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Partition the boundary of a compact bordered Riemann surface W into four disjoint

sets o, , 3, y with o and « non-empty. Let W denote the compactification of W obtained
by adding to W a point for each boundary component. Define

F={c:cisanarcin ﬁ7——y from o, to a}
and F*={c:c is a sum of closed curves in ﬁ’—ﬂ such that ¢ separates «, from o}.

Determine the harmonic function # in W by the boundary conditions ¥ =0 on o, u=1
on «, du/on =0 along y and u is constant on each component f, in § such that 5 du*=0.
Then A(F)=||du||~2, A(F*)=||du||? (see Lemma III.1.1) where A(-) denotes the extremal
length and [|du||? the Dirichlet integral. This result was essentially known to Ahlfors and
Beurling by the time of their fundamental paper on conformal invariants [1]. We observe
that if W is planar and «,, « are each single boundary components, exp 2z(u + tu")/||du||?
is a conformal mapping of W into 1< |z| <exp2n/||du||? and the images of the components
in f are circular slits and the images of the components in y radial slits.

The purpose of this paper is to give a complete generalization of the above result to
arbitrary open Riemann surfaces. As a consequence of our work we obtain a new class of
conformal mappings of plane regions onto “extremal’ slit annuli analogous to the situation
described above.

We begin with an open Riemann surface W and partition its ideal boundary into four
disjoint sets o, o, 8, y with oy and o non-empty and «,, « and «y U « U f closed in the Kerék-

jarto-Stoiléw compactification W of W. Classes of curves F, F* analogous to F and F*

(') This work was supported in part by the National Science Foundation under grants GP 2280
at the University of Minnesota and GP 4106 at the University of California, San Diego.
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are defined in I.3. In Chapter IT we construct by means of an exhaustion the harmonic
function u corresponding to the partition (e, «, §, ¥) and in a certain sense determine the
values of u on the ideal boundary (roughly speaking, in the sense of limits along curves
tending to the ideal boundary). We also show (II.5) the existence of a boundary component
of maximal “capacity”’. Corresponding results are derived for a harmonic function v with
a logarithmic singularity at a prescribed point.

In Chapter III we prove our main result: a) A(F)=||dul|-? and b) A(F*) =||du][2. The
proof of a) depends on a highly topological continuity method for extremal length in which

arcs in an exhaustion are pieced together to form an arc in W. This method is ascribed to
Beurling and was developed by Wolontis [13] and Strebel [12]. Using it, Strebel proved.
a) in the case f=(. Part b) is proven by establishing the formula {,du* =||du||? for all
curves c€F* except for a subclass of infinite extremal length. Our main theorem also
yields some uniqueness theorems for « (I11.4).

The information we have previously obtained is specialized in Chapter IV to the case
of plane regions W with «, and & each consisting of a single boundary contour. We show
that exp 27 (u +iu*)/||du||? is a conformal mapping of W onto an “extremal” slit annulus
contained in 1< |z| <R=exp 2n/||du|? such that a) the area of the slits is zero, b) the
image of a boundary component in y is a radial slit (or point), ¢) the image of a component
in § which is isolated from y is a circular slit (or point), and d) in many other cases the image
is circular with radial incisions. An extremal slit annulus is uniquely characterized (to
a rotation) by the following property: set o =(R log|z|), then f,o|dz| >1and f;0|dz| >
2nflog R for all c€F and d € F*, except for subclasses of infinite extremal length. Our results
imply the classical properties of extremal circular slit annuli (y =) obtained by Reich and
Warschawski [8, 9] and of extremal radial slit annuli (§=9) obtained by Strebel [12] and

Reich [7]. Even in these classical cases however, the uniqueness property above is new.
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I. Preliminaries

I.1. Arcs and 1-chains. Given an open Riemann surface W, its Kerékjart6—Stoilow
compactification, in which each ideal boundary component becomes a point, will be
denoted by W (see Ahlfors-Sario [2]). The following topological model of W given by I.
Richards [10] is less well known but conceptually quite useful for what follows. Take the
extended complex plane and remove a closed subset S of the Cantor set from the real axis
(a topological model of the ideal boundary). Then remove a countable or finite number of
disks from the open upper half plane so that they accumulate only to points of § (to ideal
boundary components of nonplanar character). Next remove symmetrically placed disks
from the lower half plane and identify symmetric circumferences by the correspondence
z—>%. When this construction has been suitably carried out the resulting surface will be

a topological model of W and the union of W and S will be a topological model of W.
The definition of arc and open arc in a topological space is standard. We will use the
same terminology and notation for an arc and the point set determined by it.

A relative 1-chatn T on. W is a countable formal sum

T= 2 CiTs
where each c; is a positive or negative integer, each 7, is an arc or open arc in W, and given
any compact set K, ;N K is non-empty for only a finite number of <.
The restriction of an arc or closed curve 7 in W to W will be denoted by tnW. We
see that 7 N W is then a relative 1-chain on W.
Let w =adz +bdy be a differential on W. We make the following definitions.

(i). Suppose 7:(0,1)>W is an open arc on W and {[¢,,¢,]} is a nested sequence of in-
tervals in (0,1) which approach (0,1). Denote the restriction of T to [¢,,,] by 7,. Then define
w=1m | w

n->0 J1,
when each term on the right exists and the limit exists independent of the particular ex-
haustion of (0,1) used.
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(ii). If v= ¢, is a relative 1-chain define

w=204f (4]
L 14

when all terms on the right exist and the convergence is absolute.
If p|dz| is a linear density and 7 an open arc §,g|dz| is defined as in (i) and always

exists < oo, If T=21¢;7, is a relative 1-chain we define

[elel=5lal [ elast

In particular |w]|= (|a[2+|b[*)}|dz| is a linear density. If 7 is a relative 1-chain and
fzlw|< oo then [, exists and | f,0| <f.|o]|.

Suppose a triangulation of W is given and £ < W is a closed curve or arc with both end
points ideal boundary points. By the method of simplicial approximation the relative
1-chain v=%N W is homologous (singularly) to a simplicial 1-chain 7,. If ¢ is a closed dif-

Jlo=oe

We will also make use of the fact that if {Q,} is an exhaustion of W (i.e. Q,<Q,,, and
60, is smooth) a triangulation of W may be chosen so that &2, for each n appears as a sim-
plicial cycle [2]. We shall use these remarks later to simplify the evaluation of certain
integrals.

ferential with compact support,

1.2. Extremal length. If C is a family of rectifiable relative 1-chains and p|dz| is a

Borel measurable linear density define

Lo, )= i [ lds],

A(e)=fjw92¢h‘ dy,

_ . L¥e, 0,
ol

A(C) is called the extremal length of C.

Traditionally, the elements of C are called “curves”. If C is a family of ares on ﬁ’, the
same definitions apply except ¢ is to be replaced by the 1-chain cnN W.

Let C be a family of curves. Following M. Ohtsuka [6] (see also [3]) we say that a
statement is true for almost all curves in C if the subfamily €’ of C for which the statement
is false has A(C") = co.
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The following lemma will find frequent use in this paper. In a somewhat different
form it is due to Fuglede [3]. From the point of view of Riemann surfaces it also has ap-
plications to the theory of square integrable differentials [5].

Lemma I. 2.1. Let {g,|dz| } be a family of linear densities on W which satisfylim 4(p,) =

0 and suppose C is a family of curves. Then there is a subsequence {n} such that for almost
all ceC,

Iim f gn|dz|=0.
nsw Je

Proof. Pick the subsequence {n} so that (without changing notation) A(g,) <273". Set

A,,={c€0’:f g,,ldz]>2_"},

B,=4,U An+1 U An+2 U...,

Then for any n, using g,|dz| as a competing density for A(4,),

MBI SUB) TS 3 MA)TIS 3 27 =20

i=n

(here we are making use of the well-known result that if a class of curves I is contained in a
countable union of classes T, then AT <SA(I",)-2; see [6]). Hence A(E) = co. If for some
¢€0, lim sup §, p,dz>0 then ¢ belongs to all B, and therefore to E.

1.3. The classes J and JF*: statement of the problem. Let W be an arbitrary open

Riemann surface and partition the ideal boundary into four disjoint sets ey, «, f§, ¥ such
that

(i) ap and e are non-empty .
(i) ecg, o, and oy U U § are closed sets in the compactification W of W.
Define the classes F, F* (or F(xy, «, B, 7), F'(otgs ¢, B, 7)) as follows.
F={r:risanarcin W - p with initial point in o, end point in o}
3" = {1: 7 is a countable union of closed curves in W - %y — o — f such that
(a) all limit points of 7 are contained in y, and
(b) no component of (I//I} ~ ) — 7 contains points in both «, and o}.

Given 7€F* let ﬁ71 be the union of the regionsin (ﬁ7 — ) — 7 which contain points in
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oy and let 7; be the relative boundary of ﬁl so that 7, is contained in 7. Then 7, satisfies

the following property
(¢) If 7, is a closed curve in 7,, then 7, — 7, does not satisfy (b).

The main problem of this paper is to find A(F), A(F*). Therefore it is no restriction to
assume the curves in F* also satisfy (c). Then the curves in J* may be oriented so that «,
lies to the left.

The method of solution of these extremal length problems is really dictated by the
assumption (ii) on (e, «, §, ). In Chapter V we will briefly consider the problem of finding
A(F) and A(F*) when (ii) is replaced by

(i)’ otg, &, and o U e Uy are closed in W.

The method of finding the solution is different, and even when the second partition is
obtained from the first by adding to y and subtracting from f the minimum number of

points to make (ii)’ true, the solution may be different.

II. Canonical Harmonic Functions

IL.1. Construction of u(z; «q, «, §,7). We begin with an arbitrary Riemann surface W
and a partition (ety, , f, y) of the ideal boundary of W as described in I.3 above. Assumption
(ii) implies that there is a Jordan curve in W separating o and o. In this section we will
construct the harmonic function u(z) = u(z; oy, «, f, ) determined by the “boundary” condi-
tions #=0 on ay, =1 on «, u= constant on each component g; in f with [ du* =0 and
oujon =0 along . These conditions are to be understood as limits in a sense to be made precise
below. Finally we wish to emphasize that convergence (of functions and differentials) is
considered only in the Dirichlet norm.

Let {Q,} be an exhaustion of W such that for each n, Q, separates o, from « and each
component of &Q), is a dividing eycle not homologous to zero. Suppose ¢ is a component of
some 00, ; then ¢ is the relative boundary of a subregion S of W—Q,. If x is an ideal
boundary component of § we shall call z a derivation of .

Using the following rules divide 20, into disjoint collections of components oy, o,
B and y,.

A-1) «,, consists of those components of 6Q2, which have a point of «, as derivation.

A-2) «, consists of those components which have a point of « as derivation.

A-3) A contour of 20, belongs to y, if and only if the only ideal boundary points

which are derivations of it lie in y.
A-4) B, consists of the remaining contours of o€),.
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Let €2, denote the possibly noncompact region obtained by adjoining to (, the non-
compact components of W —Q, which are bounded by curves in ,. We orient the boundary
contours so that 9Q,=a, +f,— ;. Choose an exhaustion {Q,;}:2, of &, so that 6Q,;=
0ty +Br+Vni — % Thus for all n, y,,; is homologous to y,,.

Define the harmonic function u,; in Q,; by the boundary conditions

B-1) u,,=0 on «,, #,;=1 on «,

B-2) éu,/on=0 along y,,

B-3) u,; is constant on each component §,; in §, with the constant chosen so that

§ oy dum; =0.

We will first show that Nm; ,e%,;=u, exists in K, and is independent of the exhaus-
tion {Q,;} of Q..

For j>1¢ the equation
(dunb dum‘)ﬂni = fan unidu:i = f du:i = ” dty ”?),,;
‘né On
implies that
[CCRr N W L I W L [ (1)

In particular, ||du,||&,, is increasing with <.
Let v be the harmonic function in Q,,=Q, defined by the boundary conditions v =
0 on &, v=1 on &Q, — «,,. Then since

(s )= [ oy = g s
we find that

lldun; —dolff, < ldvlffr, — |dunill3.

and therefore ||du,|| is uniformly bounded. It follows from equation (1) that lim,_, o %,, =%,
exists. Furthermore lim; .| du,;|0m=|du,[e.. To prove this last assertion set 4=

timy o, ||du,;||5,, Then using a simplified notation, let i ~co, $>j, in the inequality
latns — |5 < N dot]| — || oes |7
to obtain [ du, —du,,||; <A —||du|3-
Our assertion now follows upon letting j—>oco in the inequality:
Hidun —dun||;— | dun ||| < || dunyl; < || dun — dot ||+ | At

Clearly w, is independent of the particular exhaustion {Q,;} of Q, and u, is 0 on «,,
1 on «, and constant on each component §,; of 8, with {,,;dus=0.
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Next we show that lim du,=w exists as an exact harmonic differential independently of
the exhaustion {Q,}. If n>m then Q,<Q,,

a(in n Qm) =0y +ﬂm"“0m +¥ni n Qm’

and B, %m, o%n are homologous to components in B, ¥y %gn, Brs Vnis %ns Pns V1> respectively.

Hence since lim;_, o ||dut, —duuy ]| 0. =0,
(duM? dun)ﬂm Z‘Iim (dum) duni)nn{“ Q= }im f du:i = ” dun ”?Zn'
>0 >0 J am

Therefore | % — Bt [, <|| Bt || = || Bt |[ae 2)

and we see that ||du,,,]|§,ﬂ is decreasing as m increases and lim,_, . du, exists. The
harmonic limit differential is exact and we denote it by du, u being unique only up to an
additive constant. We also see that lim||du,|s.= ||d«|. The question arises, does lim w, =
u exist for suitable u? This is false if ||du]| =0 but turns out to be correct if ||du|| >0. The
proof follows easily from later results (Theorems I1.3.2 and II1.3.1). For the present we
do not need this fact.

If {Q} is another exhaustion of W, then given k there exist m and n such that Q; <
Q,,<Q,. It follows that Q;, <L, <R, and we see that indeed du is independent of our
choice of exhaustion {Q,}.

We will have occasion to use the following simple observation. For each n» we can find

an integer ¢, such that

1
o~ | o, < -

Thus on setting v, =, and replacing Qn, by Q, we see that lim||dv,| o, =||d«|. By pas-

sage to a subsequence we may assume the Q, are nested and thus form an exhaustion.

I1.2. Dependence of u(z; &y, &, f, ) on «,. For many applications a,is a finite collection
of mutually disjoint, piecewise anlytic Jordan curves imbedded in a Riemann surface W
in such a way that &, does not separate W into two non-compact components. If this is
the case the exhaustion {Q,} may be taken to be an exhaustion of W —a, less compact
regions bounded by «, (if any) so that 8Q, = a, +f, +y, — &y, for all n («, used in this con-
nection may actually consist of both sides of the curves «;). Then u=u(z; oy, @, 8, y) may
be constructed as above, and is harmonic in W — compact regions bounded by o,.

Now suppose that we are given another such collection of curves o disjoint from e,
Choose a corresponding exhaustion {Q;} so that 8Q; = a,+f,+y, —a and construct the
harmonic function w’ =u(z; a, «, B, 7). As a consequence of the observation made at the
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end of II.1, we may assume that {Q,} and {Q;) are chosen so that lim||dv,|| = dul,
lim||dv,]| = ||du’|| (see the notation used there) and ay < Q7, 0o < Q, for all 2.
Setting K,=Q, N Q;, we see that 0K, =, + Bp+yn—otg— oy and

(dvy, dvy)k, = f v dvk = f dv¥ — f v dvy* =||dvy |5, — f v dvy.
OKn on o,

%o

Hence || dv, — dwy,

o <ldon ][, 1| dv5 |

.12 f v, vy,
oo

We conclude that if lim ||dv, ||a,=||du||=0, then lim v, =0 and since dv,’ >0, [, dv, =
Il don ]I,
lim ||dv, — dv,, ||%, = —lim ||dv, |[*= — || du’|]>-

Therefore||du’|| =0, and we have proved most of the following theorem.

Tarorem I1.21. Given o« and « as above, but not necessarily disjoint, then
u(z; oy, &, B, ) =0 if and only if u(z; ag, «, B, y)=0.

Proof. We have just proved that if «, and o« are disjoint the conclusion holds. If o,
and o are not disjoint, choose &y disjoint from both a, and &y and compare » and ' with

u(z; o, &, B, ).

I1.3. The boundary behavior of u(z; o, &, f, ). In this section we show that in a

certain sense u(z; oy, @, 8, ) takes the expected values on the ideal boundary.

Lemwma I1.3.1. Notation as in I1.1. Suppose cis a union of analytic Jordan curves divid-
ing L, into two regions A, and A, in such a way that 04, consists only of ¢ and elements of
Bn andfor y,. Then for all z€EA,,

0 <mMin U, (p) S upz) Smaxuy,(p) <1.
pec pec

Proof. To simplify notation we will omit the subscripts and superscripts on » and Q.
We prove the right inequality; the left one can be treated similarly. If our assertion is false
then max,. 4, u(2) is assumed on a component 7 of 8Q which belongs to 3, or y,. Pick a
point pE€Int A; such that u(p) =k >max,.. u(z) and let I be that portion of the level curve
u=Fk (not necessarily connected) that lies in 4,. Note that ! does not meet c. We may as-
sume that I does not pass through a critical point of u and hence does not meet any com-
ponent of 84, in f,. However I may meet components of 84, which are in y,. Let 4; be
the component of 4, —I which contains 7 in its boundary. Since u(z) >k for z€4;, du* <0
along I’ =1N 847 (when I’ is oriented so that A lies to the left) and we must have [, du* <0.

On the other hand, I’ possibly together with pieces of components of 94; in y, is homologous
16 — 662945 Acta mathematica. 115. Imprimé le 11 mars 1966.
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to a combination of components of #4; which are in 8, and y,. Because du* =0 along

components in y,, we must have then [, du*=0. This contradiction proves the lemma.

TaeEorEM IL 3.2, If A(F)<co there exists a function u=u(z; a, «, f,y) such that
a) lim u,=wu (see 11.1) and for almost all curves T€F

fdu=1.

b) For each component B,€B, there exists a number b, 0<b<<1, such that for almost all

arcs T in ﬁ’—y with initial point 7(0) in W and end point on f,,
f du = b —u(t(0)).

(This result holds for oy and o with b replaced by 0 or 1 respectively.)

Proof. The class of curves to be considered in b) may be written as the union of classes
I, such that for T€Il',, v is an arc in 114 —y with 7(0) €€),. Hence it is sufficient to prove b)
for curves v with 7(0)€Q,. Let ¢, be the component of 982, determined by f; (or o, or «)
—see the notation in II.1. By eliminating a class of curves of infite extremal length we may
assume that there are only a finite number of components of 7 N £, which meet more than
one component of 9, for all n. If 7 leaves Q, by crossing a component ¢ = ¢, of 982, then
the next return of t to &, is by crossing ¢ again; 7 leaves , for the last time by crossing c,,.
Let u, have the value b, on c,. If ¢, is determined by o, or «, then b, is 0 or 1 respectively.

The differential du is uniquely determined as lim du,. Set u, =0 in W —&,. The cor-
responding linear densities o,|dz| = |du—du,| (=|grad (u—wu,)||dz|) satisty

A(g,)= |[du~du,,||2—>0 as n—>oo,

Lemma 1.2.1 asserts that for almost all 7, there exists a sequence {m}, not depending on 7,

such that
f du —du,,

(This formula contains the assertion that [, du exists. A simplicial approximation to 7

lim
mM=>»0

may be used to evaluate f.duy,.)

Now suppose that A(F) < co. By assumption there is a Jordan curve J separating «,
from «. Since A(F) <oco the extremal length of the class of curves in W—y which travel
from J to «, is finite. Given a point p€ W we can connect each such curve (i.e. arc) to p
by an arc from p to J. Since lim {,|du —du,| =0 on every compact curve ¢ we can reapply
the reasoning above to obtain
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lim
m—>ot

J. du+um(p)l=0.

This proves that lim,, . u,(p) exists and more generally that, for the original sequence,
lim u,(p) exists. Hence the function % is uniquely determined as lim u,.
Next we obtain from above

lim

m=—>c0

f du— (b,,,—u(r(O)))‘= 0.

Hence lim b, and more generally b=1lim b, exists. Since «, and « are closed sets in /W,
every (,€p is isolated from o, and «. Lemma II.3.1 and the maximum principle imply
therefore that 0 <b<1.

The remainder of b) and a) now follow easily using the above methods.

Remark. In the case that 7 is in W — i

f du= lim u(z) — lim u(z),
T )

2->1(1) 270y |
where 7(1} and 7{0) are the end point and initial point respectively of 7 in W.

I1.2.4. The function v(z; p, «, f§, ). Suppose now that we have a partition of the ideal
boundary into three disjoint sets e, 8, ¥ such that « and o U § are closed in the compacti-
fication W of W and « is not empty. We will construct a harmonic function v(z) =
v(z; p, @, B, y) with a singularity log|z| at a prescribed point p (2(p)=0) and behavior on
e, 1, ¥ the same as that of .

As in II.1 we start with an exhaustion {Q,} so that p€Q, for all » and divide o€,
into three sets «,, §§,, ¥, by the rules A-2), A-3), A-4). Then we construct Q, with o8, =
o, +pP, and take an exhaustion {Q,;} of Q, so that 6Q,; =, + B, +y,; Where y,, is homo-
logous to y,. Let v,; be harmonic in Q,; except for the singularity log|z| at p and satis-
fying the boundary conditions v,;=1 on a,, v,,=constant on each component g, in §,
so that [4 dvy; =0, and &v,,/on =0 along p,,,.

First we show that lim,, ., v,;=v, exists. Extend v,, to &, by setting v,, =0 in , —

€2,,. Dropping the subsecript =, we find for §>7,
(d(v,—v,), d(v; — v:))as= f (v;—v,)d(v, —v)* + f vydvf = f v, dvf = —||d(v, — ) ||B
Y1 Y1 Y1

Hence ||d(v;— o)) |l = Il d(z; — vy) + Aoy — ) [ <[l d(w;— v)) Ity ~ | dvs = v) [

Thus [[d(v,—v,)|[q; is monotonically increasing in 4; it is also uniformly bounded. For
let w have the singularity log|z| at p and boundary value 1 on 9Q;. We find that
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|ld(v; — w) I, = [ d(ew — v [, — || v — v1) [
Hence ||d(v; —v,)|[%, is uniformly bounded and lim;_, . v,; =, exists in Q, with
limy_, o0 || (v, — ¥5s) ||s =0 (#as =1 on &, for all 7).

Next we show that lim v,=v exists tn W as a harmonic function with singularity
log |z| at p. Let A be the parametric disk |z| <1 center at p and define v, as

vo=1+log|z|, z€EA, ©,=0, 2¢A.
On breaking the Dirichlet integral into two parts we find for n>m,

(d(vn - ’Uo), d(vy, — ”o))ﬂm =il_igl° (d(’U,,, - ”o): d(”m - vo))ﬂnc n

=lim [f dvny — f Ondviny + f (vm— 1) d(vn — vo)*:l
i->00 | Jam oA oA
e It Ll LT
oA

Hence 4@, — v) |30 < | B0 — 20) [, — [| 80 — vo) |-

Since ||d(v, —vy)|la,= — foa(vn—1)dvs, we see that either limv,= — oo or limv,=v
exists as a harmonic function in W — {p} with singularity log|z| at p.

As in I1.1, v is independent of the exhaustion {Q,}.

Suppose v=v(z; p, «, §, ¥) and v, have the expansions at p
v=log|z| +c+o(l),  wv,=log|z|+c.+o(l).

Then ¢, > ¢y for all k and lim ¢, =c.
For set v,=1-+log(|z|/r) in the disk A:|z| <r. We find

27
|| (o — vo) |82 = — LA (v — Ddog = — fo (logr+¢.—1+0(1))db

= —2xlog r — 27c, — 27w + o(1).

Since ||d(vy, —vo)|jex is increasing, ¢, is decreasing. Since lim v, =v, lim ¢, =c.

Choose % so small that the level curve a, on which v =% bounds a relatively compact
subregion K of W containing p. Then u(z; ay, o, f, y) =(1 —k)7! [v(z; , «, B, ) —k]lin W =
W-K.

For we may take the exhaustion {Q,} of W so that K <€, for all n. Use the notation
u,,; for the approximations to u(z; &, &, f8, y) with respect to the exhustion {Q,=Q,—K}
of W’ and v,, for the approximations to v(z; p, «, f, y) with respect to {Q,} as constructed
in the paragraphs above. We find
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z 1 1 *
‘ QM=1_kfa‘(vni_k)d(uni—l_kvni) .

Letting 2 — oo and then n— oo we obtain

d [uni - %ﬂ (vni - k)]

2

=0

”d[u(Z; otgs o 3, ) — 1

! k (‘U(Z; D, x, ﬂ; '}’) - k)]

wr

since convergence is uniform on «,.

Using the results of I1.2 we see that v(z; p, «, 8, y) = — oo if and only if v(z; q, , B, y) =
— oo for any pair of points p and q.

The boundary behavior of v(z; p, «, §, ) is determined exactly as in I1.3.

IL. 5. An extremal problem. Partition the ideal boundary into three disjoint sets o,
p’ and y’ where f’ is closed in  and B’ Uy’ is isolated from o, Suppose & consists of a single
boundary component and allow o to range over the set §=§"U9’. When « is chosen, set
p=p —oa, y=y" or f=pf', y=9"—ea, depending on whether x€p’ or a€y’. Indicate the
dependence of u(z; o, «, B, ) on a by the notation u,. Thus a— ||du,]| is a real valued

function on the compact subset S of W.

TarorEM IL5.1. The funciion o->||du,| is w.s.c. Hence there is a component x€S
which maximizes ||du,||.

Proof. Let a=lim supa,;||dua,|. We take a sequence a, such that lim, || due, || =
a, oy, —> .
Consider #; and let £, be one of the regions in the definition of u; with u; the ap-

proximation to u; in €. For large n, % is also an approximation to u,,; from II.1 we
have, for sufficiently large =,

Uy || 2 & Uoin | |5
| o || 2 > | dss|
and thus, || dur ||t > a.

This implies that | duz]| > a.

There is a corresponding theorem for the functions v(z; p, «, 8, y) as follows. Let f’
and 9’ be a partition of the ideal boundary into two disjoint sets so that §’ is closed in w.
Let o be a single component ranging over the ideal boundary and once « is chosen, set
B=p —o, y=y" or f=p', y=y' —a, whichever is relevant. Writing v, for v(z; p, «, §, ¥),
about p, v, has the expansion

v, =log|z| +c¢,+o(l).
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TrrorEM I1.5.2. The function x— c, s u.s.c. Hence there is an ideal boundary point

o which mazximizes c,.

Proof. Set b=lim Sup,,.. ¢, and choose a sequence a, such that «,—a and
lim,, ¢4, =b. i

Let {£2,} be an exhaustion used to define v,. Let v, be the approximation to v, in €.
But for large n, v, is also an approximation to v,,. Hence ¢, >cq, for sufficiently large n.
It follows that ¢, >b and then ¢, >b.

Note that ¢, depends on t}Ie local parameter z. If w=w(z) is another local parameter
with w =0 at p and ¢, corresponds to ¢, for w, then

c.=c,+log

4
dw|,

Thus the component which maximizes ¢, does not depend on z.

ITI. The Extremal Length Problems

II1.1. Compact bordered surfaces. Suppose the boundary components of a compact
bordered Riemann surface Q are divided into four disjoint sets o, o, 8, y. Let u=
w(z; otg, &, B, 7) be the harmonie function in  determined by the boundary conditions u =0
on o, #=1 on a, w=constant on each component 3, in § in such a way that fzdu* =0, and
oufon =0 along y.

Denote the compactification of Q by 0 (then a,, «, B, y are each interpreted as a
finite point set in ﬁ) and define the classes F, F* of curves as in 1.3. In the present situation
however, when c€F or F*, we may assume ¢ has a finite number of components.

Denoting the extremal length of F and F* by A(F), A(F*), respectively, the object of

this section is to prove the following Lemma.
Lemuma IILL1. a) A(F) =||du|-2, b) A(F*)=||du|>.

Proof of a). The proof is accomplished by finding a parametrization I; of level curves
of du* such that I € F for almost all s.

The boundary o€ is oriented so that Q lies on the left. Fix a point p on «, as the origin
and fix other points on o, so that there are two points specified on each component of «,.
Then using these points determine a route which traverses o, exactly once in the positive
direction, beginning and ending at p. Since du* is strictly negative along this route, setting
u*(p)=0, define u*(z), z€a,, 30 that as z passes along this circuit u*(z) takes on each value

s, 0=>s> — ||du||?, exactly once.
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We will always orient the level curves of du* so that » is increasing in the positive
direction. For each s, — ||du|[2<s<0, a single level curve I, of u* leaves o. In the succeed-
ing paragraphs we shall formulate rules for dividing the interval —||du||><s <0 into two
complementary sets, S and C.

If the connected level curve I, passes through a critical point of u in Q (=closure of
Q), put sin C.

If s¢C, then I, ends at either o or B.If I ends at «, put s in § and write I, simply as ;.

Suppose I, ends at some component 8,€8. If p, denotes the end point of I, follow j;
from p, in the direction of increasing du*. When g, is traced in this manner the arc I, and
hence Q lies to the left. Let g, be the first point for which fdu* =0, the integral being taken
over the arc on §; from p, to ¢,.

If ¢, is a critical point of u, put s in C. Otherwise we see that a level curve I of du™
at g, begins at ¢, since if uw=c; on §,, the fact that u is <c¢; to the left of p, implies that
u is>¢, to the left of g, We will refer to I; as the continuation of I,.

If I; goes through a critical point of u on {Q, we put s in C. Otherwise we repeat the above
procedure. Note that I; cannot return to f; without passing through a critical point of .

Finally we end with the following situation. Each s, — ||du]|2<s<0, is either in C or
there is an I, which is a finite union of connected level curves of du*, one the continuation

of the preceding, which runs from «, to «. For s€8, each I, can be regarded as an arc in

ﬁ running from e, to «, that is J,€ F.

We make the following two observations.

(1) If s;, 8,€8, 5,7 sy, then I, N1, =0. To prove this it is enough to observe that if
l;, and [, end on the same component 3,€B, the continuation of I, must be different from
the continuation of l;,. Indeed, if the direction on 8, determined by I, is the same as that
determined by [;,, then g,, =¢,, would require g,, = p,,, which is impossible. If the direction
on 3, determined by I;, were opposite to that determined by I, yet g;, = gs,, then Q would
lie both to the left of ¢,, and to the right of ¢,,, an absurdity.

(2) C consists of a finite number of points. For » has only a finite number of critical
points in Q and only a finite number of Jordan arcs along which du* =0 pass through each
critical point. In other words, except for a finite number of s, I, can be continued until it
reaches a.

Except at the finite number of critical points of %, u +% u* can be used as a local para-
meter and Q can be paved with little rectangles determined by the level curves of » and

u*. If ¢|dz| is a linear density, from the Schwarz inequality if s€.3,
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f"g]dz [~ fz, edu® < (L o’du J;l du) = fz, o’du.

Integrating in s from — ||du||* to 0, s€ S, and we obtain
inf [ olasP<aull-*4(0)

and hence A(F) <[|du||-2. However, using p|dz| = |grad u||dz| as an admissible density we
obtain

(f:d”)z”"“”_K (mf f,,eldz I) lldul|*<a(F)

thus obtaining the proof of a).

Proof of b). The level locus (not necessarily connected) u=c¢ for 0<<¢<1 contains a

curve in F*. The proof is completed by a repetion of the argument using the Schwarz
inequality given immediately above.

II1.2. Continuity lemma. We will now make use of an extremal length technique due
to Beurling and developed by Wolontis [14] and, most closely approximating our present
context, by Strebel [12].

Let {Q,} be an exhaustion of W of the type considered in I1.1, and let F, be the class
of curves in Q, —y, which go from o, to a,, via possibly some contours in g, (see IIL.1).
More precisely, € F, if and only if the domain of ! consists of a finite union of closed inter-
vals [ay, a,] Ula,, ag}V ... U{a,_,, a,] with g,<a,<...<a,, ! is a continuous mapping into

=Y, Uag) €Eatg,, Ua,)€a,, and for odd i<j, la,) and l(a;,,) belong to the same compo-
nent of §,.

Lemma IT1.2.1. lim, . A(F,) = A(F).

Proof. Restatement. We shall define a family J' of relative 1-chains on W such that
(a) restp(F < F
(b) lim A(F,) = AF)
(c) AF)=A(F),
where resty(F)={In W :I€F}.
Once this is done the proof of the lemma will be complete. Recall that £, was obtained
- from Q, by attaching to it all components of W —), whose boundaries belong to y,.
Let F, be the family of curves in Cl,$2, which go from o, to «, via possibly some 3,’s.

More precisely, 1€ F, if and only if the domain of ! consists of a finite union of closed in-
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tervals [ag; a,]VU [ay, a5]V ... Ufa,,, a;] with ¢y<a,< ... <a,, I is a continuous mapping
into the closure (with respect to W) of ,, l(a,) € &y, Ua;) €ty and for all odd ¢ <7, l(a;) and
l(@;1) belong to the same component of §,. Then F,c F, so A(F,) =A(F,). Hence instead
of (b) it suffices to prove

(b’) im A(F,) =A(F).

We wish to replace (b’) by another condition. Choose any x <A(F'). Choose a linear
density p|dz| such that L(F, ¢)>z and A(p)=1. To prove (b’) it is enough to show
sup, L¥F,, o) ==. If that failed to hold there would exist a subsequence along which
L*(3F,, ¢) had a limit y<w. Let L(l, p) = f,0|dz|. If we can prove that to each &> o there is
an l(e) € F’ satisfying

Lil(e), o) <y+Te

then we would have the desired contradiction since
y<e<IAF, o) <Ll(e), o) <y +Te.

(b"') Given a density g|dz| on W with L%(F,, o) >y as n—> co. Then to each &>o there
is an l(e) €F to be defined according to (a), (¢) such that

L), o) <y +Te. 3)

Some notation and terminology. Given ly€JF, and n <N, we wish to define a sort of
restriction of Iy to ClyQ,, to be denoted by ly|| Q,, with the property that Iy||,€F,.

There is a greatest ¢ for which I,(t) €e,; call it ¢,. Let ¢, be the smallest ¢ for which
ly(t)€o82, and also ¢>t,. Then [,(t,) is on some contour of 8, (or possibly a,); call the con-
tour c,. Set t;=greatest ¢ for which () €c,. We continue this way and obtain an even
number of stopping times §;<i,...<t,, a sequence of stopping points Iy(ty), ..., Iy(t),
and a confour sequence Gg,=Cy, Ca, ---, Caiayz =0, Of distinet contours on 082, such that
Iy(t) Ecrgroyz (F=1, ..., k). Define 1,||Q, to be the restriction of ly to [i;, t,] U [t5, t,] U
v Ute_s Gl

Definition of F. A 1-chain I’ on W will belong to F' if either I’=In W for some I€F,
or if I’ is a continuous map of an open dense subset of (0,1) into W such that:

F'-1. If t; is not in the domain dom I’ of I’ and 0 <f,<1, then there exist sequences
{;‘n}, {s,} in dom I’ such that r, &, s, and a point % € such that I'(r,) —x, I'(s,;) > *.
If t,=0 (resp. 1) we require only a sequence {s,} (resp. {r,}) from dom I’ with s, 0 (resp.
r, /1) and U (s,) > o (vesp. I’ (r,) > ).

F'-2. There is a canonical exhaustion {Q,} such that I'|2y€Fy for each N >1.

F'-3. If t€dom I’ then there exists N such that t€dom!’||R, for all n=>N.
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Proof of () and (b’). Condition (a) is part of the definition of F'. To prove (b’) suppose
given an ¢>0. By passage to a subsequence of {{,} we may assume that

|L2(Fnr @) —y| <e2" (n>1). 4)

Whenever a subsequence of {l,} is extracted and the notation is unchanged we tacitly
agree that {Q,} shall refer to the corresponding subsequence of {n}.
Choose I, € F, such that

A subsequence of {I,}, after some modification, will be used to construct I(e).

The first step is to find a subsequence {I,} of {I,} such that all I,||Qy (n, > N) have the
same contour sequence on 9§3,. Since there are only a finite number of possible contour
sequences on 9§2; we may select a first subsequence of {I,}, all elements of which have the
same contour sequence on 982,. By induction we obtain for each N a subsequence of the
preceding one, all of whose elements follow a common contour sequence on 9§2y. The dia-
gonal process yields a subsequence with the desired property. We shall not change notation,
but denote it still by {/,}. Note that (5) continues to hold.

The next step will be to modify each I, so that not only will all /,[|2y (» > N) follow
the same contour sequence but furthermore, 7, ||2,_,and,_,||,_; will have the same sequence
of stopping points on 9, _,. To do this we use the diagonal process to find a preliminary
subsequence, again called {I,}, with the following property: Suppose Iy has k stopping points
on 882y. Then for each ¢ <k the ith stopping point P, of I, ||S2y (n > N) gives rise to a conver-
gent sequence of points {P,} on a contour of 22. Now, we put a topological disk around
the limit point of this sequence, the circumference of which has very small g-length. The
actual length will be determined below. Note, however, that it can be required to be ar-
bitrarily small. Indeed, the extremal length of all Jordan arcs in a punctured disk which
surround a fixed point is zero, and hence for any g|dz| there is such an arc of arbitrarily
small p-length.

For each N we have as many disks on 9§, as there are stopping points for [, ||y
(any n>N). Choose their circumferences so small that the total g-length of them is <g/2".
By the diagonal process we can achieve a situation were each stopping point of 7,||Qy on
082y is inside its appropriate disk for all n, N with n>N. For each disk pick a point on the
intersection of its circumference and the corresponding contour; call such a point a dis-
tinguished stopping point. By a modification of I, we mean the result of replacing part of
its path inside a disk by a path on the circumference of the disk. Now modify /; so that all
its stopping points are distinguished; in general, modify 1, so that the stopping points of
1|2, on 28,_, and 1,||S2, on 8K, are distinguished. Denote the modified sequence
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again by {l,}. The g-length of /, has been increased by no more than £/2"-1¢/2" as a result
of modification. For the present sequence {/,} equation (5) must be changed to

| L(Z,., 0) —y | <4e/2". (8"

These modifications can be accomplished so that each new I, remains in F,,.

By induction, for each n reparametrize I, so that dom1,[|$2,_, =dom,_,. Thendoml,_,
consists of a finite number of closed intervals [£,, £,] U [fs, £V ... Uy, 8] and 1,_;(¢,) =
L) 1<i<k).

We are now ready to construct (). On dom I, set l(e)=I,. In general, if /(¢) has been
defined on dom !, ; set I(¢)=I, on doml,—dom, ;. Then I(¢) is a continuous 1-chain
on W. Its domain is an open subset of (0,1) which, by reparametrization, we may assume
to be dense.

To estimate the p-length of I(¢) note that the g-length of [, restricted to dom 7, —
dom 1,_, is<(6¢/2™)}. Indeed,

L1, o) <y +4g/2"
by (5') and, since I, |dom 1,_, =1, 1€ F_1,
LA, || R0 0) 2 L¥(Fny, @) >y —&/2"

by (4). Hence L3(I(s), o) <I?(l;, p) +X6¢/2" <y + Te.

It remains to show that [(e}€F. We can satisfy F’-1 as follows. Suppose t, ¢ dom I(¢)
and £, 0,1. Consider the stopping times #,, ..., . on l(¢) on 882,. For n sufficiently large ¢,
is between two stopping times which correspond to stopping points on a common contour
¢, of 0Q,. Thus we obtain a sequence of contours {c,} with ¢, <2Q,. We cannot assert

that these contours tend to a single point of W-w. However, there is a subsequence

which does have a limit point, say * €W —W. The corresponding stopping times yield
{ra}> {84} The cases £{,=0,1 can be handled similarly. The checking of F'-2, F'~3 will be
omitted.

Proof of (c). If a 1-chain I'€JF’ can be extended continuously to [0,1] with values in

W the extension will automatically be an arc in F. For each Q, we consider annular regions

Ap; around each contour of 082,. We show that if no such annulus is crossed infinitely often

by U’ then !’ can be extended continuously to [0, 1]. This will prove (c¢) because the extremal

length of a family of 1-chains, each 1-chain of which crosses some A, infinitely often, is .
Given {,€ dom I, t,%0,1. Let {r,}, {s,}, % be as in F'-1. We need only prove

lim I'(t)= % (¢€dom?). (6)

t—=to
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Let @ be a neighborhood of % on . We wish to find a neighborhood of £, whose I'-
image is in G, and for this we may assume @ is a component of W —8y for some N. Let 4
be the annular region around 8@ chosen above; for definiteness assume 4 and G have
intersection 0G. Now U'(r,), l'(s,) €G for sufficiently large n. If (6) failed we could find for
some G, u,€doml’ with u, ¢, and I'(u,)§GU A. A subsequence of {u,} is monotonic so
suppose u, 7t,. Choose r,, and u;, >7;, and 2, >Qy so that r;, u;, €doml’||RQ,,. Since
V||, €Fn, there is a crossing of A during (r,,, u,). Next choose r,,, u;,, Q,, such that
1y, <ty <r;,<t,, and r;,, r;, €doml’||Q,,. There must be a crossing of 4 during (r;,, w;,). In
this way we see that I’ crosses A infinitely many times. The cases #,=0,1 can be treated

similarly.

II1.3. Solution of the extremal length problems. The definitions of F, F* were
given in 1.3, and du(z) =du(z; o, «, 8, y) was constructed in IL1.

TeEorEM II1.3.1. Let W be an arbitrary open Riemann surface and let du, F, F*
be defined with respect to an admissible partition of the ideal boundary of W. Then
(a) 2(3) = ||dul =
(b) A(F*) =||du|*.
Proof of (a). Using the notation of Chapter II and replacing the pair F and Q of III.1

by F; and Q,; Lemma IIL1.1 implies that A(F,) = ||du,,|| ;2 . Using o|dz| = |grad u, | |dz|
as an admissible metric for the problem A(F,) (see II1.2) we find

1 2 2
vl ( [ du) Naual2 < it ([ elael) 4o

and hence for all 7,
| dun llgs < A(Fa) < AF) = || duni || 7
Consequently A(¥,) = || du, |[s2.

Since every curve in F contains a curve in F,, A(F)>A(F,). On the other hand, from
Lemma IIL.2.1 ||du||-2=lim A(F,)=>A(F). The proof of (a) is now complete.

Proof of (b). We write Q,,;, Fi for Q and F* of IT1.1. Since every curve in % contains
a curve in Fy for all ¢ we find
| datns [ = AFT) < A(F7)

and ||du,||%, <A(Fr). Conversely every level loci 4, =c in §, contains a curve in J7 and
application of the Schwarz inequality yields A(¥5) < || du,|%,. Hence A(¥7) = || du,||g,-
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Since every curve in ¥ is a curve in F*, A(F*) <A(F%) for all n. Therefore A(F*) <
|| du ||*. It remains to prove that ||du || <A(F).

Set du,, =0 in Q,—Q,; and consider the sequence of linear densities ,;|dz|=
|grad (w, —u,)||dz| in ,. According to Lemma I.2 there exists a subclass 7, of %
with A(#.") =A(¥%) and a sequence of numbers {i} such that for all curves c € J,%,

lim
i—>o0

fduﬁ —dul,

<limf |du, — dun| = 0.
i Jo

Here f.dun = fcnq.dun =||duy|3,, as can be seen most easily by replacing ¢ by a
simplicial approximation to ¢ in a triangulation of W in which 8Q,, is a cycle. We con-
clude that

[ auz=tavili,
for all ¢ € Fpe.

For each c€JF*, there exists a number N(c), depending on ¢, such that ¢ =, for all
n>N(c), that is c€F;, for all n>N(c). Otherwise ¢ would have limit points on a,, «, or f.
Since the countable union of classes of curves of infinite extremal length has infinite ex-
tremal length, there exists a subclass F* of F* with A(F*)=A(F") such that c€F* if
and only if c€F,* for all n>N(c).

Set du,=0 in W -, and apply Lemma 1.2 to the sequence of linear densities g, |dz| =
|grad (u—u,)||dz|. There exists a subclass F"* of F'* with A(F"*) = A(#"*) and a sequence
of numbers {m} such that for all curves c€J"*,

f du* ——f du¥
c c

We have shown above that f, duj, =||du,||5, When m > N(c). Again we may conclude
that {,du* exists and that

lim

m-»o0

< lim f om|dz]=0.
m=>00 J ¢

f du*=||du|® for all c€EF"*.
c

Now using ¢|dz|=|grad u||dz| as an admissible linear density for A(#*), we find

| dul?= inf fdu*< in f@[d:l.
cey* Jo cey> Jo
Consequently, . [[dul|2 <MF"*)=A4F*),

and the theorem is proved.
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III.4. Some consequences. Properties of u can be discovered by extremal length

considerations.

CoroLLARY II14.1. (Uniqueness theorem for u(z; oy, o, §, ).} If vis harmonic in W
with ||dv|| <||dul| and [.dv>1 for almost all c€F, then v=u-+a constant. The same con-
clusion is true if ||dv|| > ||du|| and §.dv* > ||dv||? for almost all c€F*.

Proof. We will prove only the first statement; the proof of the second is similar. The
hypotheses imply that g,|dz| =|grad v||dz| is the extremal metric for a subclass F,
of F with A(F —F,) = co. We already know that ¢|dz| = |grad u| |dz]| is the extremal metric
for a subclass F' of F with A(F—F)=oo. Setting F,~F, N F we have that A(F;)=UF)
since F=F,U(F—F,) U (F—F). Hence g, |dz| and g|dz| are both extremal metrics for the
class F, and thus g,=p or |grad v| =|grad «|. This implies that dv = (cos 8)du — (sin 0)du*
for some constant 6. Let d be a cycle that separates «, from a, then [,du* = + ||du]|2.
Hence because f.du=1 and [.dv=1 for almost all c€F, 6 =0.

CoroLrLARY II1.4.2. The Dirichlet integral ||du(z; o, o, B, y)|| &) increases (or is
unchanged) when components in f§ or y are placed in o, o or f; b) decreases (or is unchanged)

when components in «,, « or § are placed in B or y.

Next, we will formulate the corresponding results for v(z; p, o, 5, ). Let z be a local
parameter about p, 2(p) =0, and

v(z p, o, B, y) =log|z| +c.p, «, B, y)+o(l)

be the expansion of v in z. For small r >0 set oy = {|z| =7} and let F, be the family of curves
F.=Fa, o B, y). Similarly, let F; be the conjugate class of curves Fy =F*(aq, «, 5, 7).
An elementary inequality gives for ' <r

A(gr') >l(:;:r) + (log 7‘/1")/27‘5,
and hence 27A(F,) +log 7 is increasing as r decreases and has a limit < 4 oo,

LemmMa II1.4.3. 1—c(p, «, B,y)=1im 274(3F,) +log .
r—>0

Proof. We first consider the effect of changing the local parameter about p from z
to w where w=az+o(z) or log|w| =log|z| +log|a| +o(1) (as z—>0). Choose r, so that the
disk |w| <r, is the largest such disk that fits inside the disk |z| <r. Then

27A(F,) +log r <27A(F,,) +1log r; —log|a| +o(1)
and lim (27A(%,) +log ) < liglo (27A(F,,) +1ogr,) —log|a].
r—0 4%
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By considering the smallest disk |[w|<r, which contains |z| <r the opposite inequality
can be established and hence, using an obvious notation,

d
lim (274,(3,) +log,r) + log e
r—>0 dz

= lim (274.,(},) + log,7).
7—>0

2=0
Now consider v =v(z; p, «, 3, y) and let w be the local parameter
W = eV iV = e 2 B.¥) | o(2),
where v* is the harmonic conjugate to v. Setting v, = (v —log r)/(1 —log r) and &ty = {|w| =7}
we see that v, =u(w; ay, , §, ) and hence ||dv;||-2=21,(F,). A simple computation gives

|dv,]|2=(1 —log r)~2||dv||* =27(1 —log r)~! where the Dirichlet integrals are extended over
W —{|w| <r}. Consequently

lim (27A,(F,) +logr)=1
=0
and the validity of the lemma is clear.

CoroLLARY II1.4.4. (Unigueness theorem for v(z; p, a, B, p).) Let w be harmonic in
W —{p} with the expansion w=log |z|+c+o(1) at p in the local parameter z (z(p)—=0). Set
A=limg,yfoo wdw* where {Q} is an exhaustion of W and set ay(r)={z : v(z)=log r}.
If for some decreasing sequence r =r(n), lim r(n) =0, we have

fsdw=1—log r, almost all SEF,=F(ay(r), a, B, ¥) and all r=r(n),

and c—ci(p, @, B, ¥)>(4[2m) -1,
then w=v(z; P, a, B, v} +a constant.

Proof. We note the condition above is independent of the choice of local parameter z
and that if w=v then 4 =2a7.

Choose the local parameter {=exp (v +iv*) =z exp c,+o0(2) about p, where v* is the
conjugate harmonic function to v. Let A be the disk || <r and set v’ =w/(1 —log r) in
W —A. Corollary IIL.4.1 implies that

lldaw’ || =2 = (1 ~log r)2||dw]| = <A(F,),
where the Dirichlet integrals are extended over W —A. We then find that, setting d =c —c,,
27(1 —log )2 (4 —2nd —27 log r) 1 +log r <2mA:(F,) +log r.

As r=r(n) approaches 0 the left side decreases and the right side increases. We obtain on
using the lemma that
24d—A4/27<1.
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By assumption equality must hold. Hence 1,(F,) = ||dw’||~2 for all r =r(n), and from Co-
rollary I11.4.1,
w’ =u(; ar), a, B, v) +a constant (depending on 7).

But we have previously observed that u({)=(v(z) —log r)/(1 —log r) and we conclude that

w=v +a constant.

Remark. The hyptheses of Corollary 1I1.4.4, which are satisfied by w+a constant if
they are satisfied by w, can be replaced by the following conditions. Set oy'(r) = {z: w(z) =
log r}. Then require

f dw>1—logr, almost all s€ ¥, = F(ao(r), &, B, )
S

and c—cp, & B, y)<1—-A42n.

These conditions are not necessarily satisfied if a constant is added to w but it now follows,
exactly as above, that w=v. Indeed, let {=exp(w +iw*) and w’'=(w—log r)/(1 —log r).
The lemma implies that lim (27A(F;)+log r)=1—c,+c and we conclude that w'=
u(l; o, a, B, p). But then (in W—A) |[d(w—2)||2= — foa(w—v)d(w —v)* =0.

CororLrLary II1.4.5. Notation as in Corollary 1I1.4.4. Assume

J- dw* >2n, almost all T€F;,

and c—c,(p, a, B, y)=(4/27n) —1.

Then w=v(z; p, «, B, v)+a constant.

CoroLLARY II1.4.6. The constant c(p, o, f, y) a) decreases (or remains unchanged)
when components in S Uy are placed in aU B, b) increases (or remains unchanged) when com-

ponents in oV B are placed in fUy.

CoroLLARY II1.4.7. a) If o is a curve imbedded in a surface W,||du(z; o, o, B, )| =0
implies||du(z; oy, a, B, ¥)|| =0 for any other curve ay; b) cp, &, B,y) = — oo for some pEW
tmplies c,(p, a, §, y) = — oo for all points pEW.

IV. Plane regions

IV.1. Definition and extremal properties of the slit mappings. Assume that
W is a plane region and that o, are each single ideal boundary components. Furthermore,

we will assume that
ldu(z; a, o, B, )|| >0, cAp, &, B, p)> —co.
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Then du(z; &, a, f,7)* has a single period equal to ||du||? along dividing cycles separating
%y from o, and dv(z; p, a, B, y)* has a single period of 27 around cycles bounding a region

containing p. Hence the functions

(&5 og, @, B, y) =exp[2n(u +1u*)/||dul|?]
Hz p, @, B, y) =exp(v +iv*)

are determined to a multiplicative factor k, |k| =1. By using a standard approximation

argument, it is seen that f(z; o, «, 8, ) and f(z; p, «, 8, y) are univalent.

Definition IV.1.1. Assume 4 is a plane region with a partition (ag, «, f§, ) of its
boundary subject to the conditions of I.3 and such that oy and o« consist of single components.
If A is contained in the annulus 1 <|z| <R and u(z; o, «, B, y)=slog|z|/log R then 4 (or
A(R)) is referred to as an extremal slit annulus.

Assume A is a plane region with a partition («, 8, ) of its boundary subject to the
conditions of II.4 and such that e consists of a single component. If 4 is contained in the
unit disk |z| <1 and contains the point z=0 such that v(z; 0, «, B, y)=log|z| +1, then 4 is
referred to as an extremal slit disk.

It is easily seen that if {|z| =r} is contained in the interior of 4, then 4 is an extremal
slit disk if and only if 4 0 {|z| >r} is an extremal slit annulus (after the mapping z—>z/r).
Indeed the necessity was seen in I1.4. Assume conversely that A’=4 N {|z| >r} is an ex-
tremal slit annulus (after the mapping z —z/r) with |z| =r an isolated boundary component.
Set ay={|2| =r}, o, B, and y as given with 4,

u=u(z; oy o, f, y)=log|z/r|log r!, and v=v(%0, a, B, y).

We find after using a suitable exhaustion that

=0 le= | @=od=o = = a0 e
Hence v =v.
Using the preceding result as justification we will deal only with extremal slit annuli.

These can be characterized geometrically as follows.

TaeorEM IV.1.2. Suppose A is a region contained in {1<|z| <R} with admissible
boundary partition (o, , f, v). Set g=(|z|log R). The following conditions are equivalent.

(a) A is an extremal slit annulus A(R)

() f.oldz|>1 and f,0|dz|>2n/log R for almost all c€ ¥, d€ F*.

(c) A(F)<(logR)/2m and [,p|dz]|>1 for almost all c€ ¥.

(@) A(F)=(log R)[2x and [,0|dz|>2n[log R for allmost all d € F*.
17— 662945 Acta mathematica. 115. Imprimé le 15 mars 1966.
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Proof that (b) implies (a). Using ¢ as a competing density for A(F), (F*),
(log )27 < A(o) <A(F) =A(F*)~ <(A(o)log? R)4n?<(log B)/2n.
Now apply Corollary II1.4.1 to v =p.

Remark. Suppose for example that ay={|z| =1} and a={|z] =R}. Then if §=0
or y =4 the conditions (¢) and (d) can be replaced by the requirement A(F)=(log RB)/27x.
If B+ O and y + O this single requirement is not sufficient.

Definition 1V.1.3. Let A be an extremal slit annulus with respect to the partition
(ocgs &, B, p) and let 7 be a collection of boundary components of 4 not containing o, or o.
If the new region 4 U {n} is an extremal slit annulus with respect to the partition o=,
o =0, f'=pF—p N7,y =y—yNx then x is said to be removable.

THEOREM IV.1.4. Let J be an analytic Jordan curve in the interior of an extremal slit
annulus A which does not separate oy and «. Denote by 7 the collection of all those boundary
components of A which are separated from « by J. Then 7t is removable.

Proof. The proof depends on the fact that u=u(z; a, «, §, y)=log|z|/log R which
was defined with respect to A is also harmonic in A'=A4U {n}. Let ap=0, &' =, f'=
B—BNm, v =y—yNxand set v=u(z; a, «’, f',¥’), the extremal function for 4’. Denote by
A the region in 4’ bounded by J. Using a suitable exhaustion of 4 and the induced ex-
haustion of A’ together with the corresponding approximations to % and », one computes,

borrowing the result of Theorem IV.2.1a,

ldw=olfa= = [ w=o)d=o) + du-vli=0,
and hence u=v,

CoroLLARY IV.1.5. In the notation of the Theorem above, if 7 is contained in f or in
y and if m, is any collection of components in m, then 7, is removable.

The extension of Theorem IV.1.4 to general non-isolated sets z is fraught with diffi-
culties and is certainly not always possible. Therefore we will make the following definition.

Definition IV.1.6. Let ¢ be a closed, connected subset of some boundary component of
A. Consider collections z of components such that §—z N f (ory — 7z N y) hasno accumula-
tion point on ¢. If there exists such a 7 which is removable, then ¢ is called §-isolated (or
y-isolated, respectively).

Sufficient conditions that o be §- or p-isolated are readily obtainable using the fol-

lowing technique. Suppose for example that 7 is a countable collection of boundary com-
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ponents with z < § such that z =lim &, where {r,} is a countable sequence of isolated col-
lections 7,,. Set

F=F (o, , /3’ ¥)s gn=:;(°‘o’ o, f—m,, 7), J"—'g‘.(“o’ o, ﬁ—n’ ).
We need to prove that A(F)=lm A(F,) (=A(F)). To do this we may assume F < F, so
that it is sufficient to prove lim A(F,—3F') =oco. The simplest situation in which this is
true occurs when 7 consists of a countable number of points. Other conditions can be given

for more general situations in terms of the geometry of the configuration. We will not
pursue this matter further.

IV.2. The geometry of an extremal slit annulus.

TaeorREM IV.2.1. Let A(R) be an extremal slit annulus with boundary partition
(%> % B, 7)-

(a) The two dimensional Lebesgue area of the boundary of A is zero.

(b) Assume ¢ is a connected, closed subset (not a point) of (i) «,, (ii) a, (iii) @ component
TEP, and suppose that o is y-isolated. Then for all points z€a, (i) |z| =1, (i) |2| =R, (iii)
|2} =k for some constant k, 1 <k<R; furthermore, the same k must be used for all such ¢
contained in T.

(¢} If o is & component in vy, there exists a constant k such that for all z€c, arg 2=k.

(d) If a component g €f(or o=ay, or o) is f-isolated, then o is a circular slit with radial
tncisions (including the possibility of a single radial or circular slit).

(e} Suppose T =0y, T=a or T 8 a component in B, and assume the class " of arcs in Y\ —y
tending to T has finite extremal length. Let r be the number, 1 <r <R, such that

f du = (log r/log B) — u(p)

for almost all c€T", where p ts the initial point of ¢ (if p€x, or pE€atake u(p)=0or 1, respec-
tively). Then each component of (v — {|z| =r} N t) which is B-isolated is a radial slit.

Proof. (a) The mapping z=f(w; o, , B, y) is the identity. The area of f(4) in the den-
sity || |dz| is equal to the area of 4 in the density (27/||du||?)|grad »||dw| where u~=
u(w; o, o, B, y)=log|f]. This latter area is 47?||dul]-2=2x log R, or the same as the area
of the annulus 1< |z| <R in the density |z|-?|dz|.

(b) We will prove case (i); the proofs for the other cases are similar. Because of the
hypothesis that ¢ is y-isolated, we may assume that the components in ¢ have no accumula-
tion point on o.

Let gy be a connected subset of o, not a point, which is not a radial (circular) slit. Then
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there exists a family C of radial (circular) slits in 4 —y with (i) initial point in 4 and ter-
minal point on ¢, and (ii) which project onto an interval of positive length on |z| =1 (on
arg z =0, respectively). Hence each curve in C may be parametrized in the form c, where
6 is the projection of the radial (circular) slit cs, @ <0 <b. Because of (a), except for a set S
of linear measure zero, the closed set ¢4 N § must have linear measure zero.

That this exceptional set S in 6 has measure zero (m(S)=0) implies that the corre-
sponding class cg, # €S, has infinite extremal length: use the density p(z) =1 forz€c,, 6 €S,
and o(z) =0 otherwise. The extremal length of the class C'={co: 6¢ S} is finite for if p is
any linear density and if, say, ¢, are radii with maximum logarithmic length ¢, the Schwarz
inequality yields L(p, C)?<A(o)p/b—a. Because u is continuous in the closure of ¢y N 4
in 1<|z| <R and the closure is obtained by adding a point set of measure zero, §¢5,

we have (see 1.2)

f du = lim u(p) — u(ce(0))
]

as p —cg (1) where cp(1) and cq(0) are the end point and initial point of cy, respectively (u =
log|z|/log R).
Now apply Theorem II1.3.2; for almost all curves 7€ A —y traveling from the initial

point 7(0) of 7 to o,
f du = 0 — u(z(0)),

and hence we find
lim u(p) =0, a8 p —~c4(1) along c,.

Therefore there are some points z on ¢ for which |z| =1. If |z, # 1 for some z,€c there
exists a connected piece o, of ¢, not a point, which contains z, and on which |z| +1. Again
the above argument shows that this is impossible.

(¢) The function u*, the harmonic conjgate of u, is single valued in a neighborhood of
any component ¢ of y. The reasoning of II.3 can then be applied to show the existence of a

constant s such that

f du* = h—u*(7(0))

along almost all curves (initial point ¢(0) in 4) in A —B which tend to o. A reasoning ana-
logous to that of (b) now yields the result since ¢ is isolated from g.

(d) Let 7 be a removable collection of boundary components such that g, =f—-nnpg
has no accumulation points on ¢ and set y, =y —z N y. Consider the class F, = F(g, @, By, ¥1);
by hypothesis A(F) =A(F,) (here F=F(x,, , f, y)). Suppose first that the class of curves
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in F, which meet ¢ has infinite extremal length. Then, since we may define 8, =8, —o,
Yo=p Vo, Fo=F(otg, o, Bg, y2) we find A(F,) =A(F,) and hence 4, =4 Ux is the extremal
slit annulus for the partition (e, o, fa, ys)- From (c) it follows that ¢ is a radial slit.

Now assume that the class of curves in F, which meet ¢ has finite extremal length.
Since o is isolated from B,, a curve tending to o in 4 —y, contains a curve tending to o in 4.
Therefore Theorem II.3.2 implies that there exists a constant r, 1 <r < R, such that lim » =
log r/ log B along almost all curves in A —y, which tend to ¢ (here u=u(z; oy, «, By, p1) =
log|z|/log R). Let F; be the class of curves in JF, which do not meet any component of
o—{|z| =r}No; then A(F,) =A(F,).

Let o, be a component of ¢ —{|z| =r} N ¢ and suppose that |z| >r for z€s;. Choose
numbers 7y, r, with r<r; <r, and r, so close to r that there are points z€g, with |z| > r,.
We can find an open set N < {r, <|z| <r,} such that (i) N is the union of a finite num-
ber of regions with smooth boundaries, (i) o, N {r, <|z| <7} =N, and (iii) CN) N B, =
C{N)nae.

Denote by o those components of ¢ —¢ N N for which |z| #7, all z€6; o contains at
least a piece of ¢y. Set Ay=A,UN, B,=8,—B NN —a, ys=(y,—NN)Ue, and F,=
Fxg, @, fs, 75). Since those curves in F, which meet ¢ and f; N N=¢ N N form a class of
infinite extremal length, A(F,) <A(F,).

We claim that 4, is an extremal slit annulus, that is A(F,) =A(F,). To prove this we
need only show that |f.du|>1 for almost all c€F,. It is enough to show this for those
c€JF, which cross the boundary 8N of N. By a slight deformation of ¢ we may always as-
sume ¢ does not contain an interval on oN. The class of curves in F, which cross oN in-
finitely often have infinite extremal length, as is not hard to show. The class of curves
which cross 0N at a point of ¢ also have infinite extremal length. Indeed each such curve
contains a curve in 4, —y; which tends toward ¢ —a N {|z| =r}. Let then JF,(0N) be the class
of curves in F, which cross 8N a finite number of times and only at points in the interior
of A,. We must prove that | f,du| >1 for almost all c€ F,(aN).

We will now briefly outline an application of the method developed in II1.3. In A4,,
let u, be the approximation to % in Q,, as constructed in II. Define the linear density
o|dz| in 4, by

|d(w—u,)| in Q, -, NN
0 in the remainder of A4,.

Then for almost all ¢ € F,(0N) there exists a sequence {n(g)} such that (for a suitable inter-

pretation)
lim f L du—du,
cn Ay

=0, A;j=A4,—A4,nN.
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Denote the points of intersection of ¢ with 0N as ¢ runs from «, to « by p, (first point),
Ps» -+ Doy (last point). We find

f ar du=1- i [(p2r) — u(P2k-1)]

k=1

since u,(2) >u(z) at interior points of 4,. Since ¢ N N must connect the points p, and »
is harmonic in N we must have {,du =1. This is true for almost all ¢ € F,(0N) thereby proving
that A(Fp) =A(F,).

Since 4, is an extremal slit annulus, the components in ¢ are radial slits; in particular
the components of o; —g, N N on which |z| >r, are radial slits. Since 7, can be taken ar-
bitrarily close to 7, o0, must be a radial slit, and this is what we had to prove. We have
assumed that g€f, but the same proof holds for ¢ =04 or ¢ =o so long as ¢ is f-isolated.

(e) The statement here almost implies the result of (d) and the proof is essentially the
same. Using the notation above, we need only observe that the extremal length of the class
of curves in F; that meet v— {|z| =r} N v must be infinite.

As a consequence of Theorem IV.2.1 we obtain the existence of circular and radial
slit mappings. For other general methods of derivation see Reich and Warschawski [8, 9],
Reich [7], Strebel [12,13], and Ahlfors—Sario [2]. (See also [4], [11] for two less general but
older treatments.)

CoroLrLarY IV. 2.2. (a) If y is empty the boundary components of A are circular slits
and |2} =1, |z| =R. The projection of the circular slits of positive length onto a radius has

measure 0.

(b) If B is empty, the boundary components of A are radial slits, |z| =1, and |z| =R
with possible radial incisions eminating from a set of measure zero along |z| =1 and |z| =R.
The projection of the radial slits of positive length onto a concentric circle has measure zero.

Proof. Part (b) follows easily from the theorem but there is a simpler proof that |z] =1
and |z| =R may have radial slits eminating from them. Namely for 1 <r <R, consider
A=AV {1<|z|<r} and set p;=p U (xN {1 <|z| <r} and F,=F(«y, &, 7). By the com-
parison principle, 2r/logR <A(F,)<A(F) and hence A(F,)=A(F). Consequently 4, is an
extremal slit disk. That is, o N {1 <|z| <r} are radial slits.

The determination of 8- and y-isolation is closely related to the determination of the
boundary. This is illustrated in the following corollary.

CoroLLARY IV.2.3. A component T€P is y-isolated if and only if T is a circular slit.

Proof. We have seen above that if 7 is y-isolated, 7 is a circular slit. Conversely, let J
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be a analytic Jordan curve in the interior of 4 which separates 7 from o, and a. If 7x denotes
those boundary components of 4, including 7, which are surrounded by J, then 7 is re-
movable. Now replace 7 after removing 7. Since 7 is an isolated circular slit, an easy com-
putation in the style of Theorem IV.1.4 shows that the resulting region is an extremal slit
annulus.

An example. Put a circular slit with a radial incision in the annulus 4: 1<|z| <R;
this will be 8. Put countably many radial slits in A (call the collection of these slits y) in
such a way that the extremal length of the class of curves in 4 —y tending to the radial
incision in f, is infinite. An easy application of Theorem IV.1.2 shows that this slit annulus
is an extremal slit annulus. A similar example shows the existence of an extremal radial

slit annulus in 1<|z| <R with radial incisions from |z| =R.

IV.3. Extremal properties. In this section we present results which have been used
in the approaches to extremal radial and circular slit disks by purely classical methods
(see [7], [8], [2]).

Let W be a plane region, p a point in W and («, B, ) a partition of the boundary of W
s0 that a consists of one boundary component (and, of course, § is closed in the compacti-
fication of W). Write v(z; p, «, f, y)=log|z—p| +c,(«, B, y)+o(1) about z=p.

TEEOREM IV.3.1. (a) Suppose y=0 and f(z) is univalent in W with f(p)=0 and
[#(z)| <1. Then
1F(D)] <¢p (2, B)
with equality if and only if f=exp (v+1 v*).
(b) Suppose =0 and f(z) is univalent in W with f(p)=0 and lim|f(z)| =1 as z—«
along almost all paths in W which approach a. Set B=lim,_,, [,k dh* where h=log|f| and

{r} is a collection of simple closed curves in W approaching o.. Then
, B
IF@) |+ (%—1) >y, y)

with equality if and only if f=exp (v+1 v*). (In the case that « isisolated from all y at least,
B=2n.)

Proof. (a) follows upon setting k=log|f| and computing ||d(v —h)||%- Where A isa
small disk about p. We also use the fact that, in the sense of an approximation,

J' hdh* <0 while f hdh* <2x.
8 @

(b) follows from our uniqueness theorem (Corollary III.4.1).
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Finally we will describe the following interesting result which was derived using a
different method by Reich and Warschawski [8]. Suppose for example that y =@. Fixing
a boundary component o, use Theorem IL5.1 to find another boundary component & so
that

lldus]| = ||duef], all o= a.
(Notation as given in IL.5.) Realizing W by exp 2n(u; + tuf)/||dus||? as an extremal circular
slit annulus 4, it follows that each circular slit of 4 subtends an angle < 7.
~ For the proof set R =exp 2x/||duz||2. Theng|dz| = (| z[log R)~!|dz| is the extremal metric
for the class F*(&, f) in 4 (or more precisely, for almost all curves of F*(&, 8)). Choose any
a+ & where a is realized as a circular slit of 4 and use p|dz| as a competing density for the

problem JF*(«, B) in A. By assumption we must have
mif o|dz| <2nflog R=||duz|?,
¢ Je

where ¢€3*(, ). Equality cannot hold since the extremal metrics for F*(&, 8), F(«, f)
are known to be different. On examining the geometry of the situation, it follows easily
that a, as realized in 4, must subtend an angle < 7.

The same statement holds for an extremal circular slit disk.

V. A dual problem
We will briefly consider in this chapter the case of a partition (e, «, B, y) of the ideal

boundary such that o, e, agU e Uy are closed in the compactification Wof W (o and o
cannot be empty). The corresponding classes F and F* were defined in I.3.

Let {Q,} be an exhaustion of W such that all components of 6Q, are piecewise analytic
dividing cycles. Define a partition oy, &, B, ¥ of 20, as follows: a) o, consists of those
components of 62, which have ideal boundary components contained in «, as derivations;
b) o, consists of those components which have ideal boundary components in « as deriva-
tions; ¢) f, consists of those components which have only ideal boundary components
in § as derivations; d) p, consists of the remaining components. Denote by £, the region
obtained by adjoining to Q, the non-compact subregions of W —€, which are bounded by
Ongs 0, and B,. The construction of II.1 can now be repeated to show the existence of a
harmonic function u(z; o, o, §, ¥) in W with boundary behavior as described in Theorem
11.3.2.

Consider the classes F(ay, «, 8, ¥) and F*(xy, «, B, 7). Let F, be the class corresponding
to Fin Q,. Since every c€F, is a curve in F, we find||du[-2>4(F). Upon using |grad »| |dz|
as an admissible density we see that A(F)=||dul|-2.



EXTREMAL DISTANCE ON OPEN RIEMANN SURFACES 269

The proof that A(F*)=||du||? is much harder. Indeed the comparison principle im-
lies that A(F*)> ||du||? since each c€JF* contains a curve in the corresponding class in. Q,
To prove equality, we need an analogue of the continuity lemma of III.2; such a lemma can
be proven in a similar manner.

In the case that W is a plane region, the function © may be used to construct a map-
ping onto a corresponding extremal slit annulus B. The boundary of B can be described in a
fashion entirely analogous to that in IV.2. Thus the § are all circular slits and the y are, in
many cases, radial slits with circular incisions. The nature of «, and « is no different than
that considered in IV.2.

There are also other extremal length problems that may be solved by the methods used

here. For example § may be decomposed into subsets 8, which are not necessarily points.

Then W can be replaced by the quotient topological space obtained by identifying all points
contained in the same §;. The corresponding classes F, F* can then be defined.
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