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Parti t ion the boundary of a compact bordered Riemann surface W into four disjoint 

sets ~0, zr fl, y with ~0 and zr non-empty.  Let  t~ denote the compactification of W obtained 

by  adding to W a point for each boundary component. Define 

A 

_~ = {c : c is an arc in W - 7  from ~0 to ~} 

and F* = {c :c is a sum of closed curves in l~ z- /~ such tha t  c separates ~0 from ~r 

Determine the harmonic function u in W by  the boundary conditions u = 0  on ~0, u = 1 

on ~, ~u/~n=O along y and u is constant on each component ~ in ~ such tha t  .[~du* =0. 

Then 2 ( F ) =  ]]du][ -2, 2 (F*)= ][du[[ ~ (see Lemma I I I . l .1 )  where 2( ' )  denotes the extremal 

length and [[du[] ~ the Dirichlet integral. This result was essentially known to Ahlfors and 

Beurting by  the t ime of their fundamental  paper  on eonformal invariants [I]. We observe 

that  if W is planar and ~0, ~ are each single boundary components, exp 2zt(u + iu*)] [[dull2 

is a conformal mapping of W into 1 < [z [ < exp 2zc] [[du[[2 and the images of the components 

in/~ are circular slits and the images of the components in y radial slits. 

The purpose of this paper is to give a complete generalization of the above result to 

arbi trary open Riemann surfaces. As a consequence of our work we obtain a new class of 

conformal mappings of plane regions onto "extremal"  slit annuli analogous to the situation 

described above. 

We begin with an open Riemann surface W and parti t ion its ideal boundary into four 

disjoint sets %, ~,/~, y with % and ~ non-empty and ~ ,  ~ and ~r U ~ U ~ closed in the Ker~k- 

js compactification W of W. Classes of curves ~, :~* analogous to F and F* 

(1) This work was supported in part by the National Science Foundation under grants GP 2280 
at the University of Minnesota and GP 4106 at the University of California, San Diego. 
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are defined in 1.3. I n  Chapter  I I  we construct  by  means of an exhaust ion the harmonic  

funct ion u corresponding to the par t i t ion (~ ,  zr fl, ~,) and  in a certain sense determine the 

values of u on the ideal boundary  (roughly speaking, in the sense of limits along curves 

tending to the ideal boundary) .  We also show (II.5) the existence of a boundary  component  

of maximal  "capaci ty" .  Corresponding results are derived for a harmonic funct ion v with 

a logarithmic singularity at  a prescribed point.  

I n  Chapter  I I I  we prove our  main result: a) ~t(:~) = Hdui1-2 and b) 2(:~*) = HduH ~. The 

proof of a) depends on a highly topological cont inui ty  method for extremal  length in which 

arcs in an exhaust ion are pieced together  to form an arc in W. This method  is ascribed to 

Beurling and was developed b y  Wolontis [13] and Strebel [12]. Using it, Strebel p r o v e d  

a) in the case fi = 0 .  Pa r t  b) is proven by  establishing the formula Scdu* = HduH 2 for all 

curves c E:~* except for a subclass of infinite extremal length. Our main theorem also 

yields some uniqueness theorems for u (III.4).  

The information we have previously obtained is specialized in Chapter  IV  to the case 

of plane regions W with ~0 and  ct each consisting of a single boundary  contour.  We show 

tha t  exp 2zt(u + iu*)/HduH ~ is a conformal mapping of W onto an  "ext remal"  slit annulus 

contained in 1 < ]z] < R  = e x p  2zt/Hdu ][3 such tha t  a) the area of the slits is zero, b ) t h e  

image of a boundary  component  in y is a radial slit (or point),  c) the image of a component  

in fl which is isolated from y is a circular slit (or point), and d) in m a n y  other  cases the image 

is circular with radial incisions. An  extremal slit annulus is uniquely characterized (to 

a rotation) by the following property:  set ~ = ( R  log[z[ )-x, then Sc~[dz[ ~>1 and SaQidz[ >~ 

2zt/log R for all c E ~ and d E :~*, except  for subclasses of infinite extremal length. Our results 

imply  the classical properties of extremal circular slit annuli (y = O) obtained by  Reich and 

Warschawski  [8, 9] and of extremal radial slit annuli (fl = 0 )  obtained b y  Strebel [12] and 

Reich [7]. Even  in these classical cases however, the uniqueness proper ty  above is new. 
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L Preliminaries 

I . t .  A r c s  a n d  i - c h a i n s .  Given an  open Riemann surface W, its Ker~kjs 

compactification, in which each ideal boundary  component  becomes a point,  will be 

denoted by  l~ (see Ahlfors-Sario [2]). The following topological model of l~ r given by  I.  

Richards [10] is less well known bu t  conceptual ly quite useful for wha t  follows. Take the 

extended complex plane and remove a closed subset S of the Cantor  set f rom the real axis 

(a topological model of the  ideal boundary) .  Then remove a countable or finite number  of 

disks f rom the open upper  half plane so tha t  they  accumulate  only to points of S (to ideal 

boundary  components  of nonplanar  character). Nex t  remove symmetr ical ly  placed disks 

f rom the lower half plane and identify symmetr ic  circumferences by  the correspondence 

z -~L When  this construct ion has been sui tably carried out  the resulting surface will be 

a topological model of W and the union of W and  S will be a topological model of W. 

The definition of arc and open arc in a topological space is s tandard.  We will use the 

same terminology and nota t ion for an  arc and  the point  set determined by  it. 

A relative 1-chain v on W is a countable formal sum 

"If ~ ~ CtT~, 

where each c~ is a positive or negative integer, each v~ is an  arc or  open are in W, and given 

any  compact  set K, T~ N K is non-empty  for only a finite number  of i. 

The restriction of an  arc or closed curve ~ in l~ r to W will be denoted by  v fl W. We 

see tha t  T N W is then a relative 1-chain on W. 

Let  e o = a d x + b d y  be a differential on W. We make the following definitions. 

(i). Suppose T: ( 0 , 1 ) ~ W  is an open arc on W and  {[t,,tn]} is a nested sequence of in- 

tervals in (0,1) which approach  (0,1). Denote the restriction of T to [tn,t'~] by  Tn. Then define 

when each term on the r ight  exists and  the limit exists independent  of the part icular  ex- 

haust ion of (0,1) used. 
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(ii). I f  ~ = ~,c~vt is a relative 1-chain define 

co= 2c, y,, 

when all germs on the r ight  exist and the convergence is absolute. 

I f  is a linear densi ty  and v an  open arc I ,  ~]dz I is defined as in (i) and always 

exists ~< ~ .  I f  z=~c~v~ is a relative 1-chain we define 

I n  part icular  leo [ = (1 a 12 + [b I~)J Idol ~ a ~ e a r  density.  I f  ~ is a relative 1-chain and 

Lleol< then Leo e=sts and ILeol <Lleol- 
Suppose a t r iangulat ion of W is given and ~ c ~f is a closed curve or  arc with both  end 

points  ideal boundary  points. B y  the method  of simplieial approximat ion  the relative 

1-chain ~ = ~ O W is homologous (singularly) to a simplieial 1-chain vs. I f  a is a closed dif- 

ferential with compact  support ,  

We will also make use of the fact  t ha t  if {~l,} is an  exhaust ion of W (i.e. ~ , < ~ + t  and 

~ is smooth) a t r iangulat ion of W m a y  be chosen so tha t  ~ for each n appears as a sim- 

plicial cycle [2]. We shall use these remarks  later to simplify the evaluat ion of certain 

integrals. 

1.2. E x t r e m a l  l e n g t h .  I f  C is a family of rectifiable relative 1-chains and o[dz[ is a 

Borel measurable linear densi ty  define 

L(o,c)= foold l, 
A(~) = f f w~dx dy, 

L~(~, C). 
~(c) = sup A(~) ' 

2(0) is called the extremal  length of C. 

Traditionally, the elements of C are called "curves" .  I f  C is a family of arcs on W, the 

same definitions apply  except  c is to be replaced b y  the 1-chain c N W. 

Let  C be a family of curves. Following M. Ohtsuka [6] (see also [3]) we say tha t  a 

s ta tement  is t rue for almost all curves in C if the subfamily C" of C for which the s ta tement  

is false has ~(C') = c~. 
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The following lemma will find frequent use in this paper. In a somewhat different 

form it is due to Fuglede [3]. From the point of view of Riemann surfaces it also has ap- 

plications to the theory of square integrable differentials [5]. 

L v , ~  I. 2.1. Let {~, [ dz l) be a/amily  o/linear densities on W which satis/y lim A(e , )=  

0 and suppose C is a [amily o/ curves. Then there is a subsequence {n} such that/or almost 

all cEC, 

lira fo =la.I =0. n-)r 

Proo/. Pick the subsequence {n} so that  (without changing nota t ion)A(~.)<2-3L Set 

B,~ = A,~ U A,,+I U An+2 U . . . .  

E =  N B, .  n=l 

Then for any n, using ~n ]dz] as a competing density for 2(An), 

~(W)-l<~(Bn)-l< ~ /~(At)-1~--~ ~ 2 - t = 2 1 - n - - - ~ 0  
i=rt t =rt 

(here we are making use of the well-known result that  if a class of curves r is contained in a 

countable union of classes [.J 1~= then 2(I') -1 ~< ~2(I'n)-l; see [6]). Hence 2(E) = c~. If for some 

c E C, lira sup 5c Qndz > 0 then c belongs to all B~ and therefore to E. 

1.3. T h e  c l a s s e s  3 and  3*: s t a t e m e n t  o f  t h e  p r o b l e m .  Let  W be an arbitrary open 

Riemann surface and partition the ideal boundary into four disjoint sets ~o, ~, fl, Y such 

that  

(i) ~0 and ~ are non-empty 

(ii) ~o, ~, and ~0 U ~ U fl are closed sets in the compaetification W of W. 

Define the classes 5, 3" (or ~(~0, ~, fl, r),  ~*(~o, ~, fl, 7)) as follows. 

:7= (~: v is an arc in W - 7  with initial point in %, end point in ct} 

:~* = {z: v is a countable union of closed curves in W - ~ o -  ~ - f l  such that  

(a) all limit points of v are contained in 7, and 

(b) no component of ( l ~ r - 7 ) - v  contains points in both ~ and ~}. 

Given �9 E:7* let W1 be the union of the regions in (~V- 7 ) - v  which contain points in 
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A 

u0 and let TI be the relative boundary of W1 so that  ~1 is contained in ~. Then TI satisfies 

the following property 

(c) If ~t is a closed curve in T1, then ~1 - T t  does not satisfy (b). 

The main problem of this paper is to find ~(~), ~(~*). Therefore it is no restriction to 

assume the curves in ~* also satisfy (c). Then the curves in ~* may be oriented so that  ~0 

lies to the left. 

The method of solution of these extremal length problems is really dictated by the 

assumption (ii) on (~0, ~, 8, 7')- In  Chapter V we will briefly consider the problem of finding 

/~(~) and ~(~*) when (ii) is replaced by 

(ii)' ~0, ~, and ao U ~ ~ 7' are closed in W. 

The method of finding the solution is different, and even when the second partition is 

obtained from the first by adding to 7' and subtracting from 8 the minimum number of 

points to make (ii)' true, the solution may be different. 

II. Canonical Harmonic Functions 

I I . t .  Cons t ruc t ion  of u(z; ~0, ~, 8, 7')- We begin with an arbitrary Riemann surface W 

and a partition (~0, u, 8, 7') of the ideal boundary of W as described in 1.3 above. Assumption 

(ii) implies tha t  there is a Jordan curve in W separating ~0 and ~. In this section we will 

construct the harmonic function u(z)  = u(z; ~o, ~, 8, 7') determined by the "boundary" condi- 

tions u - 0  on a0, u = l  on u, u =  constant on each component 8i in 8 with SB~ du* =0  and 

~u/an = 0 along 7'. These conditions are to be understood as limits in a sense to be made precise 

below. Finally we wish to emphasize that  convergence (of functions and differentials) is 

considered only in the Dirichlct norm. 

Let  {~2n} be an exhaustion of W such that  for each n, ~ separates ~0 from z and each 

component of ~ n  is a dividing cycle not homologous to zero. Suppose ~ is a component of 

some ~ ;  then q is the relative boundary of a subregion S of W - ~ .  If  r~ is an ideal 

boundary component of S we shall call ~ a derivation of a. 

Using the following rules divide 0~ ,  into disjoint collections of components ~n, ~ ,  

8n and 7'n. 

A- l )  a~, consists of those components of O~n which have a point of ~0 as derivation. 

A-2) :on consists of those components which have a point of :~ as derivation. 

A-3) A contour of ~ n  belongs to 7'n if and only if the only ideal boundary points 

which are derivations of it lie in 7'. 

A-4) 8in consists of the remaining contours of ~ .  
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Let  ~ n  denote the possibly noncompact region obtained by  adjoining to ~= the non- 

compact components of W - ~ which are bounded by  curves in y. .  We orient the boundary 

contours so that  ~ = ~= + fin - ~0~. Choose an exhaustion {~n~ } ~r 1 of ~n SO that  ~ , ~  = 

:r +fin +Y~i -  ~0n- Thus for all n, y~  is homologous to yn. 

Define the harmonic function u.~ in ~ by  the boundary conditions 

B - l )  un~=O on ~0n, uni =1 on gn 

B-2) i~unJ3n =0 along Yn~ 

B-3) u~t is constant on each component flnj in fin with the constant chosen so tha t  
$ S p.~du~t =0. 

We will first show that limt-~:cun~=un exists in ~n and is independent o/ the exhaus. 
tion {~n~} o / ~ .  

:For j > i the equation 

dun,)o., = J0~ un, u:, = fo = II d n, I1 ., 
implies tha t  

]ldun,-dun,]15.,< Hd~n,I]5.rlld~n, ll5.. (1) 

In  particular, Ild/n,]lh., is increasing with i. 

Let v be the harmonic function in ~no = ~ .  defined by  the boundary conditions v = 

0 on ~0., v = 1 on ~ n -  ~on. Then since 

we find tha t  

]ldu~,-dv[l~~ ~< Ildv]lh. - Ildun,llh.,, 

and therefore Ildun,]l is uniformly bounded. I t  follows from equation (1) that  Iim,_+r162 un, =u.  

exists. Furthermore lim,..+~clldun,l[~,,=Hdunl[~,,. To prove this last assertion set A =  

lim,_~:r ]ldun,lJ~,,. Then using a simplified notation, let i - + ~ ,  i >?', in the inequality 

I I ~ , -  d~,ll~ < Ild~,ll, ~ -IId~.,ll~ 
to obtain Ildu,~ -dun,ll~ <-< A -Ildu~,ll$. 

Our assertion now follows upon letting 7"-+ ~o in the inequality: 

I IId~-d~n, ll,-Ildu~ll,I < Ildu~,ll, < IId~-dun,ll, + IId~:ll, 

Clearly u n is independent of the particular exhaustion {~.i} of s and un is 0 on %n, 

1 on ~. and constant on each component fln~ of fin with .f~,~du* =0.  
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Next  we show that lim dun =oJ exists as an exact harmonic di//erential independently o/ 

the exhaustion {~, '} .  I f  n > m then s 

~(~,', n ~m) = am +fin--~'.,, +7,,, n ~,~, 

and tim, ~m, a~ are homologous to components in fl,', Y,'*; a~,  fl,', 7,'5 a~, fl,', Y,'~, respectively. 

Hence since lim,_~]ldu,'-dundl~,, , =0,  

(du , ,  

Therefore II ~ . , -  ~unllL < II du. I l L -  II d~,'llk (2) 

and we see tha t  Ildu~llL is decreasing as m increases and limm_~ dum exists. The 

harmonic limit differential is exact and we denote it by  du, u being unique only up to an 

additive constant. We also see tha t  l imlldumll~= Ildull. The question arises, does lim u , '=  

u exist for suitable u? This is false if Ildull = 0  bu t  t ~  out  to be co=cot  if I1~211 >0.  The 

proof follows easily from later results (Theorems II.3.2 and III.3.1).  For  the present we 

do not need this fact. 

I f  { ~  } is another exhaustion of W, then given k there exist m and n such tha t  ~ < 

~ m < ~ .  I t  follows tha t  ~ < ~ m < ~  and we see tha t  indeed du is independent of our 

choice of exhaustion (~n}. 

We will have occasion to use the following simple observation. For each n we can find 

an integer in such that  

1 
Ildu,'ll~-II~u~,.llo.~ < - .  ~b 

Thus on setting v," =u , , ,  and replacing ~,', ,  by  ~," we see that  limlldvdl~. = Ildull. By pas- 

sage to a subsequence we may  assume the ~n are nested and thus form an exhaustion. 

II .2.  D e p e n d e n c e  of u(z; ~o, ~, f ,  Y) on  :t o. For many  applications ~0 is a finite collection 

of mutual ly disjoint, piecewise anlytic Jordan  curves imbedded in a Riemann surface W 

in such a way tha t  ~0 does not separate W into two non-compact components. I f  this is 

the case the exhaustion {~n} may  be taken to be an exhaustion of W - ~  0 less compact 

regions bounded by  ~ (if any) so tha t  a ~ ,  = an eft," + Y n -  a~, for all n (~0 used in this con- 

nection may  actually consist of both sides of the curves a0). Then u =u(z; ~ ,  a, fl, Y) may  

be constructed as above, and is harmonic in W - compact regions bounded by  ~0. 

Now suppose that  we are given another such collection of curves ~ disjoint from ~ .  

Choose a corresponding exhaustion { ~  } so tha t  ~ = ~," +fin +7," - ~ and construct the 

harmonic function u '  =u(z; ~ ,  a, fl, 7). As a consequence of the observation made a t  the 
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end of I I .1 ,  we m a y  assume tha t  {~n} and { n) are chosen so tha t  limlldvnll = Ildull, 
limlldv~ll = Ildu'll (see the nota t ion used there) and ~ o c  ~ ,  ~ c  ~ ,  for all n. 

Sett ing K ,  = ~ N ~ we see tha t  ~K~ = ~ + fl, + y~ - ~0 - ~ and  

v n d v  n = dUn*- v.dv': = Ildv'. I IL, . -  (dv=, dvn)K. = "* "* 
K n  ~ o ,J 0~o 

H e n c e  IIdv=- dvn I1~ < I l d v n l l ~ -  II dv'n I1~ + 2 vndvT. 
I] ~a 

We conclude tha t  if lim II dvn I1o~= II du II = o ,  then lim v, = 0 and  since dr7  >1 O, ~ , d v 7  = 

II dv'~ II ~, 
l im II dvn- dv'~ I1~ = - lira II dv'~ II ~ = - II du'  II ~ 

ThereforeHdu'll =o, and we have proved most  of the following theorem. 

THV.OREM II.2.1.  Given ~o and ~ as above, but not necessarily disjoint, then 

u(z; ~o, ~, fl, Y) = 0  i/ and only i~ u(z; ao, o~, fl, y) =0 .  

Proo/. We have just  proved tha t  if g0 a n d  ~ are disjoint the conclusion holds. I f  ao 

and ao are no t  disjoint, choose ao' disjoint f rom both  =0 and ~ and compare u and u '  with 

u(z; ~4', ~, ~ ,  ~'). 

I I .3 .  T h e  bouJada ry  b e h a v i o r  of u(z; ac0, co, fl, y). I n  this section we show tha t  in a 

certain sense u(z; :co, ~c, fl, y) takes the expected values on the ideal boundary .  

LEMMA II.3.1. Notation as in II .1.  Suppose c is a union o/analytic Jordan curves divid- 

ing ~,~ into two regions A z and A 2 in such a way that OA z consists only o/c and elements o/ 

ft, and~or Yn" Then/or all ZEAl, 

0 < minum(p) ~< uni(z) <. maxum(p)  < 1. 
p~C ~EC 

Proo/. To simplify nota t ion we will omit  the subscripts and superscripts on u and ~ .  

We prove the r ight  inequality; the left one can be t reated similarly. I f  our assertion is false 

then maxzeAlu(z) is assumed on a component  ~ of ~ which belongs to fin or Yn. Pick a 

point  p E I n t  A 1 such tha t  u(p) = k > maxz ec u(z) and let 1 be tha t  port ion of the level curve 

u = k  (not necessarily connected) t ha t  lies in A 1. Note  tha t  1 does not  meet  c. We m a y  as- 

sume tha t  1 does not  pass through a critical point  of u and  hence does no t  meet  any  com- 

ponent  of ~A 1 in fin. However  l m a y  meet  components  of ~A 1 which are in Yn. Let  A~ be 

the component  of A 1 - l  which contains ~ in its boundary.  Since u(z)>k for zEAl ,  du* < 0  

along l' = l N ~A~ (when l' is oriented so tha t  A1 lies to the left) and  we must  have j'v du* < O. 

On the other  hand, l '  possibly together  with pieces of components  of aA~ in Yn is homologous 

16 - 662945 A c t a  m a t h e m a t i c a .  115, I m p r i m 6  le 11 m a r s  1966. 
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to a combination of components of ~A~ which are in ~n and Yn. Because du* =0 along 

components in Yn, we must have then Sv du* =0. This contradiction proves the lcmma. 

THEOREM II .  3.2. I] 2.(:~)<~ there exists a function u=u(z; %, ~,f l ,$)such that 

a) lim un=u (see 11.1) and ]or almost all curves TE:~ 

f d u = l .  

b) For each component fl~ Eft, there ezists a number b, 0 <b < l, such that/or almost all 

arcs T in ~V-~ with initial point v(0) in W and end point on fli, 

f du =.b - u(v(0)). 

(This result holds/or ~o and o~ with b replaced by 0 or 1 respectively.) 

Proof. The class of curves to be considered in b) may be written as the union of classes 

Fn such that for v EFn, v is an arc in W - ~ with v(0) E ~n- Hence it is sufficient to prove b) 

for curves v with 3(0) E ~ r  Let c, be the component of 0~n determined by fl~ (or % or ~) 

--see the notation in II.1. By eliminating a class of curves of infite extremal length we may 

assume that there are only a finite number of components of 3 N ~n  which meet more than 

one component of ~ n ,  for all n. If  3 leaves ~n by crossing a component c ~= % of 0~n then 

the next return of 3 to ~n is by crossing c again; 3 leaves ~n for the last time by crossing cn. 

Let u n have the value bn on cn. If  c n is determined by % or ~, then bn is 0 or 1 respectively. 

The differential du is uniquely determined as lim dun. Set un =0  in W - ~ n .  The cor- 

responding linear densities en I dz ] = [ d u -  dun ] ( -- [grad (u - un) I I dz I) satisfy 

A(on) = [[du-dun[[ 2 ~ 0  as u->oo. 

Lemma 1.2.1 asserts that  for almost all 3, there exists a sequence {m}, not depending on 3, 

such that  

l im f d u - ( b ~ - u m ( 3 ( O ) )  =lim[.fdu-dum] ~<lim f~ [du-dum] =0. 

(This formula contains the assertion that  S~ du exists. A simplicial approximation to 3 

may be used to evaluate ~dum.) 

Now suppose that 2(:~)< oo. By assumption there is a Jordan curve J separating ~0 

from ~. Since 2(:~)< co the extremal length of the class of curves in t ~ - ~  which travel 

from J to % is finite. Given a point p E W we can connect each such curve (i.e. arc) to p 

by an arc from p to J .  Since lim j'r [ du - dun [ = 0 on every compact curve c we can reapply 

the reasoning above to obtain 
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This proves that  limm->~ u,n(p) exists and more generally that,  for the original sequence, 

lira ~n(P) exists. Hence the function u is uniquely determined as lim Un. 

Next  we obtain from above 

lim ~ du-(b, , -u(3(O))) l=O. 

Hence lim bm and more generally b = l im b, exists. Since a 0 and a are closed sets in ~V, 

every fl~Efl is isolated from a 0 and a. Lemma II.3.1 and the maximum principle imply 

therefore that  0 < b < 1. 

The remainder of b) and a) now follow easily using the above methods. 

Remark. In  the case that  3 is in I ~ -  fl, 

f du= lim - lim U(Z) U(Z), 
z-~v(1) z-=~v(0) 

where 3(1) and 3(0) are the end point and initial point respectively of 3 in I~. 

II.2.~.. T h e  func t ion  v(z; p, a, fl, ~). Suppose now that  we have a parti t ion of the ideal 

boundary into three disjoint sets a, fl, ~ such that  a and a U fl are closed in the eompacti- 

fication ~g of W and a is not empty.  We will construct a harmonic function v(z)= 
v(z;p, ~,B,T) with a singularity log]z] a t  a prescribed point p (z(p)=0) and behavior on 

~, fl, y the same as that  of u. 

As in II .1 we start  with an exhaustion (s so tha t  p e f ~ ,  for all n and divide 0~n 

into three sets an, fin, 7n by the rules A-2), A-3), A-4). Then we construct ~n  with ~ n  = 

~n +fin and take an exhaustion (~n~} of ~n  so that  ~ n i  = gn +fin +?n~ where~n~ is homo- 

logous to 7n. Let vn~ be harmonic in ~n~ except for the singularity log]z] at  p and satis- 

fying the boundary conditions Vn~ = 1 on an, vn~ =cons tan t  on each component fit in fin 

so tha t  ~dv*~ =0, and avnJ~n=O along ?hi. 

First we show that  lim~o~ vn~ =vn exists. Extend vnl to ~n  by setting vnl = 0  in s  

g2~1. Dropping the subscript n, we find for j>i ,  

(g(v, - v,),  d(v ,  - v,) )~, = f , (v~ - v , )d(Vl  - V,)* + f , v jdv :  = f , v ,  dv~ = - l[ d(v ,  - v,) [[L,. 

Hence ]] d(vj - v,) ]]~, = ]] d(vj - Vl) + d(v~ - v~) ]]~, ~< ]] d(vj-  v~) ]]~j - ]] d(v, - v~) ]]~. 

Thus ]]d(v,-v~)]]a~ is monotonically increasing in i; it is also uniformly bounded. For  

let w have the singularity log] z] at  p and boundary value 1 on ~g21. We find tha t  
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I I ~(v~- w) ll~, = II ~(w-  v,)I1~,-lid(v,- vl)II~,. 

Hence II d ( v , -  vl)II~, is uniformly bounded  and  l im,_~ v., = v.  exists in ~ n  with 

lim~-~clid(v. - vm)lira = 0 (u., = 1 on a .  for all i). 

Next  we show tha t  lim v n =v exists in W as a harmonic /unction with singularity 

log ]z ] at p. Let  A be the parametr ic  disk I z ] ~< 1 center at  p and define v 0 as 

v 0 ~ l + l o g l z ] , z E A ,  v0=0  , z ~ A .  

On breaking the Dirichlet integral into two par ts  we find for n > m, 

( d ( v .  - v o ) ,  d ( v m  - v0))a~ = lira ( d ( v . ~  - vo ) ,  d ( v m  - v0))n., ~ 

= - foa (vm- 1)d.~ = II d(,m-%)ilk. 

Uence II a(v . -  v~)Ilk: < II d ( , . - , o )  l lk-II ~('~-'0)Ilk..  

Since Hd(v.-vo)l[~.  = - ~ o ~ ( v n - 1 ) d v ~ ,  we see t h a t  either l i m v n = - c ~  or l i m v . = v  

exists as a harmonic  funct ion in W -  {p} with singulari ty log I z ] a t  p .  

As in I I .1 ,  v is independent  of the exhaust ion {~n}. 

Suppose v~--v(z; p, ~, fl, y) and  v z have the expansions at  p 

v=loglz  I + c + o0 ) ,  v~=log[z I +e~+o0).  

Then ck > ek+l/or all k and lira ck = c. 

For  set v o = l + l o g ( [ z l / r  ) in the disk A: lz  I ~<r. We find 

= - 2~ log r -  2gck - 2~ + o(1). 

Since Hd(vk--Vo)HUk is increasing, c~ is decreasing. Since lim vk=v, lim ck=c. 

Choose k so small t ha t  the level curve ~0 on which v = k bounds a relatively compact  

subregion K of W containing p. Then u(z; ao, a, fl, 7) =(1 - k )  -1 [v(z; p, a, fl, 7) - k ]  in W' = 

W - K .  

For  we m a y  take the exhaust ion {~ .  } of W so tha t  K ~ ~n for all n. Use the nota t ion  

Un~ for the approximat ions  to u(z; ao, a, fl, 7) with respect to the exhustion { ~  = ~ . - K }  

of W' and v~t for the approximations to v(z; p, o~, fl, 7) with respect to {~ .}  as constructed 

in the paragraphs  above. We find 
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I d [ u n , _ l l k ( v n _ k ) ] l : , ,  - 1 k f ~ , ( v m _ k ) d ( u n  ' 1 " 

Letting i ~ ~ and then n - +  ~ we obtain 

d [u(z; ~o, o:~ fl, 7) - l--l k (v(z; p,  ac, fl, 7) - k)] ~ . = 0  

since convergence is uniform on ~o. 

Using the results of I I .2  we see tha t  v(z; p,  ~, fl, 7) = - ~' i] and only i] v(z; q, (u, ~, ~) = 

- oo/or any pair  o /points  p and q. 

The boundary behavior of v(z; p ,  ar fl, 7) is determined exactly as in II.3. 

II .  5. An e x t r e m a l  prol}lem.  Part i t ion the ideal boundary into three disjoint sets ~o, 

~'  and 7'  where/~' is closed in ~r and fl' U 7 '  is isolated from ~0- Suppose ~ consists of a single 

boundary component and allow :r to range over the set S =fl '  U 7'. When :r is chosen, set 

f l = f l ' - ~ ,  7 = 7 '  or f l=f l ' ,  7 = 7 ' - - ~ ,  depending on whether ~Efl' or ~ET'. Indicate the 

dependence of u(z; zoo, ~, fi, 7) on zr by  the notation u~. Thus ~ ~ lld  ll is a real valued 

function on the compact subset S of It 3. 

THEOREM IX.5.1. The /unction ~[ Idu=l l  r  sc. Hence there i~ a component o~ES 

which  azim z  ll u ll. 

Proo/. Let  a = l i m  supa .~[ Idua ,  I I. We take a sequence :ca such tha t  limnlldu~ll = 

a, an---> ~. 
Consider u~ and let ~k  be one of the regions in the definition of u~ with u~ the ap- 

proximation to u~ in s For large n, uk is also an approximation to u~;  from II .1 we 

have, for sufficiently large n, 

Ildu ll. > lldu  ll, 
and thus, II I1-  >/a. 

This implies tha t  I] du~ II >/a. 

There is a corresponding theorem for the functions v(z; p,  a, fl, 7) as follows. Let  fl' 

and 7 '  be a partition of the ideal boundary into two disjoint sets so tha t  fl' is dosed in W. 

Let  a be a single component ranging over the ideal boundary and once a is chosen, set 

f l = f l ' - a ,  7 =7' or fl=fl ' ,  7 = 7 ' - a ,  whichever is relevant. Writing % for v(z; p,  ~, fl, 7), 
about  p, % has the expansion 

% = l o g l z  I +c~ +o(1). 
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THEOREM II.5.2. The/unction ~-~ca is u.s.c. Hence there is an ideal boundary point 

o: which maximizes %. 

Proo/. Set b=l im sup~,,_~ ca, and choose a sequence :on such that ~-->~ and 

lim~ c~ -- b. 

Let {$~k} be an exhaustion used to define va. Let v k be the approximation to v~ in g~-~. 

But for large n, vk is also an approximation to v~. Hence ck ~> c~ for sufficiently large n. 

I t  follows that  ck ~ b and then c~ ~> b. 

Note that c~ depends on the local parameter z. I f  w = w(z) is another local parameter 

with w --0 at p and c~ corresponds to c~ for w, then 

Thus the component which maximizes % does not depend on z. 

IH. The Extremal Length Problems 

I I I . i .  C o m p a c t  b o r d e r e d  surfaces .  Suppose the boundary components of a compact 

bordered Riemann surface ~ are divided into four disjoint sets ~0, ~, 8, 7. Let u = 

u(z; g0, ~, 8, 7) be the harmonic function in ~ determined by the boundary conditions u =0  

on ~0, u = 1 on ~, u =constant  on each component fl~ in fl in such a way that  S~,du* =0, and 

au/~n = 0 along 7. 

Denote the compactification of ~ by ~ (then ~0, ~, 8, Y are each interpreted as a 

finite point set in ~)  and define the classes F, F* of curves as in 1.3. In  the present situation 

however, when c E F or F*, we may assume c fl ~ has a finite number of components. 

Denoting the extremal length of F and F* by ~t(F), 2(F*), respectively, the object of 

this section is to prove the following Lemma. 

L E g a A  III . l .1 .  a) 2 (F)=  Ildull% b) 2(F*)= Ildull ~. 

Proo/o/a) .  The proof is accomplished by finding a parametrization ls of level curves 

of du* such that  ls E F for almost all s. 

The boundary ~ is oriented so that ~ lies on the left. Fix a point p on ~0 as the origin 

and fix other points on ~0 so that  there are two points specified on each component of ~ .  

Then using these points determine a route which traverses a o exactly once in the positive 

direction, beginning and ending at p. Since du* is strictly negative along this route, setting 

u*(p) = 0, define u* (z), z E g0, so that as z passes along this circuit u*(z) takes on each value 

s, o>~s~> -[[dull ~, exactly once. 
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We will a lways orient  the level curves of du* so t h a t  u is increasing in the posit ive 

direction. For  each 8, -IIdull  ~ <8 ~<0, a single level curve /8  of u* leaves ~0- I n  the succeed- 

ing pa ragraphs  we shah formula te  rules for dividing the i n t e rva l - I l du l l  2 <8 <.0 into t w o  

complemen ta ry  sets, S and  C. 

I f  the connected level curve I s passes through a critical point  of u in ~ ( =  closure of 

~) ,  pu t  s in C. 

I f  8 ~ C, then  ! s ends a t  ei ther ~ or ft. I f  18 ends a t  ~, pu t  s in S and  write ! 8 s imply as ls. 

Suppose ! s ends a t  some component  fit Eft. I f  P8 denotes the end point  of 18, follow fit 

f rom Ps in the direction of increasing du*. When  fit is t raced in this manne r  the arc 18 and  

hence ~ lies to the left. Le t  qs be the first  poin t  for which Sdu* =0 ,  the integral  being t aken  

over  the arc on fit f rom P8 to q~. 

I f  q8 is a critical point  of u, pu t  s in C. Otherwise we see t h a t  a level curve l; of du* 

a t  qs begins a t  q8 since if u=c~ on fit, the fact  t h a t  u is <c~ to the left  of P8 implies t ha t  

u i s > c t  to the left of qs. We will refer to l~ as the cont inuat ion of 18. 

I f  l~ goes through a critical point  of u on ~ ,  we pu t  8 in C. Otherwise we repea t  the  above 

procedure.  Note  t h a t  l; cannot  re tu rn  to fit wi thout  passing through a critical poin t  of u. 

Final ly  we end with the following situation.  Each  s, -IlduH 2 <s  40 ,  is ei ther in C or 

there is an ls, which is a finite union of connected level curves of du*, one the cont inuat ion 

of the preceding, which runs f rom ~0 to a. For  8 6 S, each 18 can be regarded as an arc in 

running f rom e0 to e, t ha t  is 18 E F.  

We make  the following two observations.  

(1) I f  81, 82ES , s1~82, then  ls, n 18~=0. To prove  this it  is enough to observe t ha t  if 

18, and  18~ end on the same component  fit Eft, the cont inuat ion of 18, mus t  be different f rom 

the cont inuat ion of 18~. Indeed,  if the direction on fit de termined by  18, is the same as t h a t  

de termined b y  18,, then  qs, =qs, would require qs,=Ps,, which is impossible. I f  the direction 

on fit de termined b y  181 were opposi te  to t h a t  de te rmined  b y  18, ye t  q81 = qs,, then  ~ would 

lie bo th  to the left of qs, and  to the r ight  of qs,, an  absurdi ty .  

(2) C consists of a finite n u m b e r  of points.  For  u has only a finite number  of critical 

points  in ~ and  only a finite n u m b e r  of J o r d a n  arcs along which du* = 0 pass through each 

critical point .  I n  other  words, except  for a finite n u m b e r  of 8, 18 can be cont inued until  it 

reaches ~. 

Excep t  a t  the finite n u m b e r  of critical points  of u, u + i  u* can be used as a local para-  

mete r  and  ~ can be paved  with  litt le rectangles de te rmined  b y  the level curves of u and  

u*. I f  ~ I dz ] is a l inear density,  f rom the Schwarz inequal i ty  if s e S, 
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ft QIdzr= ft ~iu~< (f~ ~2du fz du) = f~ ~ ~du" 

Integrat ing in s from - H  du I[' to 0, s E S, and we obtain 

and hence 2(F) ~< ][du H -~" However, using ~[dz I = ]grad u [ ]dz[ as an admissible density we 

obtain 

thus obtaining the proof of a). 

Proo/o/b). The level locus (not necessarily connected) u = c  for O < c < l  contains a 

curve in F*. The proof is completed by  a repetion of the argument  using the Schwarz 

inequality given immediately above. 

I I I .2 .  Gont inu i ty  le~a~aa. We will now make use of an extremal length technique due 

to Beurling and developed by  Wolontis [14] and, most closely approximating our present 

context, by  Strebel [12]. 

Let  {~n} be an exhaustion of W of the type considered in II .1,  and let _F n be the class 

of curves in ~n--~n which go from ~ to ~n, via possibly some contours in fin (see III .1) .  

More precisely, l E F n if and only if the domain of I consists of a finite union of closed inter- 

vals [%, all 0 [az, aa] U ... U [as_i, as] with a 0 < a 1 < . . .  < as, I is a continuous mapping into 

~n--~n, l(ao)E~,, l(as)Ean, and for odd i<j, l(a~) and /(a~+l) belong to the same compo- 

nent of fin. 

L~MMA III .2.1.  limn_.~ 2(Fn)~>2(~). 

Proo]. Restatement. We shall define a family :~' of relative 1-chains on W such that  

(a) restw(:~ ) c 5 '  

(b) lim 2(Fn) ~>2(:~') 

(c) ,t(T)=~(:~), 

where restw(:~ ) = {1N W : leJ}. 
Once this is done the proof of the lemma will be complete. Recall that  s was obtained 

�9 from g2n by  attaching to it all components of W - ~  whose boundaries belong to Yn. 

Let  :~n be the family of curves in C1w~ . which go from g0n to gn via possibly some fin's. 

More precisely, l E :~  if and only if the domain of l consists of a finite union of closed in- 
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tervals  [a0, al] U [a S, an] U .. .  U [aj,x, aj] wi th  a 0 < a l <  . . .  <a j ,  l is a cont inuous mapp ing  

into the  closure (with respect  to W) of ~n ,  l(ao) E no,, l(aj) E an, and for  all odd i < j ,  l(a~) and 

l(ai+l) belong to the  same component  of fin. Then  F~ = : ~  so 2(Fn) >~2(3;=). Hence  ins tead 

of (b) it  suffices to prove  

(b') l im 2(:~n) ~>~(:~'). 

We  wish to replace (b') b y  another  condition. Choose any  x <~(~ ' ) .  Choose a l inear 
2 t densi ty  ~ldz] such t h a t  L ( ~ ,  ~ ) > x  and  A @ = I .  To prove  (b') i t  is enough to  show 

sup .  L~(:~, ~)>~x. I f  t h a t  failed to hold there  would exist  a subsequence along which 

L~(:~,, ~) had  a l imit  y < x. Le t  L(l, ~) = ~, ~ ]dz [. I f  we can prove  t ha t  to each e > o there  is 

an l(e) ~ :~' satisfying 

L~(l(e), ~) < y + 7 ~  

then  we would have  the desired contradict ion since 

y < x < L 2 ( ~  ', ~) ~<L~(/(e), ~) ~<y+7~. 

(b") Given a densi ty  ~ [ dz I on W with L~(:~, ~) ~ y as n ~ ~ .  Then  to each e > o there 

is an l(e)E :~' to be defined according to (a), (e) such t h a t  

L2(l(e), ~) ~< y -t- 7~. (3) 

Some notation and terminology. Given 1NE:~N and n ~<N, we wish to  define a sort  of 

restr ict ion of 1N to CIw~n, to be deno ted  b y  lNII ~ , ,  wi th  the  p r o p e r t y  t h a t  lN[[ s e:~n. 

There  is a grea tes t  t for which/~(t)Eao~; call i t  t r Le t  t 2 be the smallest  t for  which 

lN(t) E ~ n  and also t > t  1. Then ln(t~) is on some contour  of fin (or possibly an); call the con- 

tour  c~. Set t 3 = g r e a t e s t  t for which 1N(t)Ec~. We continue this way  and obta in  an  even 

number  of stopping times t l<t2 . . .<tk ,  a sequence of s topping points  IN(t1) . . . . .  /N(tk), 

and  a contour sequence non =cl, c 2 . . . . .  c(~+~)/2 = an of dist inct  contours  on ~ n  such t h a t  

1N(ti)EcE(j+~)12 J ( j = l  . . . . .  k). Define 1NH~ . to be the restr ict ion of IN to [ts, t2] U [ta, t4] U 

.. .  U [tk-1, tk]. 

De/inition o/ i f ' .  A 1-chain l' on W will belong to :~' if ei ther l' = l  N W for s o m e / E f t ,  

or if l' is a continuous m a p  of an  open dense subset  of (0,1) into W such that :  

F ' - I .  I f  t o is not  in the  domain  dom l' of l' and 0 < t 0 < l ,  then  there  exist  sequences 
r _ ~  t ._) .  {r~ }, {s~} in dom l' such t ha t  rn S to, s~ ~ t o and  a poin t  ~e e fl such t ha t  l (r~) ~e, 1 (sn) ~e. 

I f  t o = 0  (resp. 1) we require only a sequence {sn} (rcsp. {rn}) f rom dom l' wi th  sn '~0  (resp. 

r ,  7 1) and  l' (s~)-~ a 0 (resp. l '  (rn)-~ a). 

F ' - 2 .  There  is a canonical exhaust ion {s such t ha t  l ' l l~N e :~N for each N >~ 1. 

F ' - 3 .  I f  t E d o m  l' then  there exists N such t h a t  tEdoml 'H~  n for all n>~N. 
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Proo/o/(a)  and (b'). Condition (a) is part  of the definition of :~'. To prove (b') suppose 

given an e>0 .  By passage to a subsequenee of {l.} we may assume that  

]L2(:~, O)-Y] <e/2" (n>~l). (4) 

Whenever a subsequence of {In} is extracted and the notation is unchanged we tacitly 

agree that  {fl~} shall refer to the corresponding subsequence of {n}. 

Choose l~ 6 :~ such that  

[L~(ln, O)-Yl <e/2" (n>~l). (5) 

A subsequence of {/~}, after some modification, will be used to construct l(e). 

The first step is to find a subsequence {/,~} of {ln} such that  all ln, l~N(n  , >~V) have the 

same contour sequence on 8~N. Since there are only a finite number of possible contour 

sequences o n  ~"~1 We may select a first subsequenee of {l, }, all elements of which have the 

same contour sequence on ~ 1 .  By induction we obtain for each N a subsequence of the 

preceding one, all of whose elements follow a common contour sequence on 8s The dia- 

gonal process yields a subsequenee with the desired property. We shall not change notation, 

but  denote it still by {/=}. Note that  (5) continues to hold. 

The next step will be to modify each 1, so that  not only will all l~ll~ N (n~>h r) follow 

the same contour sequence but  furthermore, 1 n ]] ~ , -1  and 1,_l][~n_l will have the same sequence 

of stopping points on as r To do this we use the diagonal process to find a preliminary 

subsequence, again called {/~}, with the following property: Suppose lN has k stopping points 

on O~N. Then for each i ~<k the ith stopping point P ,  of/.]]~N (n >~h r) gives rise to a conver- 

gent sequence of points {P,} on a contour of 8~N. Now, we put  a topological disk around 

the limit point of this sequence, the circumference of which has very small 0-length. The 

actual length will be determined below. Note, however, that  it can be required to be ar- 

bitrarily small. Indeed, the extremal length of all Jordan arcs in a punctured disk which 

surround a fixed point is zero, and hence for any o ldz] there is such an are of arbitrarily 

small 0-length. 

For each h r we have as many disks on 3~N as there are stopping points for/,]]~N 

(any n ~>hr). Choose their circumferences so small that  the total 0-length of them is <e/2 ~. 

By the diagonal process we can achieve a situation were each stopping point of ln]]~N on 

0~N is inside its appropriate disk for all n, h r with n/> h r. For each disk pick a point on the 

intersection of its circumference and the corresponding contour; call such a point a dis- 

tinguished stopping point. By a modification of 1. we mean the result of replacing part  of 

its path inside a disk by a path on the circumference of the disk. Now modify 11 so that  all 

its stopping points are distinguished; in general, modify In so that  the stopping points of 

/~[[~-~-t on 0~,,_~ and / , [ [ ~  on O ~  are distinguished. Denote the modified sequence 
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again b y  {l.}. The  q-length of l,, has been increased b y  no more  t han  el2 =-1 +el2  = as a result  

of modification.  Fo r  the present  sequence {/~} equat ion (5) m u s t  be changed to  

IL(Z=, e)-Yl <4e/2-. (53 

These modif icat ions can be accomplished so t ha t  each new In remains  in :~ .  

B y  induction,  for each n reparametr ize  l~ so t h a t  dom [~]]~=_ 1 = d o m  ln_ r Then doml~_ 1 

consists of a finite n u m b e r  of closed intervals  It I, t~] U [t3, t4] U .. .  U [tk-1, t~] and  l=_l(t~) = 

l~(t~) (1 <i<.k).  

We are now r eady  to construct  l(e). On dora 11 set l(e) = l  1. I n  general, if l(e) has been 

defined on dom ln-x set  l(e)=l~ on d o m / , - d o m  l~_ 1. Then  l(e) is a continuous 1-chain 

on W. I t s  domain  is an open subset  of (0,1) which, b y  reparametr iza t ion ,  we m a y  assume 

to be dense. 

To es t imate  the  e-length of  l(e) note  t h a t  the  e- length of l ,  res t r ic ted to dom l ~ -  

dora l=_ 1 is < (6e/2n) �89 Indeed,  

L2(l~, e) <Y +4~/2~ 

b y  (5') and,  s ince /~[dom ln_~=l~l[~_~Ey~_~, 

L~(l=ll~2=_~, e) >~L2(:~,_1, Q) > y - e / 2  ~ 

b y  (4). Hence  L2(l(e), ~) <L2(ll, ~) + Z6~/2 n < y + 7e. 

I t  remains  to show tha t  l(~)E :~'. We can sat isfy F ' - I  as follows. Suppose t o ~ dora 1(8) 

and  t o # 0,1. Consider the s topping t imes t 1 . . . . .  tk on l(e) on ~ .  For  n sufficiently large t o 

is be tween two stopping t imes which correspond to s topping points  on a common  contour  

c= of ~ n .  Thus  we obta in  a sequence of contours  {Ca) with c, c ~ ' ~ .  We cannot  assert  

t h a t  these contours  t end  to a single point  of I~ r -  W. However ,  there  is a subsequenee 

which does have  a l imit  point,  say ~-E l~ r -  W. The  corresponding s topping t imes yield 

{r=}, {sn}. The  cases t o =0,1  can be handled similarly. The  checking of F ' - 2 ,  F ' - 3  will be 

omit ted.  

Proo] o/ (c). I f  a 1-chain l' E:~' can be extended cont inuously to [0,1] wi th  values in 

I~ the  extension will au tomat ica l ly  be an  arc in :~. For  each ~ we consider annular  regions 

An~ a round  each contour  of ~ n .  We  show t h a t  if no such annulus is crossed infinitely of ten 

b y  l' then  l '  can be extended cont inuously to [0, 1]. This will p rove  (c) because the ex t r ema l  

length of a family  of 1-chains, each 1-chain of which crosses some An~ infinitely often, is cr 

Given toe dom l', t 0#  0,1. Le t  {rn}, {s~}, ~ be as in F ' - I .  We  need only prove  

lim l'(t) = ~ (t E dom l'). (6) 
t->to 
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Let G be a neighborhood of ~e on IV. We wish to find a neighborhood of t o whose l'- 

image is in G, and for this we m a y  assume G is a component of W - ~N for some h r. Let  A 

be the annular region around ~G chosen above; for definiteness assume A and G have 

intersection ~G. Now l'(r.), l'(s.)EG for sufficiently large n. If  (6) failed we could find for 

some G, unEdoml '  with u . ~ t  o and l'(u.)~GU A. A subsequence of {un} is monotonic so 

suppose u~Tt  o. Choose rt, and us,>ri, and ~ m , ~  SO tha t  rs,, us, Edoml'H~mv Since 

/'][~2m, e : ~ ,  there is a crossing of A during (rs,, u.) .  Next  choose rs,, us,, s such that  

rt, <us, < r .  <u~ 2, and rs,, rs, E d o m l ' H ~ , .  There must  be a crossing of A during (r~, us,). In  

this way we see that  l' crosses A infinitely many  times. The cases t o =0,1 can be treated 

similarly. 

I I I .3 .  So lu t ion  of the  e x t r e m a l  l eng th  p r o b l e m s .  The definitions of :~, :~* were 

given in 1.3, and du(z) =du(z; ~0, ~,/~, Y) was constructed in I L l .  

THV.OREM III .3.1.  Let W be an arbitrary open Riemann sur/ace and let du, ~, ~* 

be defined with respect to an admissible partition of the ideal boundary of W. Then 

(a) ~(~) = IId~lt -~ 

(b) A(~*)= IId~ll ~- 

Proo/ o/ (a). Using the notation of Chapter I I  and replacing the pair F and ~ of I I I .1  

by  Fs and g2ns Lemma I I I . l . 1  implies tha t  2(F~)= Ildu~sit-2 Using o]dz I = Igrad Un] Idz] 
~ n (  " 

as an admissible metric for the problem ~(~.) (see I I I .2)  we find 

and hence for all i, 

II ~ ,  I1~ ~. < ~(Y,) < ~(F,) = II d~., II~,. 

Consequently A(~,) = [[ du, [[~. 

Since every curve in ~ contains a curve in ~n, A(:~) ~ ( ~ ) .  On the other hand, from 

Lemma III .2.1 IId~ll-~=nm ~(:~)~>~(~). The proof of (a) is now complete. 

Proo/ o/ (b). We write ~,~, F~ for ~ and F* of I I I .1 .  Since every curve in ~* contains 

a curve in F~ for all i we find 

A * and I I~u~ll~ < (Y,). Conversely every level loci ua = c in ~ contains a curve in ~* and 

�9 ~t * application of the Schwarz inequality yields ~(~)~< II ~u~ll~. Hence ( ~ ) =  II ~u~ll~.. 
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Since every curve in 7"  is a curve in 7", ~(7")<~(7")  for all n. Therefore 2(7")~< 

H du H 2. I t  remains to prove tha t  H du II 2 <2(7*). 
Set dun, = 0 in ~ n -  ~ . ,  and consider the sequence of linear densities Qn, ldz [ = 

1grad (un-un,) l idz  [ in Un. According to Lemma 1.2 there exists a subclass 7~* of 7* 

with ~(7~*)=2(7*) and a sequence of numbers (i)  such tha t  for all curves CEYn* , 

lim f du * - du *, l < lim ~ [ dun - dun, l = O. 
i..--~oo t--.).~ j c 

Here L ~ u : ,  L o u* = ~.~d n, = IIdun, ll~., as can be seen m o s t  easily by  replacing c by  a 

simplicial approximation to c in a triangulation of W in which 8~n, is a cycle. We con- 

clude tha t  

fodu* IIdunllL 

for all c E 7~*. 

For each c E~*, there exists a number  hr(c), depending on c, such tha t  c c l'ln for all 

n >~N(c), tha t  is c E :~* for all n ~> N(c). Otherwise c would have limit points on ~0, :t, or ft. 

Since the countable union of classes of curves of infinite extremal length has infinite ex- 

t remal length, there exists a subclass :7'* of :~* with 2(:~'*)=2(:7*) such that  cE:7'* if 

and only if cE~7~* for all n>~N(c). 

Set du n =0 in W - ~ n  and apply Lemma 1.2 to the sequence of linear densities 9n I dz[ = 
1grad (u - un)[ I dz]. There exists a subclass :7"* of :7 r* with ),(~"*) = 2(7'*) and a sequence 

of numbers {m} such tha t  for all curves cE:~"*, 

12mlf du*-fodu*~l<lim~_,~ foe,,Id~l=O. 
We have shown above that  ~e du* = ]1 dum I1~ when m/> N(c). Again we m a y  conclude 

that  ~c du* exists and that  

f c  CE r,,  du* = IIdull 2 for all 7 

Now using e ldz [= ]grad u I[ dz [ as an admissible linear density for 2(7"*), we find 

Consequently, 

]ldul] ~= inf fcdu* <~ inf f ~Id~ J. 
CE~"* CE~"* 

Ildu[[~ <2(T'*)=R(:~*), 

and the theorem is proved. 
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I I I .4 .  S o m e  consequences .  Propert ies  of u can be discovered by  extremal  length 

considerations. 

COROLLARY III .4.1.  (Uniqueness theorem/or u(z; ~o, g, fl, 7).) 1[ v is harmonic in W 

with []dv]] < [[du[[ and Scdv >~ l /or almost all cE:~, then v = u  +a constant. The same con- 

clusion is true i[ [IdYll >~ [[du[[ and Srdv * >~ [[dv][ 2/or almost all ce~*.  

Proo[. We will prove only the first s tatement;  the proof of the second is similar. The 

hypotheses imply tha t  01[dz[ = [grad v[ l dz[ is the ext remal  metr ic  for a subclass ~:1 

of ff with ~ ( : ~ - ~ ) =  co. We already know tha t  o[dz] -~ ]grad u[ [dz] is the extremal  metric 

for a subclass :~' of :~ with ~ ( ~ - ~ ' ) =  oo. Setting :~2=:~1 N :~' we have tha t  2 (~)=2( :~ )  

since :~ =:~2 O ( :~-~1)  U ( ~ - : ~ ' ) .  Hence ol[dz[ and o[dz[ are both  ext remal  metrics for the 

class ~ and thus 01-~ 0 or [ grad v [ - -  [grad u [. This implies tha t  dv = (cos 0) du - (sin 0) du* 

for some constant  0. Let  d be a cycle tha t  separates g0 from g, then Sadu* = +_ ][du[[ ~. 

Hence because So du = 1 and Se dv = 1 for almost  all c e ~, 0 = 0. 

COROLLARY 111.4.2. The Dirichlet integral [[du(z; o% o~, fl, r)ll a) increases (or is 

unchanged) when components in fl or 7 are placed in go, o~ or fl; b) decreases (or is unchanged) 

when components in g0, g or fl are Tlaced in fl or 7. 

Next ,  we will formulate  the corresponding results for v(z; p, ~, fl, 7). Let  z be a local 

parameter  about  p, z(p) = 0, and 

v(z; p,  :r ~, r) =log[z[ +e,(p, ~, ~, ~,) +o(1) 

be the expansion of v in z. For  small r > 0 set g0 = { I z [ --- r } and let ~r be the family of curves 

:~----:~(~0, ~, fl, 7). Similarly, let :~* be the conjugate class of curves :~*=~*(~0, :r fl, 7). 

An e lementary  inequal i ty  gives for  r '  < r  

~(~:r) ~>~(~,) + (log r/r')/2rc, 

and hence 2zr2(~) + log  r is increasing as r decreases and has a limit ~< + oo. 

L~MMA III .4.3.  1 - c~(p, g, fl, 7) = lim 2~r2(~r) + log r. 
r-*O 

Proof. We first consider the effect of changing the local parameter  about  p f rom z 

to w where w=az+o(z)  or log]w I = log[z  I + log]a [  +o(1) (as z->0). Choose r 1 so tha t  the 

disk [w[ ~ r  I is the largest such disk tha t  fits inside the disk Iz[ ~<r. Then  

2=2(~r) + log  r <2~r2(~r,)+log r l - l o g [ a  I +o(1) 

and lira (2~r~(~) + log r) ~< lira (2rr~(~,,) + log rx) - log [a l" 
r--~O rl--*0 
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By considering the smallest disk Iw[ <r~ which contains ]z] ~<r the opposite inequality 

can be established and hence, using an obvious notation, 

,-~01im (2~2~(~) + log~r) + log dzzdW ~o  = ~-.olim (2~2w(~) + log~r). 

Now consider v =v(z; p, :r 8, 7) and let w be the local parameter 

w = C +~'* = ze ~p" ~" z. ~) + o(z), 

where v* is the harmonic conjugate to v. Setting v, = (v - l o g  r)/(1 - l o g  r) and ~0 = { I w ] = r)  

we see that  v~ =u(w; ~0, ~, 8, ?) and hence ]]dvxH-~ =2w(:~). A simple computation gives 

]]dvlJl~=(1-log r)-~lldv]l~=2g(1-log r) -1 where the Diriehlet integrals are extended over 

W - {Iw I ~< r}. Consequently 

lim (2a1~(y,) + log r) = 1 
r--~ 

and the validity of the lemma is clear. 

COROLLARY III.4.4. (Uniqueness theorem/or v(z; p,  ~, fl, ~).) Let w be harmonic in 

W - { p ) with the expansion w=log I z l § c + o(1) at p in the local parameter z (z(p) =0). Set 

A =lima~wSo~ wdw* where ( ~ )  is an exhaustion o/ W and set ~o(r)= (z : v(z)=log r) .  

I /  /or some decreasing sequence r =r(n), lim r(n)=0,  we have 

S sdw>~l - log  r, almost all sE:~r=:~(go(r), ~, 8, ~) and all r=r(n) ,  

and c -c~(p,  o:, 8, ~) >~ (A/2:~) - 1, 

then w~--v(z; p,  ~, fl, ~,) +a  constant. 

Proo/. We note the condition above is independent of the choice of local parameter z 

and that  if w - - v  then A =2~. 

Choose the local parameter $ =exp (v + iv* )=z  exp cz +o(z) about p, where v* is the 

conjugate harmonic function to v. Let  A be the disk I$[ < r  and set w ' = w / ( 1 - l o g  r) in 

W - A .  Corollary III.4.1 implies that  

IIdw'll =(1 -log r) lldwll-2 

where the Dirichlet integrals are extended over W - A .  We then find that,  setting d = c -  cz, 

2~(1 - log r) ~ (A - 2rid - 2~ log r) -~ + log r < 2ze~(:~,) + log r. 

As r =r(n) approaches 0 the left side decreases and the right side increases. We obtain on 

using the lemma that  
2 + d - A / 2 ~  <. 1. 
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By assumption equality must hold. Hence 2~(:7r)= Hdw'[[-~ for all r=r(n),  and from Co- 

rollary III.4.1, 

w' =u((; ~o(r), ct, fl, 7) + a  constant (depending on r). 

But  we have previously observed that  u ( ( )=  (v(z)- log r)/(1 - l o g  r) and we conclude that  

w----- v + a constant. 

Remark. The hyptheses of Corollary III.4.4, which are satisfied by w + a  constant if 

they are satisfied by w, can be replaced by the following conditions. Set ~0'(r) = {z: w(z) = 

log r}. Then require 

f sdW >/1 - almost all e ~ = ~(0~(r), log r ,  8 8, 7) 

and c-cz(p ,  ~, 8, 7) <~1 -A/2xt .  

These conditions are not necessarily satisfied if a constant is added to w but  it now follows, 

exactly as above, that  w ~ v .  Indeed, let ~ =exp(w +iw*) and w'= (w- log  r ) / (1 - log  r). 

The lemma implies that  lim (2~t2(:~)+log r ) = l - c z + c  and we conclude that  w'= 

u(~; ~0, ~, 8, 7). But then (in W - A )  [[d(w-v)][z= - S o ~ ( w - v ) d ( w - v ) *  =0. 

COROLLARY III.4.5. Notation as in Corollary III.4.4. Assume 

f dw* >~ almost all E ~*, 2Jr, T 

and c -c~(p, ~, 8, 7) >~ (A/2~t) - 1. 

Then w----v(z; la, :r 8, 7) +a constant. 

COROLLARY III.4.6. The constant cap, ~, 8, 7) a) decreases (or remains unchanged) 

when components in fl U 7 are placed in ~ U 8, b) increases (or remains unchanged) when com- 

ponents in ct U fl are placed in fl U 7. 

COROLLARY III.4.7. a) I[ o~ o is a curve imbedded in asur[ace W,[[du(z; ~o, o~,fl, 7)[[ =0  

implies[[du(z; ct0, ct, 8, )')[[ = 0 / o r  any other curve O~o; b) %(p, ct, f l ,7)=  - c o  [orsomepe W 

implies cz(p, ~, 8, 7) = - co/or all points 19 e W. 

IV. Plane regions 

IV.i .  Definit ion and e x t r e m a l  propert ios  of the slit m a p p i n g s .  Assume that  

W is a plane region and that  % are each single ideal boundary components. Furthermore, 

we will assume that  

Ilau( ; c (p, 
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Then du(z; go, ~t, fl, 7)* has a single period equal to Ildull along dividing cycles separating 

~0 from ~, and dr(z; p, ~t, fl, ~,)* has a single period of 2n around cycles bounding a region 

containing p. Hence the functions 

go, ;,)=expr2 (u +iu* ) / l ldul l  

l(z; p, a, fl, 7)=exp(v +iv*) 

are determined to a multiplicative factor k, I kl = 1. By using a standard approximation 

argument, it is seen that/(z; go, a, fl, 7) and/(z; p, a, fl, ~,) are univalent. 

De/inition IV.I.1. Assume A is a plane region with a partition (go, ~, fl, 7) of its 

boundary subject to the conditions of 1.3 and such that  go and ~ consist of single components. 

If A is contained in the annulus 1 < Iz[ < R  and u(z; go, a, fl, 7)-~log[z[/log R then A (or 

A(/~)) is referred to as an extremal slit annulus. 

Assume A is a plane region with a partition (~, fl, 7) of its boundary subject to the 

conditions of II.4 and such that  ~ consists of a single component. If A is contained in the 

unit disk [z[ <1 and contains the point z=0  such that  v(z; O, ~, fl, 7)--logiz[ +1, then A is 

referred to as an extremal slit disk. 

I t  is easily seen that  if {Iz I =r} is contained in the interior of A, then A is an extremal 

slit disk if and only if i f3 {]z] >r} is an extremal slit annulus (after the mapping z~z/r) .  

Indeed the necessity was seen in II.4. Assume conversely that  A ' = A  n {Iz[ >r}  is an ex- 

tremal slit annulus (after the mapping z-+ z/r) with I z ] = r an isolated boundary component. 

Set go= {1 1 =r}, 8, and as given with A, 

u=u(z; go, ~, fl, 7)=loglz/rl/log r -1, and v=v(z; O, o~, fl, 7). 

We find after using a suitable exhaustion that  

(u-v)d(u-v)*= I I d ( u - v )  l l i . =  - 

H e n c e  y., ~ v .  

Using the preceding result as justification we will deal only with extremal slit annuli. 

These can be characterized geometrically as follows. 

THEOREm IV.1.2. Suppose A is a region contained in {1< Is] <R}  with admissible 

boundary partition (go, ~, fl, ~'). Set ~ = ([ z [ log R) -1. The [ollowin9 conditions are equivalent. 

(a) A is an extremal slit annulus A(R) 

(b) Sc Q Idzl/> 1 and Sa~ I dz ] >~ 2g/log R / o r  almost all c E y, d E y*. 

(c) 2(y) ~< (log R)/2z~ and ~ce]dz I >1 1/or almost all c E ~. 

(d) 2(~)/> (log R)/2rc and ~ ~ [dz [/> 2~t/log R for allmost all d E ~*. 
17 - 662945 Acta mathematlea. 115. I m p r i m 6  le  15 m a r s  1966. 
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Proo/that (b) implies (a). Using ~ as a competing density for 2(:~), 2(:~*), 

(log R)/2~ ~<A(Q) -1 ~<X(~) =~(~*) -1  ~< (A(~)log2 R)/4~2 ~ (log R)/2~t. 

Now apply Corollary III .4.1 to v =~. 

Remark. Suppose for example tha t  ~o = {] z ] = 1 } and ~ = {[z [ = R}. Then if fl = O 

or ~ = O  the conditions (e) and (d) can be replaced by the requirement 2(:~)=(log R)/2rt. 

I f  fl # O and ~ # O this single requirement is not sufficient. 

De/inition IV.1.3. Let  A be an extremal slit annulus with respect to the partition 

(~0, ~, fl, ~) and let g be a collection of boundary components of A not containing ~0 or g. 

I f  the new region A U {~t} is an extremal slit annulus with respect to the parti t ion ~ = ~ 0 ,  

a '  =~,  fl' = f l - f l  fig, ? '  = ~ - ~  Nig then g is said to be removable. 

THEOREM IV.1.4. Let J be an analytic Jordan curve in the interior o /an  extremal slit 

annulus A which does not separate o~ and o~. Denote by ~ the collection o] all those boundary 

components o / A  which are separated/rom ot by J. Then ~t is removable. 

Proo/. The proof depends on the fact that  u=u(z; ~ ,  ~, fl, ~)=log]z] / log R which 

was defined with respect to A is also harmonic in A" =A U (~t}. Let  ~ = ~ ,  or' =~, fl'= 

fl - f l  N g, ~'  = ~ - ~ N ~t and set v =u(z; ~ ,  a', fl', ~'), the extremal function for A'.  Denote b y  

A the region in A '  bounded by  J .  Using a suitable exhaustion of A and the induced ex- 

haustion of A '  together with the corresponding approximations to u and v, one computes, 

borrowing the result of Theorem IV.2.1a, 

II d ( u -  v)15 = - f , ( u -  v ) d ( u -  v)* + II v)Ill = o, 

and hence u---- v. 

COROLLARY IV.1.5. In  the notation o/the Theorem above, i] g is contained in fl or in 

and i / g l  is any collection o/components in 7t, then gl is removable. 

The extension of Theorem IV.1.4 to general non-isolated sets ~t is fraught with diffi- 

culties and is certainly not always possible. Therefore we will make the following definition. 

Definition IV.1.6. Let  a be a closed, connected subset of some boundary component of 

A. Consider collections ~ of components such tha t  fl -~ t  N fl (or~ - zt N ~) has no accumula- 

tion point on a. I f  there exists such a ~t which is removable, then a is called fl-isohtted (or 

~.isolated, respectively). 

Sufficient conditions tha t  a be fl- or ~-isolated are readily obtainable using the fol- 

lowing technique. Suppose for example tha t  g is a countable collection of boundary corn- 
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portents with ~t c f l  such that  ~ =lira gn where {~tn} is a countable sequence of isolated col- 

lections ~n. Set 

:~=:~(~o, ~,/~, y), :L=:;~(ato, ~, f l -~ . ,  y), :~' =:~(~, at,/~-~, y). 

We need to prove that  2(:~')=lim 2(:~,) (=2(~)). To do this we may assume :~ 'c  ~n so 

that  it is sufficient to prove ] im2( :~ - :~ ' )=c~ .  The simplest situation in which this is 

true occurs when g consists of a countable number of points. Other conditions can be given 

for more general situations in terms of the geometry of the configuration. We will not 

pursue this matter  further. 

IV.2 .  T h e  g e o m e t r y  of  a n  e x t r e m a l  s l i t  a n n u l u s .  

THEOREM IV.2.1. Let A ( R )  be an extremal slit annulus with boundary partition 

( ~o, at, fl, y ). 

(a) The two dimensional Lebesgue area o] the boundary o / A  is zero. 

(b) Assume (r is a connected, closed subset (not a point) o / ( i )  r (ii) ~, (iii) a component 

~efl ,  and suppose that (r is y-isolated. T h e n / o r  all points zEa, (i) Izl =1,  (ii) Izl - R ,  (iii) 

] z ] = k  /or some constant k, 1 < k < R; /ur thermore ,  the same k must be u s e d / o r  all such 

contained in v. 

(c) I / ( r  is a component in y,  there exists a constant k such tha t /or  all zE~, arg z=k .  

(d) 1 / a  component ~Efl(or a=z t  o or r162 is fl-isolated, then a is a circular slit with radial 

incisions (including the possibility o / a  single radial or circular slit). 

(e) Suppose T = o~ o, v = o~ or ~ is a component in fl, and assume the class F o/arcs  in .4 - $  

tending to T has/ ini te  extremal length. Let r be the number, 1 <~ r <~ R,  such that 

cdu (log r / log R) u(p)  

/or almost all c EF, where p is the initial point o / c  (i/ p e at 0 or pea t  take u(p) = 0  or 1, respec- 

tively). Then each component o / @ -  { ]z I =r}  n T) which is fl.isolated is a radial slit. 

Proo]. (a) The mapping z =/(w; ~0, at, f ,  Y) is the identity. The area of / (A) in the den- 

sity [zl-1 Idzl is equal to the area of A in the density (2zt/lldul]~)lgrad u I ]dw[ where u =  

u(w; ato, at, fl, Y)=l~ This latter area is 4~21[dull-~ =2~t log R, or the same as the area 

of the annulus 1 < I zl < R in the density I z [ - l ldz l .  

(b) We will prove case (i); the proofs for the other cases are similar. Because of the 

hypothesis that  ~ is y-isolated, we may assume that  the components in y have no accumula- 

tion point on a. 

Let al be a connected subset of a, not a point, which is not a radial (circular) slit. Then 
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there exists a family C of radial (circular) slits in ~ - 7  wi th  (i) initial point in A and ter- 

minal point on al, and (ii) which project onto an interval of positive length on I z] = 1 (on 

arg z =0,  respectively). Hence each curve in C may  be parametrized in the form co where 

0 is the projection of the radial (circular) slit ca, a < 0  <b.  Because of (a), except for a set S 

of linear measure zero, the closed set Co fl/3 must  have linear measure zero. 

That  this exceptional set S in 0 has measure zero (m(S)= 0) implies tha t  the corre- 

sponding class Co, 0 E S, has infinite extremal length: use the density ~(z)= 1 for z E c0, 0 E S, 

and ~(z)=0 otherwise. The extremal length of the class C =  {co: 0~S} is finite for if ~ is 

any  linear density and if, say, ca are radii with maximum logarithmic length % the Schwarz 

inequality yields L(~, C) 2 <~A(o)cp/b-a. Because u is continuous in the closure of co f] A 

in 1 ~< [z] ~<R and the closure is obtained by  adding a point set of measure zero, 05S ,  

we have (see 1.2) 

codu = lim - u(co(O)) 

as p "-."co (1) where c0(1) and co(O) are the end point and initial point of co, respectively (u = 

log lz]/log R). 
Now apply Theorem II.3.2; for almost all curves rE  ,~--7 traveling from the initial 

point T(0) of r to a, 

f du = O- U('g(O)), 

and hence we find 

lim u(p)=O, as p-~ce(1) along Co. 

Therefore there are some points z on a for which Iz[ =1.  H ]z,] :~ 1 for some zoEa there 

exists a connected piece al of a, not a point, which contains z 0 and on which [ z I 4= 1. Again 

the above argument  shows tha t  this is impossible. 

(c) The function u*, the harmonic conjgate of u, is single valued in a neighborhood of 

any component a of 7. The reasoning of I I .3  can then be applied to show the existence of a 

constant h such tha t  

~ du* = h - u*(T(0)) 

along almost all curves (initial point r(0) in A) in ~ - f l  which tend to ~. A reasoning ana- 

logous to tha t  of (b) now yields the result since a is isolated from ft. 

(d) Let  ~ be a removable collection of boundary components such that/31 =/3 - g  N/3 

has no accumulation points on a and setTx = 7  - ~  f) 7. Consider the class :~1 =:~(0%, ~,/31, 71); 

by  hypothesis 2(:~)=)l(~x) (here : ~ = ~ ( ~ ,  g,/3, ?)). Suppose first tha t  the class of curves 
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in 51 which mee t  (r has infinite ex t remal  length. Then,  since we m a y  define fl~ = i l l - ( r ,  

75 =7 1  U (T, ~ 2 : ~ ( g 0 ,  g, ~2, 72) we f i nd  ~(~2)=~(~1)  and  hence AI=A Uzr is the  ex t remal  

slit annulus for the  par t i t ion  (g0, g, fl,, 72)- F r o m  (e) it  follows t h a t  a is a radial  slit. 

Now assume tha t  the  class of curves in :~1 which mee t  a has  finite ex t remal  length. 

Since a is isolated f rom ill, a curve tending to a in -4 - 7 1  contains a curve tending to a in A. 

Therefore Theorem II .3 .2 implies t h a t  there exists a cons tant  r, 1 < r < R, such t h a t  l im u = 

log r / l og  R along a lmost  all curves in .~ - 7 1  which tend to a (here u =u(z;  g0, g, ill, 71) = 

log[z I/log R). Le t  :~  be the class of curves in :~1 which do not  mee t  a n y  componen t  of 

. -  { I=1 : r }  n then  2(:~)=2(:~1). 

L e t . ,  be a component of =r} and suppose that I=1 > '  for =e l. Choose 

numbers  rl, r 2 with r<rl<r ~ and r~ so close to r t h a t  there are points  zeal with Iz[ >r~.  

We  can find an open set  N c  { r l<  Izl <r~} such t h a t  (i) N is the  union of a finite num-  

ber  of regions wi th  smooth  boundaries ,  (ii) ~1 fl {r I < I z] < r~} c N,  and  (iii) CI(N) A HI = 

CI(N) n a. 

Denote  b y  ~ those components  of a - a  N N for  which ]z I =~r, all zEa ;  ~ contains a t  

least  a piece of ~1. Set A~=A1UI~ , f l 2 = f l l - f l l A N - a ,  72=  (yl - 7 1 N  N) Ua,  and  : ~ =  

:~(g0, g, fl~, 73). Since those curves in :~1 which mee t  a and  fll N IY = a  N N form a class of 

infinite ex t remal  length, 2(:~) ~<2(:~1). 

We claim t h a t  A~ is an ex t remal  slit annulus,  t ha t  is ~(:~2)=~(:~1). To prove  this we 

need only show t h a t  [~cdu[ >11 for  a lmost  all ee:~. I t  is enough to show this for those 

c E :~  which cross the bounda ry  ~/V of h r. B y  a slight deformat ion  of e we m a y  always as- 

sume c does not  contain an  interval  on ~Y. The class of curves in :~  which cross ~h r in- 

f initely of ten have  infinite ex t remal  length, as is not  ha rd  to show. The  class of curves 

which cross 0N a t  a point  of a also have  infinite ex t remal  length. Indeed  each such curve 

contains a curve in -~1 - Y l  which tends toward  a - a  I"1 {]z I =r}. Let  then  :~a(~h r) be the  class 

of curves in :~  which cross ~Y a finite number  of t imes and  only a t  points  in the  interior 
of A1. We  mus t  p rove  t h a t  I.fodul >1 ~ for a lmost  all c E :~(0N). 

We  will now briefly outline an  appl icat ion of the  me thod  developed in I I I . 3 .  I n  A~, 

let u~ be the approx imat ion  to u in ~ ,  as const ructed in I I .  Define the  linear dens i ty  

o[dz] in A 1 by  

= [0 in the  remainder  of A~. 

Then  for a lmost  all c E :~(OzY) there  exists a sequence {n(o)} such t h a t  (for a suitable inter-  

p re ta t ion)  

.~1 A d u - d u ,  = 0 ,  A' I=A1-AI  ~N.  lira 
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Denote  the points  of intersect ion of c wi th  ON as c runs  f rom ~o to ~ b y  px (first point) ,  

P2 . . . . .  P2n (last point).  We find 

fc du= 1 -  ~ [u(p~k)-u(p2~-l)] 
N A'I k = l  

since un(z) ~u(z)  a t  interior points  of A 1. Since c N N mus t  connect  the  points  p ,  and  u 

is harmonic  in N we mus t  have  Scdu = 1. This is t rue  for a lmost  all c E :~2(~N) the reby  proving  

t ha t  ~(:~2)=2(:~x). 

Since A S is an ex t remal  slit annulus,  the components  in o are radial  silts; in par t icular  

the  components  of a x -  al  N N on which [z I > r 2 are radial  slits. Since r 2 can be t aken  ar- 

bi t rar i ly  close to r, ~x mus t  be a radial  silt, and  this is wha t  we had  to prove.  We  have  

assumed t h a t  a Efl, bu t  the  same proof  holds for  a =~o or ~ = ~ so long as a is/~-isolated. 

(e) The s t a t emen t  here a lmos t  implies the  result  of (d) and  the proof  is essentially the 

same. Using the  nota t ion  above,  we need only observe t ha t  the ex t remal  length of the class 

of curves in :~x t h a t  mee t  7 - { I z I  = r }  N v mus t  be infinite. 

As a consequence of Theorem IV.2.1 we obta in  the  existence of circular and  radial  

slit mappings .  Fo r  other  general methods  of der iva t ion  see Reich and  Warschawski  [8, 9], 

Reich [7], Strebel  [12,13], and  Ahlfors-Sar io  [2]. (See also [4], [11] for  two less general  bu t  

older t rea tments . )  

COROLLARY IV. 2.2. (a) I f  y is empty the boundary components of A are circular slits 

and I z ] = 1, I z I = R. The projection of the circular slits of positive length onto a radius has 

measure O. 

(b) 1] ~ is empty, the boundary components o / A  are radial slits, Iz] =1, and Izl = R  

with possible radial incisions eminating from a set of measure zero along I z ] = 1 and I z I = R. 

The projection o / the  radial slits o/positive length onto a concentric circle has measure zero. 

Proof. P a r t  (b) follows easily f rom the theorem bu t  there is a simpler proof  t h a t  I zl = 1 

and  I z ] = R m a y  have  radial  slits eminat ing  f rom them.  N a m e l y  for  1 < r < R, consider 

A t = A  0 {1 < [z[ < r }  and  set  Yt =Y U (~ N {1 < [z] < r }  and  :~, = :~(~o, ~, 71). B y  the  com- 

parison principle, 2~r/logR~<2(:~l)~<~t(:~) and  hence 2(:~1)=2(:~). Consequent ly  A t is an  

ex t remal  slit disk. T h a t  is, ~ fi {1 < ]z[ < r }  are radial  slits. 

The  de te rmina t ion  of/~- and  y-isolation is closely re la ted  to the de te rmina t ion  of the 

boundary .  This is i l lustrated in the  following corollary. 

COROLLARY IV.2.3. A comlmnent zG~ is y-isolated i / a n d  only i] ~ is a circular slit. 

Proof. We  have  seen above  t h a t  if ~ is y-isolated, T is a circular slit. Conversely,  let  J 
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be a analytic Jordan curve in the interior of A which separates v from ~0 and ~. If ~ denotes 

those boundary components of A, including v, which are surrounded by J ,  then ~t is re- 

movable. Now replace T after removing n. Since T is an isolated circular slit, an easy com- 

putation in the style of Theorem IV.1.4 shows that  the resulting region is an extremal slit 

annulus. 

An example. Put  a circular slit with a radial incision in the annulus A: 1 < Iz] <R;  

this will be ft. Pu t  countably many radial slits in A (call the collection of these slits 7) in 

such a way that  the extremal length of the class of curves in A - 7  tending to the radial 

incision in fi, is infinite. An easy application of Theorem IV.1.2 shows that  this slit annulus 

is an extremal slit annulus. A similar example shows the existence of an extremal radial 

slit annulus in 1 < [z ] < R with radial incisions from [z ] = R. 

IV.3. E x t r e r a a l  p rope r t i e s .  In  this section we present results which have been used 

in the approaches to extremal radial and circular slit disks by purely classical methods 

(see [7], [8], [2]). 

Let  W be a plane region, p a point in W and (~, ~, 7) a partition of the boundary of W 

so that  ~ consists of one boundary component (and, of course, fl is closed in the compacti- 

fieation of W). Write v(z; p, ~, fl, y ) = l o g ] z - p [  +c,(~, fl, y)+o(1) about z=p .  

TH~OR]~M IV.3.1. (a) Suppose 7 = 0  and l(z) is univalent in W with/(p)=0 and 

I1( :)1 < 1. Then 

l l '(p)l 

with equality i /and only il /=exp (v +i v*). 

(b) Suppose ~ = 0  and /(z) is univalent in W with/(p)=0 and liml/(z)l >!1 as z--->~ 

along almost all paths in W which approach ~r Set B =lim._~ S. h dh* where h =log [/[ and 

{zt} is a collection o/simple closed curves in W approaching ~. Then 

B 1 I/"(p)l + ( ~ - )  >~ c~(or 

with equality i /and only i I / =  exp (v + i v*). (In the case that ~ is isolated/ram all 7 at least, 
B=2g . )  

eroo I. (a) follows upon setting h=logl/I and computing IId(v-h)ll  where A is a 

small disk about p. We also use the fact that,  in the sense of an approximation, 

f hdh*<-<O while f hdh*<2m 

(b) follows from our uniqueness theorem (Corollary III.4.1). 
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Finally we will describe the following interesting result which was derived using a 

different method by Reich and Warsehawski [8]. Suppose for example that  7 = O. Fixing 

a boundary component ~0, use Theorem II.5.1 to find another boundary component $ so 

that  
Ilau~ll~>lld~=ll, all ct*ct o. 

(Notation as given in II.5.) Realizing W by exp 2=(ua +iu~)/lld=~ll 2 as  an extremal circular 

slit annulus A, it follows that  each circular slit of A subtends an angle < ~. 

For the proof set R = exp 2rt/I ]d~ll 2. Then Q Idol = (I ~ l log R)-~ldzl is the extremal metric 

for the class :~*($, fl) in A (or more precisely, for almost all curves of :~*(~, fl)). Choose any 

# ~ where a is realized as a circular slit of A and use Q ] dz ] as a competing density for the 

problem :~*(~, fl) in A. By assumption we must have 

< 2re]log R = IId  ll , 

where cE:~*(~, fl). Equality cannot hold since the extremal metrics for :~*($, ~), :~*(~r 

are known to be different. On examining the geometry of the situation, it follows easily 

that  ~, as realized in A, must subtend an angle < ~t. 

The same statement holds for an extremal circular slit disk. 

V. A dual problem 

We will briefly consider in this chapter the case of a partition (~0, ~, fl, 7) of the ideal 

boundary such that  ~o, ~, ~o U ~ U 7 are closed in the compactification ~r of W (~o and cr 

cannot be empty). The corresponding classes ~g and :~* were defined in 1.3. 

Let  {~n) be an exhaustion of W such that  all components of &~n are piecewise analytic 

dividing cycles. Define a partition ~0n, ~ ,  fin, 7.  of 0~n as follows: a) ~0. consists of those 

components of 0E2n which have idea] boundary components contained in ~0 as derivations; 

b) ~n consists of those components which have ideal boundary components in ~ as deriva- 

tions; e) Bin consists of those components which have only ideal boundary components 

in fl as derivations; d) 7n consists of the remaining components. Denote by ~ .  the region 

obtained by adjoining to ~2. the non-compact subregions of W-~2.  which are bounded by 

~o, an and Bin. The construction of II.1 can now be repeated to show the existence of a 

harmonic function u(z; ZOo, ~, fl, 7) in W with boundary behavior as described in Theorem 

II.3.2. 

Consider the classes ~(~to, ~, fl, 7) and ~g*(~o, ~, fl, 7)" Let ~n be the class corresponding 

to :~ in ~ , .  Since every c E :~, is a curve in ~, we findlldu]l-2 ~ 2(:~). Upon using ]grad u ] I dzl 
as an admissible density we see that  2(:~)= Ildul1-2 
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The proof tha t  2(:~*)= IlduH ~ is much harder.  Indeed  the comparison principle im- 

lies t ha t  1(:~*)>~ Hdu]]2 since each cE:~* contains a curve in the corresponding class in. ~=  

To prove equality,  we need an analogue of the cont inui ty  lemma of I I I .2 ;  such a lemma can 

be proven in a similar manner.  

I n  the case tha t  W is a plane region, "the funct ion u m a y  be used to construct  a map-  

ping onto a corresponding extremal slit annulus B. The boundary  of B can be described in a 

fashion entirely analogous to tha t  in IV.2. Thus the fl are all circular slits and the ? are, in 

m a n y  cases, radial slits with circular incisions. The nature  of ~0 and ~ is no different than  

tha t  considered in IV.2. 

There are also other extremal length problems tha t  m a y  be solved by  the methods used 

here. For  example fl m a y  be decomposed into subsets fl~ which are no t  necessarily points. 
A 

Then W can be replaced by  the quotient  topological space obtained by  identifying all points 

contained in the same fl~. The corresponding classes :~, :~* can then be defined. 
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