceptional.

(b) Suppose next that P€R,. Then we have

—(2n+3)+%———2nm_1S—x-—2(2n+1)y<—(2n+3)+%+6n+7 L

2m _(2n+1)m’

with equality on the left only if

(x,y)=(2 2m ’.5..+ m

1 2n2—11 n+1)=Po. (8.14)
This inequality shows that V (P)=(—z—2(2n + 1)y, y) cannot be congruent to a
point of R,, Ri, Ry or R; unless P = P,. Hence the only exceptional points of R,
and R; are + P,.

(c) Suppose finally that P€R,. Then we have

1 1 1 2n+3
n—§+;1<(2n+1)x——y<n—§+ oy

so that U(P)=(z,(2n + 1) —y) cannot be congruent to a point of R, or R;.
Also, since U (Py)=P,, U(P) cannot be congruent to + P,. Hence no point of
R, or R; is exceptional.

(iii) We have now shown that (8.2) holds for all P, except possibly when
P= + P,. To complete the proof of the theorem, we have therefore only to show that

M(f; P,) = K. (8.15)
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Now the fundamental automorph of f(z,y) is

=( 1 2@2n + 1)

2n + 1 2(2n+1)2+1) = -uv,

corresponding to the solution t =220 + 12+ 2, u=2n+1lof 2—4mu2 =4, Itis
easily verified that 7' (P;)= — P,.
If now M (f; Py) < K, Theorem B shows that there exists a solution of |/ (z, y)| < K

with (z,y)= + P, and
Kitg+2) 1 1
2 7z padPres
¥ < D 3 K< 5"
and, since f(—z, —y) = f(x,y), we need consider only solutions with (z,y)=P,.
But it may easily be shown that |f(z,y)| = K for all such points (z,y); we omit
the details, since they are exactly parallel to those of Theorem 2 (ii).

Thus M (f; P,) = K. Since

it follows that M (f; Py) = K, as required.

Theorem 5. Let

fz, y)=na?+ nzy—(2n—1)y% where n=2.
Then
(2n—1)2

M) =5, —;

and is attained only for points

N 2n—1 4n—2
Pzi(gn—4’_9n—4)'
. _@n—1)
Proof: Set K = ry—
(i) We have
. 1\ 9n—4 -~ . o n P n(9n—4) .|
If(z,y)]—n.(x+§y)— T v =02n l)l(y 4n——2$) 4(2n_1)2z
Hence
M (¢, P)<K (8.16)
either if

9n—4 K (2n—1)
( in y2)<7fn(9n—4)’ &17

or if
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n(9n—4) 2) K _2»n—1
(4@n—¢yz <%n—1_9n—4 (8.18)

The r.h.s. of (8.17) lies between i and %, since » = 2, and the r.h.s. of (8.18) is

less than } Theorem J now shows that these inequalities hold if

4
9n—4 ,  (2n—1p
in ¥V Sa@n—4
or if
1 2n—1 _n(On—4) , 2n—1
4 9n—4 - 4@n—12" Son—1’
and so certainly if
4n—2 2n—1 1
, <-.
lvl<g,=3 o go—a<lel=3

(ii) Any exceptional point P must therefore lie (mod 1) in the region R defined by

2n——1’4n—2$ys5n-—2.
In—4 9n—14 In—4

A

is an automorph of f(z,y), and if P = (x,y)€R we have

lz] <

Now

90 —1 on—1
—_— <] — .
gn_d-rtYv=l-g Ty

(8.19)

Hence U(P) can be congruent to a point of R only if there is equality on either
side of (8.19), i.e. only if

(2, 9) = _2n—1 4n—2) 2n—1 5n-—2).
¥ 9n—4 9n—4 9n—4 9n—4

(iii) The only possible exceptional points are therefore those congruent to + P,,

P =(2n—1 __4n—2)_
" \9n—4" 9pn—14

where

We complete the proof of the theorem by showing that M (f; P,) = K.
It is convenient to make the transformation: X =z, ¥ = z—y, so that

fzy)=X24+Bn—2) XY —(2n—1) Y2 = F(X,Y), say,

19 — 632081 Acta mathematica. 87
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and P, becomes
2n—1 6n—3
Qo = (%o, ¥o) = (m 97:':4)

The fundamental automorph of F (X, Y) is

2 6n—3
r= (3 9n— 4)’
corresponding to the solution t =9n—2, u=3of 2 —n(9n—4)u? = 4. Itis easily
verified that T (Q,) = Q,.
Suppose if possible that M (F;Q,) < K. Then, by Theorem B, there exists a
solution of |F (X, Y)|< K with (X, Y)=@, and

Y2<K(t+2)=(2n——1)’. In

D 9n—4 n(On—4)
le.
6n—3
lYl<9n—4.

We need therefore consider only the values

2n—1 3n—1 .
(X,Y)= (u+9n_4, —9n—4) (w integral). .
Then
_f,, n—1\ nQ@Bn—1)
F(X’Y)‘(“ 2 ) 1O9n—4)
and it is easily seen that
i _n@Bn—1® 1 e
mmlF(X,Y)|—4(9n*4) J(n—12 =K. (8.20)

This contradiction shows that M (F; Q,) = K; and from (8.20) we see that there-
fore M (F; Q,) = K.

The form f(z,y) = na® + nzy — (2n + 1)y (n=2) may be treated by exactly
2n + 1)2
9n + 4
(i) and (ii) of the proof of Theorem 5 go through, with only changes of sign required,
to show that M (f; P) < K except possibly for P = + P,, where

P_(2n+1 _4n+2).
° " \9n+4  On+4

the same argument as that used in Theorem 5, taking now K = . Parts

However, the proof that M (f; P,) = K breaks down if n < 4; the result is in fact
not true if n =2, 3 or 4.
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We therefore state without proof:
Theorem 6. Let

f@,y)=n2®2+nzy—(2n+1)y%, n=5.
Then
_@n+1p
M) In+4
and s attained only for points

P=+

(2n+1 _4n+2).
In+4  9n+4

We may note that the values n =2, 3 give f(z, y) equivalent to the norm-forms

fu (@, y) = 22 — 11 42,
fos (@, ¥) = 22 + xy — 23 2,
respectively. The first of these has been dealt with in Theorem 4 (the particular

case n=1), and the second will be considered in Theorem 10 below. If n =4,
f@,y) =422+ 4zy—94? and it may be proved that

1 _@nr1p 8l
Mh~0<9nta 19

In each of these cases, though the value of the minimum is less than that
given by Theorem 6, it is in fact taken at the points quoted in the theorem and
at no others.

9. As a final example of a general class of norm-forms fn (z, ), we shall con-
sider the forms

[m(x,y) =2*+ xy—i(m—l)y’ 9.1)

with
m=0@n+12+4, n=1. (9.2)
These are the only non-zero forms known to us for which the inhomogeneous
minimum M (f) is unattained. The particular case n = 1, m = 13 has been investi-
gated by Inkeri! [4], who proves, using the technique of Davenport [1], that

M (f13) = % and is unattained. He also states that M (f,5; P) = i% for all points P

L. so that in our notation M, (f;3) = 4

at which M (fs; P)# 33 13’

1 We are grateful to Professor L. J. MoRDELL for bringing INKERI'S resultg to our notice. An

1
announcement that M (f;5) = 5, and is unattained, is made in the final footnote of INKERI [3].
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We shall show that in fact M, (f;5) = and that entirely analogous results

4
13°
hold for the general form (9.1), (9.2). The first part of the proof (Lemmg 3), in
which Theorem C plays a fundamental role, goes through generally for » =3, and a
slight modification deals with the cases n =1 and 2. The final investigation of the
minima at the exceptional points (Lemmas 4, 5, 6) is valid for all n = 1.

The complete theorem is most conveniently stated in terms of the form f(z, y) =
=%+ (2n + 1)zy — y?, which is equivalent to f, (z, ¥) and has an obvious symmetry.

Theorem 7. Let

e, y)=a*+ 2n+ V)zy—9y? n=1 (9.3)
Then
. 203 +n2+2n—1 202+ n2+2n—1
) M P) < 4nt+4n+5 m ’ (94)
except when P 1is congruent to a point of one of the following three sets:
n n
: + , + ;
G (_2n+1 ’“2n+l)
2 2 2
C,: i(2% +n+1’2n3+n+3)’ i(2% +n+3,___2n-|‘-n+l);
m m m m
0 1 k 0 —1\ /0 1 k
G i(l 2n+l)P°’ i(1 o) (1 2n+1> By,
where k is any integer and
{1 1 n 1
P =(—— s + _); 9.5
2 2Vm 22+1 @Qn+1)Vm ©-5)

(ii) For these exceptional points we have

M(f; P)= 27:‘1 ;=M (f) if PeC, or P€C,,
M(f; P) = 2"””1:2”_1 = M, (f) if P€C,;

and if P€Cy the minimum M (f; P) = M (f) is unattained.
Lemma 3. Apart from the exceptional points guoted, (9.4) holds for all n = 1.

2n3+n’+2n—1-
m

Proof: . Set K =
(i) We have
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b

{9 = {z-i— %(27&4- l)y}z—imyz

so that (9.4) certainly holds if

¢ (imy*) < K. (9.6)
Clearly [2K]=n —1, so that by Theorems H and J (9.6) holds if

1 1

- 2 - — 1)
1My <K+4(n 1)
or if

1 1 1
= b-J— Py 2 — 2
4(n+1) K<4my<4n + K,

and these inequalities simplify respectively to

2P +n+1 ‘
Iyl <= G0
m
and
2
2m +mn_i___3<ly|<;]"z]/(4n4+12n3+9,n2+8n—4). (98)

(i) If now n=3, the r.h.s. of (9.8) is greater than l Then (9.7) and (9.8)

2
show that any exceptional point must satisfy
2nt+n+1 2n2+n+ 3
< <L — : 9.9
I <]y < TS (mod 1); 99)
and since f(z,y) = f(—y, z), it follows that also
2 2
2nitntl_ |z] < 2nt+tmn+3 (mod 1). (9.10)

m - m
This result is also true for n = 1, 2 as we now show.

@) In=1 m=13, (9.7) is

4
|y|<ﬁ’

and the interval (9.8) no longer exists. Thus exceptional points must satisfy
2 <lal, |yl <L (mod 1) 9.11)
13 ’ 2 )

We now use the fundamental automorph
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()

of f(z,y) for n = 1. For points P = (z, y) satisfying

4 _ 9 6 7

E__zﬁ—ﬁ’ '1—3<y<T§’ (9.12)
we have
%<z + 3y<1;’%,
le.
|z+3y—2|<—4—- (9.13)
13

Since I'(P) = (y,z + 3y), (9.13) shows that T'(P) does not satisfy (9.11) and so is
not exceptional. Hence no exceptional point lies in the region defined by (9.12).
By symmetry, it follows that no exceptional point lies in the region

6 7 4 9

— — - S S " .
B3<"<13 B3 Y13 (9.14)
Thus (9.11) may be strengthened to
4 6
— < —_—
13 =2l [y|= 13 (mod 1),
which is (9.9) and (9.10) exactly.
(b) If n =2, m =29, (9.7) and (9.8) are
Iyl < 3%
29
and .
13 V208 1
g9 <lvl <59 <3
We now use the fundamental automorph
01
7-(7 o)
of f(x,y) for n = 2. For points P = (z, y) satisfying
11 18 V208 V208
— =L — ——=y <] —— .
29 =<%9 a9 V=175 (9.15)

we find as in (a) above
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76 —51208 4

— << ——
|z+6y—3|< 59 <39

?

so that T(P)= (y,x + by) is not exceptional; and by symmetry no point of the
region obtained from (9.15) by interchanging z, ¥ can be exceptional either. Thus all
exceptional points must satisfy

11 13
< << __

which is precisely (9.9) and (9.10).

(i) We have now shown that for n =1 any exceptional point must be con-
gruent to a point of one of the four regions

2 2 2 2
Re: 2n +n+1SxS2n +n+3, 2n +n+lsys2n +n+3;
m m m m
2n2+n+ 1 2n24+0n+3 2n2+n+1 2n2+n + 3
Ry —mm = —z < ’ =y ;
m m m m
2 2 2 2
R 2n +n+1s_ _<_2n +n+3’ 2n +n+1s_ S2n +n+3;
m m m m
2 2 2 2
R 2n +n+1SxS2n +n+3, 2n +n+1_<_*ys2n +n+3'
m m m m

We now use the automorphs

0 —1 0 1
U_(l 0)’ T_(l 2n+l)
of f(x,y). U is of finite order, while 7 is the fundamental automorph. It is

clear that
R.=U(R), Ri=U(R), Ra=U*(Ry), U*t=1. (9.16)

(a) Let now P = (z,y) be any exceptional point of ®,. Then

2 2 2 3

2 n n+2$$+(2n+l)y-—nﬁ nt+3n+6
m m

Since T (P)= (y,z + (2n + 1)y) is congruent to a point of one of the four regions,

we see that either

T(P) + (0, —n)€R,, (9.17)

T(P)+ (0, —n—1)€Rs. (9.18)
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(b) Consider now T7'(P)=(—@2n + 1)z + y, z). Since

272 —n—2 2n2+n+ 3

p = —-@2un+lzty+n=1-— - (9.19)
where we have equality on the right only for the one point
2 2
@, 1) = (2n +mn + 1’ 2n +mn + 3)’ (9.20)
it follows from (9.19) that except for the point {9.20) we have
T*(P) + (n,0)€R,. (9.21)

(c) The point (9.20) and the points obtained from it by powers of U are pre-
cisely the set C,. We exclude them from consideration for the rest of this proof,
so that (9.21) holds for all exceptional points in R,. The fixed point which satisfies

T (F) + (n,0) = F

n n
F=(2n+1’2n+1)' (922)

is

Theorem C now shows that any exceptional point of R, lies on the line

n n
yw2'n+1_”(z——2n+l) (9-23)
through F, where
x=%[2n+1+V{(2n+1)2+4}]=%(2n+1+V771). (9.24)

By applying powers of U to (9.24) we obtain the lines on which exceptional
points of R,, Ri{, R: must lie. In particular, the exceptional points of R, lie on

S
2n + 1

- (v + g55)- (9.25)

(d) We now go back to the results found in (a). If of the two alternatives
(9.17) and (9.18), (9.17) holds for P, T (P), T?(P), . . ., then it follows from (9.17),
(9.21) and Theorem D that P is the fixed point F of (9.22). The points obtained
from F under powers of U are precisely the set C,.

If, however, (9.18) holds for some exceptional point P € R;, then from (c), P = (z, %)
lies on the line (9.23) and T(P)+ (0, —n—1)= (y,z + @n + 1)y —n—1) lies on
the line (9.25). This gives two equations for P, whose solution is easily found to
be the point P, of (9.5).
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This proves the Lemma, and we have only to establish the values of M (f; P)
at the exceptional points. This we do by Theorem B, or a modification of it.

Lemma 4. If P€(C,, then
M(f; P) =

n2
I+ 1

(9.26)

Proof: As appeared in the proof of Lemma 3, the points of C; are all fixed
points of 7, and are equivalent under powers of U, so that it is sufficient to prove
(9.26) for the point F of (9.22). Now

/ n n )_ n2
2n+1 2n+1) 2n+1
so that

nz
In+1

M(;F)< (9.27)

Suppose if possible that there is strict inequality in (9.27). Then by Theorem B
there is a solution of

nz
I @)l < 5=
with (z,y)=F and
n? u? n? 1
< ar 17 " In+ldnsl
1e.
n
|y|<2n+ 1;

and this is clearly impossible.

Lemma 5. If PeC,, then
20+ +2n—1

M (:P)- K -

Proof: The points of C, are permuted (mod 1) by 7, and therefore give the
same value of M (f; P). Since

2 2
]‘(2” +n+l’2n +n+3) _K,
m m

it follows that

M(f;P)<K. (9.28)

Suppose that there is inequality in (9.28). Then by Theorem B there is a solution
of |f(z, y)| < K with (z,y) congruent to a point of C, and
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2<EE= K .
y t 2n+1

It is easily verified that this gives a fortior:

2n2+n+ 3
m

ly| <

Since f(z,y) = f(— =z, —y), it follows that there is a solution of

2 2
If(u 2% «l;nn+3 2n +n+1)’<K

with integral ». But

l(u_2n3+n+3 2n+n+1

> )=u(u+n——1)—K
m m

and since K < %n, the least value of |f| is given by w =0, 1—mn, |f| = K, which

contradicts the assumption above and so proves the Lemma.

Lemma 6. If P€C,, then

nz
M(EP) =5, 757" (9.29)

However, this lower bound M (f; P) is not attained for any point P of the set.

Proof: From the construction of the set C; in terms of automorphs of f(z, y),
all points of C, give the same value of M (f; P). Further, from the final clause of
Theorem C we see that the fixed points C, are limiting points of C;. Hence from
Lemma 4 and Theorem F,

M P)<M(§;C) = : , for P€C,. (9.30)

We next prove that the inequality

19 = 5 (9.31)

holds for all (z,y) congruent to a point of C;. For suppose not. Then for some

number C < and some (z,y) congruent to a point of C,, we have

nz
2n+1
(9.32)

f@nl<C<gr—
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Since T permutes the points of C; (mod 1), the argument of Theorem B shows that
if Y is the lower bound of values of |y| such that, for some , (z, y) is congruent
to a point of C; and satisfies (9.32), then

Cu? C n?
2 22 s
Y s m et @1
whence
n
Y<2n+1' (9.33)

But this is impossible, since it is easily verified that

n
2n+1

ly| >

for all points of C;; thus, for example, each point 7% (P,) (k <0) is congruent to a
point on the segment F P, of the line (9.23).

This establishes (9.31) and therefore (9.29). It remains only to show that there
cannot be equality in (9.31). From the formation of C,, if this were possible, it
would be possible with (z,y)= P,. But if we write

1 1 n 2

r=u+- — ——» =9 4 + ’
2" oVm 7 2n+1 @n+1)Vm
then
i 1 n 1 11 Vm (. _» )
f(x,y)—f(u+2,'v+2n+1)+;&f(—§’2n+1)_4n+2(t+2n+1 ’

which is clearly irrational for integral values of w, v.

Theorem 7 now follows at once from Lemmas 3—6, on noting that

n? 203 +n2+2n—1
2'n—l-1>K~ m '

10. The general classes of norm-forms fn (x, y) discussed in the preceding three
sections include- many forms of small discriminant for which the value of M (f.) was
not previously known.

As we remarked above, general estimates for M (f) have been given by various
authors, and these have been shown to be precise for many forms fn (z, ¥); while
certain other values of m have been examined in detail. If we combine the results
above with those of Heinhold [1]?, we find that the value of M (f») is now known
for all m =< 101 except the following:

1 Note however that there are some omissions and inaccuracies in Heinhold’s table (namely
for m = 23, 34, 43, 55 and 82) as has been pointed out by INxErI [3].
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Im(z,y) = 22— my?, m =19, 22 31, 43, 46, b8, 59, 67, 70, 71, 86, 94; (10.1)
In@ y)=2*+z2y— i(m— 1)y2, m = 33, 41, 57, 61, 73, 89, 93, 97. (10.2)

We have also obtained the values of M (fn) for most — though not all — of
the forms (10.1). (10.2). They can be proved by the technique developed above
(described at the beginning of § 8), combined in some of the more difficult cases
with a direct consideration of hyperbolic regions |f(z + 2o, ¥ + )| < K. We give
as specimens the cases m = 31, 41, 93 and (in the next section) 61.
45

31 and 1s attained

Theorem 8. If fnu(z,y) = fu (z, y) = 2 — 3142, then M (f,) =

only for points P = (O, + %)

Proof: We use the equivalent form
f(x,y) =ba®+ 22y — 647
which is obtained from f;, (z, ¥) by the transformation (z,y) > (62 —5y, x —y). The

exceptional points of the Theorem now become + (3 15) .

317 31
2
(z+1y) _3_1.:,/2

©  N@ul=5|(c+5u) —2 =6|(y—%z)2—%ﬁ

b

so that M (f; P) < %i—) if either

M) <B o (L) <2
qb(36“’)<62 or ‘f’(25y <31
By Theorem J, these inequalities are equivalent to

1 15 31, 15 31 . 9
1 62 36" <5z @ p¥ <3

which are implied by the stronger

3 1 15
=2 <z, 2.
g <lel =3 lvl<jp

{(ii) Any exceptional point is therefore congruent to a point of the region

3 15 16
¢ e < << P,y < —,
R: —gp=e=0, g7=y=g

or to a point of R’, its image in the origin.
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It is easily verified by partial differentiation that f(z + 2, y —2) is a strictly
increasing function of x and y in R, so that

47 46 45
31 f(31 31)"‘(’”+2y“2)‘f( 31)<§T
. . 3 15
with equality at the lower end only for (z,y) = —30’'31 + Thus this point is the

only possible exceptional point of R.
(iii) It only remains to prove that

3 15 45
M(f,—31, ———31) 3 (10.3)
Now
3, ,_15 . o _ 4
f(u+ Ay’ ¥ 31) 5u2+ 2uv—61v2+ 6w 31’

so that (10.3) holds unless we can find integers u, v for which

but+2uv—612+6v=1 or 2.

The second alternative is clearly impossible, by considering congruences modulo 4.

The first gives
31 (5u + v)2— (31v— 15)2 = — 70,

which is also impossible since 31 is a quadratic non-residue of 7.

Theorem 9. If fn(z,4) = fu(z,y) =22 +2y—1042, then M (f,) = —§ and s

5 b 3 5
attained only for points congruent to + ( 16 1 6) + (é’ E) .

Proof: We use the equivalent form
fle,y) =222+ b5xy— 242

which is obtained from f, (z, ) by the transformation (z, %)~ (3z + 8v, z + 3y).

(i) We have
5 \2 41
|f (@, 9)| = 2 (w+1y) AL
and so
23
M(f; P) < 35 (10.4)

if

4\ 9
¢(16y)<64
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By Theorem J, this holds if

ﬂ 2<23:
16Y S 61’

and so certainly if
[y]| < 0°3744. (10.5)

By the obvious symmetry properties of f(z,y), (10.4) also holds if

|z| < 0-3744. (10.6)
In the same way, since
(T, 18, 4 2
| (, 9)| = |(2w+ 2 y) 7 @393,

(10.4) holds if

41 23
¢(T($+ 3y)2) <'§§’

and hence by Theorem J if

41 1 23 31
—_ 2 .l = =
g @F3<it33=3

b

and so certainly if
|z + 3y| < 03074 (10.7)

By symmetry, (10.4) also holds if
|32 —y| < 03074. (10.8)

(i) By (10.5) and (10.6), any exceptional points must be congruent to a point

of the region
R: 03744 <z, y < 0°6256.

For points of R we have

14976 <z + 3y < 25024, 04976 <3z —y < 1'5024.
Thus in view of (10.7) and (10.8), any exceptional points in R must satisfy
z+3y<<16926 or z+ 3y> 23074,
and

3z—y<<06926 or 3z—y>13074.

This leaves us with four regions R;, R,, Ry, R,, in one of which any exceptional
point of R must lie. R, is defined by

x>03744, y> 03744, z + 3y <1'6926, 3z —y <0°6926. (10.9)

R:, R; and R, may be obtained from R, by applying powers of the trivial auto-
morph U (z, y) = (y, — ).
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The inequalities (10.9) give easily, in R,:
0°3744 <z << 03771, 04306 <y << 0°4394.
Applying the transformation U, we have also
in R,: 04306 <<z << 0°4394, 06229 <y < 06256;
in Ry: 0°6229 <z < 06256, 05606 <y < 0°5694;
and in R,;: 05606 <z <<05694, 03744 <y << 0'3771.

(iil) We now use the fundamental automorph

7 20
T= (20 57)

303

(10.10)

(10.11)
(10.12)
(10.13)

of f(z,y), obtained from the fundamental solution ¢ =64, u =10 of the Pellian

equation 2 —41u?= —4.
If P=(x,y) is an exceptional point of R,, then from (10.10),

112328 < T + 20y < 1174277,

32'0322 <202 + 57y < 32°5878,
44122 <20x— Ty<< 4'5278.

Since T'(P) and T7'(P) are exceptional points, the above inequalities show in view

of (10.10)~(10.13):

T(P)— (11, 32)€R,,
and

T-*(P)eR, (mod 1).

From Theorem D, the only exceptional point of R, is therefore given by

T (F)— (11, 32) = F,

3 17
F‘(é’fé)'

1.e.

Applying powers of the transformation U, we now see that the only possible

exceptional points of R are

3 7 7 3
i(é’ E) and i(l—é’——é),

which correspond to the points cited in the statement of the Theorem.

(iv) It remains only to establish the value of the minimum at the exceptional
points. Since they can all be obtained by applying powers of U to any one of
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them, we need only consider one. Reverting to the original form, we need thus

5 5 23
M (fn; 16’ -1—6) =33 (10.14)

5 5 23
f41 ('1"(‘;_1: 1—6) = _ﬁ’

so that if (10.14) is false, by Theorem B there is a solution of

only show

Now

23
Ifn(x,?l)|<’3_2
. - 5 b5\ .
with (z,y)= + (16’ —1_6) and
.23 u* 575
P =
32 ¢t 512

This last inequality shows that we need only consider the values

5 5
r=ut+ 'ﬁ, Y ﬁ, (10.15)
and
5 11
x—u+-1—6a y—ﬁ'i'é' (10.16)
If (10.15) holds,
15 25
=t oy — 2,
f4l (x’ y) u® + 16“ 32
. 23 .
and the least value of |/, (z,y)| is 397 attained at ¥ = —1. If (10.16) holds,
1 155
=gt gy — 2,
fdl (Z, ?/) u 16 u 32

and the least value of |/, (z, ¥)| is %, attained at u = —2.

These results together establish (10.14) and hence the Theorem.

Theorem 10. If fn(z,y) = fos (z, y) = 22 + zy — 23 92, then M (fo3) = %— and 18

attained only at points congruent to + (%’ —;—(1)) .

Proof: We use the equivalent form

fl@,y) =22+ 92y —34¢2
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which is equivalent to fy(z, ¥} under the transformation (z,y)—> (2 + 4y, y). The

14 10
. : ey —o)
exceptional points become + (31 31)
(i) We have
9 \: 93 3 \* 31
= - —— 4 = 9 1%
|f($,?/)| (x+2y) 4?/ 3|(?/ 255) 121' ,
so that
44
M P) <37 (o1

(o) < o y(2y) <4
*112%) <93 1T Y) <31

By Theorem J, these hold respectively if

31 44 49 44 31 1 44 269
91 2 2% kA T e T A R A
12793 T3 1 T3 1" <173 "3
and
93 44 75 80 44 93 9 44 455
—_— 2 [am———— _— = ———— — 2 b —_ = .
A TR T R T i A Gl Sl Ty E
and so a fortiori (10.17) holds if
13-26 14 1
<2240 = <=z, .
[z| < T 31<lx|_2 (10.18)
or if
10 10-33 12-31
2 Ll U [ ik
(ii) Automorphs (of finite order) of f(z,y) are
—1 —9 1 0
U‘( 0 1)’ V‘(3 —1)'
Suppose now that P = (z, y) satisfies
13-26 14 10 18-69 12-31
L P R P S L B LALL )
31 P30 3TV ~ 175 (10.20)
Then
21-09 32
2 - g <2,
31 ~3TTY=3)

so that in view of (10.19), V (P) and therefore P cannot be exceptional. Combining
this, and its image, with (10.18) and (10.19), we see that any exceptional point
must be congruent to a point of

20 — 632081 Acta mathematica. 87
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13-26 14 10-33 10 (10.21)

R: 31 31 31 31

or of R’, its image in the origin.
Suppose now that P = (z,y) is an exceptional point of R. Then from (10.21),

<9y —2< ——- (10.22)

By consideration of the y-coordinate, it is impossible to have U(P)€R’ (mod 1);
and from (10.22) and (10.21), we can only have U (P)€ R (mod 1) if there is equality

14 10

31’ ﬁ) . Thus the only possible excep-

on the left in (10.22), i.e. for the point (
tional points are those named above.

(iii) It remains only to show that

M(f;P)= 44 (10.23)

14 10

when P = (31 —37

). Now the fundamental automorph of f(z, y) is

1 9
T——UV—(3 28)’

f(14 10 ) 44

31 31/ 3

Theorem B now shows that (10.23) holds unless there exists a solution of |/ (z, )| <37
with (z,y)= + P and

and T (P)= — P. Since

44

44 t+2 44

<31 D 93

Since f(z, ¥) = f(—=z, —y), we need only examine the sets

14 10
(z,y) = (u +377 -ﬁ) (10.24)
14 21
(=, 9) = (u +37 :—ﬁ) (10.25)
But if (10.24) holds,
_ 4
= — 2_____ —_—,
|f @ 9| =]|@—1) =37
and if (10.25) holds,
7\ 1323 1323 49
If @ 9l = (’”é) T 124 >l"4__ 124 I TS

This contradiction proves the Theorem.
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11. We next consider the form
fo (@, y) =+ zy— 1592

This form has occupied the attention of several writers!, mainly in connection with
the problem of the Euclidean Algorithm (cf. § 2). Rédei [1] was the first to prove
that k(V61) is not Euclidean, by finding (in our notation) a rational point P
for which

M (f,1; P) = %> 1. (11.1)

He also stated ([1], p. 601, footnote) that for every rational point either (11.1) holds
or else M (fs; P)<<1; and on this basis Inkeri (3] conjectured that M (f;) = 3—91-
Both the statement and the conjecture are false, as we shall now show; the

41 |, . ..
constant 39 is in fact the second minimum,

Theorem 11. If

fm (@, y) = for (x, 9) = 2® + xy— 1592, (11.2)
then

1611 41
M(f) = 1595 M, (f) = 39°

Moreover, M (fg,) s aitained only at poinis congruent to

66 132 67 134
+ el Bt oY T T M .
- (305 305) or & (305 305)’ (11.3)
and the only rational points at which M, (fs) is attained are those congruent to
8 17 9 17

Proof: We use the equivalent form
fz,y) =32+ bzy — 342

which is obtained from fg (z,y) by the transformation (z,y)—> (Tx—3y,2x—y).
The points (11.3), (11.4) become respectively

148 141 141 148
+ - T — Yy T ’ .
—(305 305) and i(305 305) (11.5)
and v
18 19 19 18
+ (22, 22 + (22, —25). .
-(39 39) and —(39 39) (11.6)

1 See REpEI [1], Hua and Smim [1], INKRERI [2].
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(i) We have
_ 5\_61 .,
e 9l =3|(s+ 30)'~ 5502,
80 that
MG <2 11.7)
’ ) 39 ( *
if
61 41
220 ==,
¢(36y)<117 (11.8)
By Theorem J, this is equivalent to
_6_1 2 < i
367 S 117
so that (11.7) holds a fortiori if
|y| < 0°4547,
or by symmetry if
lz| < 0°4547.

Thus any exceptional point is congruent to a point of the region
R: 04547 <z, y < 0'5453. (11.9)

(i) We now use the automorphs
7 15 01
T= (15 32)’ U= (—-1 0)’
where T is the fundamental automorph corresponding to the solution ¢ =39, u =5

of 2 —6lut=—4.
Let P = (z,y) be any exceptional point of R. Using (11.9), we find that

1000034 < Tz + 15y < 11°9966, (11.10)
30034 <15z— Ty < 49966. (11.11)

Since T (P) is exceptional, we must have either

10°4547 < Tz + 156 y < 10°5453, (11.12)
or :
11°4547 < 72 + 15y < 11'5453, (11.13)

by (11.10) and (11.9); and since 77'(P) is exceptional, by (11.11) and (11.9) we

must have either

34547 <15z — Ty < 35453, (11.14)
or

44547 < 152 — Ty < 4'5453. (11.15)
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These last four inequalities enable us to specify four incongruent regions
R (:=1,2,3,4), to one of which any exceptional point of R must belong. We
choose the notation so that R, is defined by (11.12) and (11.14), R, by (11.13) and
(11.14), Ry by (11.13) and (11.15), and R, by (11.12) and (11.15). It is easily seen
that the regions R; are permuted cyclicly by the transformation U (mod 1).

The inequalities (11.12) and (11.14) give the bounds

04562 <<z << 04635, 0°4817 <y <<0'4891 (11.16)

for points of R,. Applying U repeatedly, we therefore have

in R, 0°4817 <z << 0°4891, 05365 <y << 05438; (11.17)
in R, 0°5365 <<z << 0'5438, 0'5109 <y < 0°5183; (11.18)
and in R, 0'5109 <z <<0'5183, 0'5462 <y < 0°4635. (11.19)

Since T'(P)€R (mod 1) for any exceptional point P€R,, we see from (11.12)
and (11.16) that
T (P)— (10,22) €R, (11.20)
and from (11.14) and (11.16) that
T (P)—(—8,3)€R. (11.21)

Similar results hold, of course, for the other regions R;.

(ii) We now consider which of the regions R; an exceptional point P€R, can
transform into (mod 1) under 7' and 7"'. We show that in fact 7 (P) must lie
(mod 1) in Ry or R,, and that 77'(P) must lie (mod 1) in R, or R,.

For suppose T (P) is congruent to a point of R, or R,. Then from (11.16),
(11.17) and (11.20) we have

Tz + 16y <10°4891, 15z + 32y > 22'4817,
and so

y=15(Tz+15y)—T7(15z + 22y)
<15 % 1074891 — 7 x 22°4817 = — 0°0354,
which is impossible.
For convenience, we shall assume through the rest of this proof that all suffixes

are taken modulo 4. Then applying U repeatedly to the above result, we see that
if P; is any exceptional point of R; then

T(P)€Ri2 or Ry (mod 1). (11.22)
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An obvious formal argument from the four results (11 22) now shows that
T (P¢)€R4+1 or Rz (mod 1). (11.23)

We now define the sets ${% (5,4, k=1, 2, 3, 4) by the rule: P€Sf if P€R,,
T(P)€R; (mod 1), T'(P)€R: (mod 1). Thus $f% is a subset of R;.

In view of (11.22) and (11.23), many of these sets are empty. Thus for ¢ =1
only four of these sets need be considered, namely

S, $5%, $§% and S8
We next show that $§% can contain no exceptional points, since it is entirely con-
. . . . 41 .o
tained in the hyperbolic region |f(z, y)| < 39" For let P = (z, y) be any point in $$4.

Then from (11.19) and (11.20),

105109 < 7z + 15y < 10°5183, (11.24)
224562 < 15z + 32y << 22°4635; (11.25)
while from (11.18) and (11.21),

— 74635 < — 32z + 15y < — T'4662, (11.26)
35109 < 15z— Ty<< 3'5183. (11.27)

Combining (11.24) with (11.26) and (11.25) with (11.27) we have
179671 << 392 << 1779818, (11.28)
189379 < 39y < 18°9526. (11.29)

We now change the coordinates, writing

18 19

x=@—§, Yy=39

so that (11.28) and (11.29) become
070182 < 39 £ < 0°0329, (11.30)

00474 < 397 < 0°0621. (11.31)
Since
203 24 41

= 9 £2 I DO St o= =,
flx,y)=3¢& +8&n—37n 39§+3977+39

the inequalities (11.30) and (11.31) show at once that

41

41
':E>f(x7y)>—§§'
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(iv) We are now in a position to apply the transformation theory of Theorems
C and D. By the definition of the ${%, if P€S$’ is an exceptional point, then
T(P)€$S?; (mod 1), T'(P)eS* (mod 1)
for some m, n. Thus
P e S5, implies T (P)€ S or $§4 (mod 1), 771 (P)€ $f% (mod 1);  (11.32)
PSS, implies T'(P)€ ST, (mod 1), 77" (P) €SP, or ST (mod 1);  (11.33)
P eSS, implies T (P)€SY: (mod 1), T7*(P) €SP (mod 1); (11.34)
with the corresponding results obtained from these by cyclic permutation of the in-

dices; and the shifts are in every case unique, being given by (11.20) and (11.21),
and their analogues.

We now apply Theorem C’ to the set S$$% + S$i% and those obtained from it by
cyclic permutation of indices. The relevant fixed point is obviously the solution of

. . 18 1 . . . .
which is (55, :—3%)’ and so the only possible exceptional points of $§% + $§% lie on

the line

5— 1@( 18) 19 (11.35)

6 \"39) YT 39

Similarly, we apply Theorem ¢’ (with 7! for T) to the set $& + $&% and
those obtained from it by cyclic permutation of indices. The relevant fixed point
is the solution of

T7'(F)—(—8,3)=(0,1) + U(F)

. . 141 148 . . . .
which is (363’ :—,’%), and so the only possible exceptional points of $§% + $i% lie

on the line

5+ V61 (x — 111—1) 148 (11.36)

6 305) ~ Y 305

In particular we may deduce from this that the only possible exceptional point
of §§% is given by the intersection of (11.35) and (11.36), that is

397 7930 39 23790

P_(18 3+ V61l 19 23—V€i)
= 19 25 — V6l),

The transforms of P, under positive and negative powers of T, their transforms
under U, U? and U3, and the points congruent to them form a set at every point
of which M (f; P) has the same value. We call this set C.
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Now consider the possible exceptional points not in the set C. Then none of
their transforms under (positive or negative) powers of T can lie in any ${23:.1, so
that we must always take the first alternative in (11.32), (11.33) and the analogous
results. We can now deduce from the extension of Theorem D analogous to Theorem C’
that the only other possible exceptional points in any ${2;:.1 are the points (11.5)
and the only other possible exceptional points in any ${2s:.2 are the points (11.6).

(v) It remains only to establish the value of M (f; P) at the various possible
exceptional points we have now obtained. It is convenient to return to the original
form (11.2), the sets (11.5) and (11.6) now becoming (11.3) and (11.4) respectively.

(a) As appeared in the above work, the set (11.3) is permuted modulo 1 by
the fundamental automorph. Since

( 67 134) 1611
Inn =

305 T 2 " 308) ~ 1525’

it is sufficient to prove that the inequality

1611
|for (@ )| < 7555 (11.37)

is impossible for points (z, ) congruent to any point of the set (11.3). But Theorem B
shows that if (11.37) has such a solution, it has one with

1611 w2
2 e
V<1525 7

Since fg; (2, ¥) = fo. (—&, —y), we need only consider the cases

66 _ 132
305° YT T 305°

g 58 173,
T=UT 305 YT 3050
et 5 - 134
TTvT 305 YT T 305
et ST 171

305" Y7 305°

where % is integral. However, none of these values of (z,y) satisfy (11.37), since
they give respectively
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4 356‘ S 1744

e ( L 66 132) 4356] _ 1744
306" 305 1525| = 1525°
2
fel( 66 173)' 1(u+1) 29929| _ 2049

305" 305 2] T 6100 |~ 1525°

i (s ST, 134) ,_ 4489 _ 1611
a\"" 305" " 305 1595| = 1525°

67 171 1\ 29 241 2221
fou (u+ o> =) | = =
61 305 305 6100 1 1525

2
(b) A precisely similar argument holds for the set (11.4). Since this set is

permuted by the fundamental automorph and

8 17 41
o(fen-)-8
it is sufficient to prove that the inequality
1

Ifel(‘”: y)|<§_'

5 (11.38)

is impossible for points (z,y) congruent to any point of the set (11.4). As above,

we need only consider the cases

8 17
x—u+%: y-—-—'3—9,
8 22
x—u+§§, y——g,
17
x—u+§§, ~ 39’
Y
T AT

where u is integral. However, none of these values of (x,y) satisfy (11.38), since
they give respectively

8  17\| |{ 1\* 17629|_ 41

—_ — — e e >

for (“ * 39 39)‘ l(“ 78) 6084 ‘“ 397
( B 22) (u+}g)2_7381 .52
39’ 39 39) ~ 1521~ 39

1\* 17629]_ 41

= —_— ) —_—— | = —

f“‘(“ )’ i(“ 78) 6084 |—39’

9 22 20\ 7381 h2
fo (vt 39° 39)’ I( )‘ =

U+ =

*39) T1521| =39
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(c) It remains only to consider the set C. It is clear that it contains no
rational points, and the argument which gave (11.35) shows further that the points
(11.6) are limit points of C. Thus from Theorem F we have

41
M C) =34 (11.39)

By an obvious extension of Theorem B it is possible to show that we have in
fact equality in (11.39) and that the minimum is unattained; but the proof, while
introducing no new ideas, involves such a mass of arithmetic that we do not give it.

A slight extension of the ideas of this proof would show that there are an in-

finity of incongruent rational points having

411 Vel
M s PY > 172 S 1.
Uoi: P) > 556~ 1586~
but we have no satisfactory way of specifying these points, or the values of the
minimum at them. Indeed, we are even unable to show that this constant is best
possible, though this is probably so.

12. Of the forms listed in (10.1) and (10.2), we have also obtained the values
of M (fn) when
m =19, 22, 43, 58, 59, 70; 33, 89, 97; (12.1)
and the values of M, (f,) for
m =3, 6, 10, 15, 26, 30, 35, 42, 43, 82; 17, 33, 37, 65, 101. (12.2)

We omit the proof of these results, since no essentially new principle is involved.

The table below gives all results which are now known for the first and second
minima of forms fn (z,y) with m < 101. The second column of the table gives the
theorem in this paper in which a result is proved. The last column consists mainly
of acknowledgements to previous work, references being to the bibliography at the
end of the paper. All results for which no acknowledgement is given are here stated
for the first time. The entries under the values (12.1) and (12.2) of m contain a
complete set of incongruent points P for which M (fn; P) = M (fn) or M (fm; P) =
= M, (fn); these we denote by C,, C, respectively.

The value of M (f») is not yet known when

m = 46, 67, 71, 86, 94; 57, 73.

In these cases we have given the best upper bound known for M (f.).



The Inhomogeneous Minima of Binary Quadratic Forms.

fm(z,y) =22—my?, m=2 or 3 (mod 4).

—

315

m | Theorem | M (fm) M, (fm) Acknowledgements and Remarks
1 1 .. . .
2 5 " Varnivides {2] gives all Mi(f) (:1=1,2,3,...)
1 1 . . 1
3 3 3 Heinhold [1] gives M; C,= * (0, 5) .
6 3 1 Heinhold [1] gi M-C—Ol
" 2 einhold [1] gives M ; g—(,é)-
9 1 . . . .
7 5 12 3 Bambah [1] gives M,; Varnavides [3], Inkeri [3, 5] give M
10 3 39 | Heinhold [1] gi M-C—+(0ﬁ/) +(l 7)
3 20 inhold [1] gives M; (,= & * 30 2’ 20
19 . .
11 4 % Varnavides [2] states result; Bambah [1]; Inkeri [5].
5 .
14 2 Heinhold [1].
3 7 1 2
1 e . ==+ (32)-
5 2 5 Heinhold [1] for M; C, ( 3 5)
31 i 1 9
o =+ {2, Z
19 38 Ci=+ (2 38)
27 7
2 ol =+ S
? 22 Ci= = (0. 35)
77
23 2 16
5 207 . X 25 1 21
26 3 104 Heinhold [1] gives M; C, = + (0,5) » + (,_?,’ 52)
3 29 . . 1 2
30 3 %0 Heinhold [1] gives M; C,= + (5’ g) .
45
1 8 —
3 31
9 .
34 2 Heinhold [1].
5 17 1 3
5 2 a4 =+
3 2 7 ‘Heinhold [1] for M; C, (2 7)
11 .
38 vy Heinhold [1]}.
5 .
39 > Heinhold [1].
7 41 7
4 i = i i ; Cy=+{0,—~)-
2 1 % Heinhold [1] gives M; C,= + (0, 12)
11 829 5902 1 193
43 222 =+ =+
6 962 33 | 7 (118 2) G ( 387)
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m | Theorem | M (fm) | M, (fm) Acknowledgements and Remarks
46 M < Z, Varnivides [1], Inkeri [3].

253 .
47 2 Yy Inkeri [3], states result only.
287
5 fabidd
1 4 102
9 .
55 : Heinhold [1].
3 1
58 — = Z)-
2 G (0’ 2)
125 19
5 ) C= % (055)-
62 % Heinhold [1].
1
66 f Heinhold [1].
67 M< 2, Inkeri [3).
891 1 6
7 -_— = + —y —
0 500 Ci=% (2 25)
71 M < 2.40, Inkeri [3].
5
74 3 Heinhold [1].
7 .
78 3 Heinhold {1].
585
7 299
9 2 158
9 1311 . . 81 ) (l 73 )
hi 222 s Co=+(0,—)s + (=, —2).
82 2 398 Heinhold [1] gives M; C, "(0’164 = T
631
83 4 _—
166
86 M < 2.24, Inkeri [3].
169
7 fabidid
8 6 58
b .
91 3 Heinhold [1].
5
4 2.
9 M< 3
7 .
95 3 Heinhold [1].
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f,,.(a;,y)=x2+xy—i(m—1)y2, m=1 (mod 4).

m | Theorem | M (fm) | M, {(/m) Acknowledgements and Remarks
1 1 . .
5 1 3 Davenport [1] gives all Mi(f) (i=1,2,3,...).
1 4 .
13 7 3 I Inkeri [4].
1 8 5 1 3 6
st — i . =+ ({—s —])s + [—s—]}-
17 2 7 Heinhold [1] for M; C, = + (17 17) + (17 17)
5
21 3 7
4 23
29 7 5 29
29 6 7 4 3 5
33 — — =t =}; C,=% (=)
44 n |G (22 11)’ Ci=2 (11 11)
3 27 8 16 11 15)
— —_ i . =4 {—y -~ =} +[—r» ——])-
37 1 37 Heinhold [1] for M; C,= + (37 37) + (37 37
23
41 9 32
9 68
53 7 = —
7 53
57 M < 0.89, Inkeri[3].
1611 41 41
61 — — i = -
11 1525 39 Rédei {1] proves M 39
64 . . 18 29 (14 28)
65 i H =+ (—s—=}» + {—=2=—]}"
1 o5 Heinhold [1] gives M; C,= + (65 65) T
25
69 = i[3].
5 23 Inkeri (3]
73 M < 1; Inkeri [3], Rédei [1].
19
717 =
1 11
16 151
85 7 — —
9 85
89 1 004 287 C1=i(1497’—1497)’i(1503’—1503)‘
1 000 004 9 434 4717 9434 4717
44
3 ==
9 10 3l
97 33 679 354 C.— + (14 845 29 690) 4 (15 529 31 058) .
31 404 817 1~ \55193 55193/ — \55193 55 193
5 125 . 23 46 28 45 )
1] - — 1 . =4 {—s ——) —rny e — |
101 4 Jo1 | Heinhold[1]gives M; C, —(101 101) “(101 101
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All minima given in the table are isolated. This follows from Theorem G,
except in the cases m = 61 (Theorem 11), m = (2n + 1)2 + 4 (Theorem 7), where a
slight modification in the proof will clearly isolate M, (fm).

It will be noted that the results stated in the table for m = 97 show that the
field %(V97) is not Euclidean. In view of the interest of this fact, we now give a
direct proof of the existence of a rational point P for which (2.8) is false. We could
of course use the points quoted in the table, but these require the consideration
of a larger number of cases.

Theorem 12. If
f@y)=fy(z,y) =2 + oy — 2443

thent
374 2587 3001
M (f’ 1401’ 5604) T 2802 (12:3)
The field k(V97) therefore does mot possess a Euclidean Algorithm.
Proof: Write
_ ( 374 2587) _ 3001_
1401° 5604/ 2 802
Since
374 2587
f(2+ 1401 5604) - K
we have
M(; P)<K.
Hence if (12.3) is false there exists a solution of
|f (@, 9)| <K, (z,9)=P. (12.4)
We now apply Theorem B. The fundamental automorph of f(z,y) is
7= (5 035 27 312)
1138 6173)°
corresponding to the solution £=11208, u = 1138 of 12— 97u% = —4. It is easily

verified that
T (P) = (13952, 3153) + P = P.

Theorem B now shows that if (12.4) has a solution, it has one with

3001 u? _ 971606 761
2802 ¢ (2 802)2

3 001
1 The constant 2802 is probably M, (f,;); but the verification of this conjecture is of no real

interest.
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and so with
31171 2 587

ly| < Fong <11 +

2 802 5604 (12.5)

To prove the theorem, it is therefore sufficient to show that the inequality
|f(z, ¥)] < K has no solution with
374 2 587

TEET T YT seor

where %, v are integers and, by (12.5),

11 <0< 10. (12.6)
We write

374 2 587
g(“’”)_f('” 1401 "7 5604) =

25
5604

30670 6893
1401 °~ 1401

=u2+u(v+1— )——241)2
For each integer v satisfying (12.6), it is a simple matter to determine the value
of u for which |g(u,v)| is a minimum. The results are tabulated below, and show
that in all cases we have

l9(u,0)| = 5555 = K.
g (u, 0) = u? + (1——%)u—5 11‘:31,
(2, 0)] = 350 = K;
g(u, 1) = u?+ ( ~5%%£)u—50—i—%
|0(=8, 1) =2 — o + T > 9;
0011, 2)] = 10— 20— 22> 9,
g(u,3) = u? + (4—52624)u—286—1§4§§’—1,
|g(——19,3)| =1+ 2857>g_;

5604
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g(u,4)=u3+(5—-5%}z)u—476—%
lo(—24,4)] = 20— {20 + > 20;
g(u,5)=ug+(6—52T%Z) 714—%,
|g(24,5)[=6——%—f—f{%>5
g(u,6)=u2+(7——5%)u—1000~%,
l9(~35,6)] = 20 — 1>+ T > 20;
g(u,7)=u2+(8—5—26%z)u—1334—1—2i)—51,
lg(33,7)] = 19— 58334 1242(?1 > 18;
g(u,8)=u2+(9 5?;504)?4—1716—%,
lo(—16,8)] = 14 — 20 + =2 > 13
g(u,9)=uz+(1o—5—i?)z) 2146+11%1
[g(42,9)|=38—§%§% 1—%>37;
g(u,10)=u3+(11—5“224)'&4—2623—-%,
[g(—57,10)1=1—;;§%§+ﬁ%% =
1063, — 1) = 2= s — o0 > 5

E. 8. Barnes and H. P. F. Swinnerton-Dyer.
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192
1401’

175 192 6197

(=7 =) =1~ 550 *+ T401 ~ 5604~ K
1057
— — 2 P -
g(u, —3)=wu (2+5604) 156-|-1401
350 1057
lo(14, —3)| = 12 — S0 + 750 > 12
25 905
—_ j— 2. . _
g(u, —4)=u (3—}5604)11 302+1401
475 905
lo(19, =) = 2 — 500 + 7451 > %
25 753
— — b — —_
g(u, —Db)=u (4+5604)u 496+1401
500 753
|0 (=20, —5)| = 16 — £ — o > 15;
25 601
— —_ 2 _— [heSuen
g(u,—6)=u (5+5604)u 738+1401
750 601
|9(30, —6)] = 12 — = 2% + o> 125
25 449
R —_ g2 __ _ _—
g(u, —T7)=u (6+5604)u 1028+1401
795 449
lﬂ—2&—ﬂn—13—gaﬁ—~rﬁi>1m
25 297
— = 2 -
g (u, —8) = u (7 . 5604) ~ 1366 + {po
1025 297
lo (41, ~8)] = 28 — =2 + T > 285
25 145
o = % — P
g(u,—9) =u (8 5604)“ 1752-%—1401
950 145
lo(—38, —9)| = 4 — ot — 7401 > 3

21— 632081 Acta mathematica. 87
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g (u, —10) = u2~(9+ 52?)4)11—2186—?‘%1—,

lo(—42, —10)] = 44— pgo0 + o7 > 43;
g{u, —11) = w2 — (10 + 5—%)14—2668 — 114531,

(57, —11)] = 11— 225 _ 1~ 10,

In conclusion, we should like to express our gratitude to Dr J. W. 8. Cassels,
Prof. L. J. Mordell and Dr C. A. Rogers, who have offered detailed criticisms of

our manuscript and helped to remove several obsecurities.
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