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L. In this paper I investigate the lower bound M (B) of a bilinear form
Bz, y,z, t)=azxz+ fat+yyz+dyt, (1.1)
where «, 8, v, 8 are real, and =z, y, z, ¢ take all integral values subject to
zt—yz=+t1L (1.2)

We say that two bilinear forms are equivalent if one may be transformed into
the other by a substitution

CIEIED - GaED e

where p, q, 7, s are integers and ps—qr= T 1. It is clear that equivalent forms
assume the same set of values for integral z, y, 2, ¢ subject to (1.2), and so have the
same lower bound M (B). Further, if we set

A= A(B)=o0d-By,
0=0(B)=|g~-vl,
then 4 and 0 are invariants of B under equivalence transformation, of weights two
and one respectively.
Associated with a bilinear form B is the quadratic form

Q@ y)=B(z,y,z y)= s+ (B+y)zy+ 0", (1.4)
of discriminant

D=(B+y)-4ad=6"—4 4, (1.5)

If two bilinear forms are equivalent under a transformation (1.3), then, putting z =2,
y=1t, we see that the associated quadratic forms are also equivalent. Conversely, a
quadratic form @ (z,y)=ax*+bxy+cy® is associated with the two bilinear forms
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B(z,y,z,t)=axz+3 (b 0)axt+3(bF0)yztceyt (1.6)

for arbitrary 6>0, and these two forms are equivalent under the transformation
x>z, y—>t, 2z—x, t—y. Thus there is a one-one correspondence between classes of
equivalent bilinear forms with given invariants A, 6 and classes of equivalent quad-
ratic forms with discriminant D=60%—4 A.

We shall suppose throughout that D540, and also, when D> 0, that Q(z,y) is
a non-zero form, i.e. that Q(x,y) does not represent zero for integral z, y740,0.
Under these conditions, the problem of finding best possible estimates for M (B) has
been studied in detail for two particular classes of forms.

First, if 6=0, then A=y in (1.1) and B is symmetrical; Schur' has then proved:

Theorem (Schur). If B is symmetrical and D> 0, then

M (B)< Vlz, (1.7)
2V5

with equality if and only of B is equivalent to a multiple of xz+} (xt+yz)—yt.

Secondly, if D>0 and 6=VD, then A=0, and B may be factorized as
B=(Qx+py)(Az+u't), where A, u, A', u’ are real. Davenport and Heilbronn® have
then proved:

Theorem (Davenport and Heilbronn). If B s factorizable and D >0, then

3-V5, ~
M (B) < —2V—5VD, (1.8)

with equality if and only if B is equivalent to a multiple of

(x+ 1+2V5y) (_” 1—2V5t)_

Now if we define w=w (B)=0 by
_ 0
VID]

then o is an absolute invariant of B, and the forms considered by these authors
are characterised by the relations D >0, w=0 and 1 respectively. Their results

w

2

therefore suggest the problems of finding for M (B):

i Sitz.-Berich; Akad. Wiss. Berlin (1913), 212-—231. )
2 Quart. Journal of Math. 18 (1947), 107—123. The author has given an alternative proof of
their complete results, based on the ideas of this paper, in Acta Math.
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(1) an estimate independent of the value of w;
(2) the best possible estimate in terms of w and D.
The first problem is easily solved, and I establish the following theorem:
Theorem 1. (i) If D> 0, then

M (B)< 21/;)5 (1.9)
with equality if and only if B is equivalent to a multiple of one of the forms
z2+i(l—wVh)at+i(l+wVb)yz—yt,
where w=2k/V5 (k=0,1,2,...).
() If D<<0, then
M (B)< ]2/'VDE%|’ (1.10)

with equality +if and only +f B is equivalent to a multiple of one of the forms
wz+%(1-wV§)xt+%(1 +wV3)yz+yt,
where w=2k/V3 (k=0,1,2,...).

The second problem is more difficult. I give here the complete solution, in the

case D >0, for the range
- 5
0<w<w,=1} (V2+—_ —)=1-2439 ..
° 4V2--1

of values of w, which may be of interest since it includes the values w =0 and w=1
considered above.

We define the pumbers »; (¢=0,1, ..., 8) and 7; (¢=1, 2, ..., 9) (the significance
of which will become clearer in Lemma 2 below) by

L, 1 1 L
R A AT U TR R T

Vs 1 1 5
S S A T e

(1.11)

e X o1 _ 3 3 7 =5
Uovs Ve PTvin T vis P V13

- 5 ) )
Te= Kzig), ‘[7:75’ 'L'S=V2, 79=V2;
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Each of the sequences (x;) and (t;) is increasing (strictly, except that Tg3=1,), and
#; <7 for each ¢. In terms of these numbers we define a function y(w) by

yw)=t—ow for L 1+T)<w<}(ut) (1.12)
} (¢=1,2,...,8).
x(@)=w—2x for }(a+n)<w<}(utia) (1.13)
This defines y (w) for the range 0=13 (3,+7) <w <1} (% +7,)=w, a8 a continuous
function of w. The graph of y(w) is easily seen to be a zig-zag line, with turning
points at w=3(u_1+ 1) and w=1(0u+w) (¢=1,2,..., 8).
Finally we define the quadratic forms Q; (z,y) for :=0,1,..., 8 by

Qo=Qs=2" Ty —9¢’
O =0Q,=2"+2zy—y*
Q=22"+3zy—9*
Q=32>+6zy—2¢* (1.14)
Q=2*+3zy—4*
Q=42"+12zy—34°
Q=2 +3zy—(6—V8) ¢y

With these definitions, we can state the results obtained as

Theorem 2. If D>0 and 0<w<w,=12439 ..., then
M (B)<3 VD y(w). (1.15)

For any such value of w, there exists a form B for which equality holds in (1.15). More
precisely, if the quadratic forin @ associated with B s equivalent to a multiple of some
Q: (1=0,1, ..., 8), then equality holds tn (1.15) when w salisfies

%(K1+Ti)ﬁa)$%(%i+fi-+1) (7;=1, 2,..., 8)
or (1.16)

FOatTi)<o<}) (it Ti) (£=0,1,...,7);

and every w satisfying 0 <w < w, lies in one of the intervals (1.16).

The result (1.15) reduces of course to (1.7) and (1.8) when w=0 and w=1
respectively. In fact, since % (w,+17,) =0, (1.12) gives y(0)=7,=1/V5; and, since

%(”6+T7)=2/V5<1<%<%7+T7):%(]/Lé+i/i)’
5

(1.12) gives x(1)=7,—1=(3-V5)/V5.
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2. The first step in the proof of these results is to reduce the problem to one
in the theory of quadratic forms, by means of the following lemma.

Lemma 1. Let Q be the quadratic form associated with B, and suppose that
D40, Then

M(B)=1V|D] L. @2.1)

b
— = — W |
VD]
where b runs through the coefficients of xy in the forms ax®+bzy+ cy® equivalent to Q.

Proof. If az®*+bzy+cy® is any form equivalent to @, then B is equivalent to
the form azz+34 (b— 0) wt+ F(b+)yz+cyt [cf. (1.6)], which assumes the value
$(b-0) for (x, 9,2 t)=(1,0,0,1). Conversely, if B (p, q, r, é) =B, where ps—qr=+£1,
then, - applying the first of the transformations (1.3), we obtain an equivalent form
B’ for which B’ (1,0,0,1)=p. Hence f=14% (b—0), where az®* +bxy+cy*=Q’ (z,y) is
the quadratic form associated with B’ and which is therefore equivalent to Q.

Thus all numbers represented by B are of the form f=3(b—0), whence

M (B)=1L1b.|b—6]=3V|D]| Lb. b l

gl /)]

VID|

Proof of Theorem 1. Let q, be any value assumed by the associated quadratic
form @Q(z,y) for coprime integers z, y. Then there exists a form ¢ (z, y)=a,2*+
+byzy+ oy, say, equivalent to Q. Applying the substitution z—>z+ py (p integral),
we see that ¢ is equivalent to the form aga®+ (by+ 2 pag) xy + (ag D* + by » + ¢) y* for
any integer p. Given any w, we can now chose p so that

_ la

bo+2?ao_w ol |
~ V|D]

VD]

since @,>%0 by our hypothesis that @ does not represent zero. Lemma 1 now gives

M (B)<}|a,].. (2.2)

Suppose now that D> 0. Then, by a well-known theorem of Markoff, we can
choose a, so that

. rB
|a0|S V —5’ (23)

where the equality sign is necessary if and only if @ is equivalent to a multiple of
«*+zy—y®. The required result (1.9) now follows at once from (2.2) and (2.3).

If equality holds in (1.9), then equality must hold in (2.3), and @ is equivalent
to a multiple- of 2®+xy—y®% For this form, b/VD takes the values (2%+1)/V5
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(=0, +1,+2,...) and these values only. Hence, by (2.1), equality holds in (1.9)
if and only if Q~a(z®*+zy—¢?) and

l‘b'2k+1“| 1

e wl=—= (k=0, £1, +2,..)),
Ve ( )

V5
ie. @=2k/V5 for some integer k. This completes the proof of Theorem 1 (i).
Suppose next that D < 0. Then we can choose g, so that

lao| < l/lg,ﬂl (2.4)

where the equality sign is necessary if and only if @ is equivalent to a multiple of
2 +xy+y:. (1.10) now follows from (2.2), (2.4). The forms for which equality occurs
in (1.10) may be established by an argument precisely similar to that used above.

3. We now show that Theorem 2 may be deduced from Lemma 1 and the
following result, which will be proved in § 4. (The notation is that of § 1, (1.11)
and (1.14)).

Lemma 2. (i) Suppose that Q (x,y) 1s a non-zero quadratic form of discriminant
D>0. Then, for each i=1,2,...,8, there exists a form @ (x,y)=ax®+bzy+cy?

equivalent to Q for which

b
i< =< T,
* % f (3.1)

@) If Q is equivalent to a multiple of Q; for some i=0,1, ..., 8, then 5/VD
assumes no value lying strictly between 3; and t;.,. The equality sign 1is therefore nec-
essary on the left of (3.1) when ©Q s equivalent to a multiple of Q;, and on the right
when Q is. equivalent to a multiple of Qi_+.

Deduction of Theorem 2. (i) By Lemma 2, given any w we can satisfy

b
— —w| <max {1i~ 0, ©—x}

Vs

for each ¢=1, 2, ..., 8 with an appropriate ¢ (%, ¥) =a2®+bzy +cy® equivalent to Q; i.e.

'%—w <t—w when w<}(4+n) (3.2)
b z=12,...,8).
‘”‘/—_*D—w <w—» when wz% (Mi+Ti) (33)
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Hence, from the definition (1.12), (1.13) of y(w), we can satisfy

) 3.4)

for any w with 0 <w<w,. The required result (1.15) now follows from (2.1) and (3.4).
(i1) Suppose that @ is equivalent to a multiple of @; for some 7=0,1, ..., 8.
Then, by Lemma 2 (ii),

ﬁ—w = min {751 — @, © — 2}
for all b and w satislying »; <w <741, so that, in partienlar,
b .
'17“1:)—0) > T — @ when %(%5+Ti+1)SwS%(xé+l+Ti+l) (@:0, 1, e 7)7 (35)
l]ﬂ/b:—'w =W — X when %(M‘FT;‘)SCOS%(%;'*FTHQ (i=1, 2,..., 8) (36)
Comparing (3.5), (3.6) with the definition of y(w) (replacing 7 by ¢+1 in (1.12)), we
see that when ¢ is equivalent to a muitiple of @; for some ¢=0,1,..., 8 we have
b
——w| > y(w
Vs 1 (@)

for all b and all w lying in the intervals specified in (1.16). Lemma 1 now gives

M (B)=3VDy (o),
and so equality holds in (1.15).

4. This and the following two sections will be devoted to the proof of Lemma 2.
Since ¢ does not represent zero, it is equivalent to a form ¢ (z, y) =az® + bzy + cy®

for which N
0<VD~b<2|c]<VD+b, (4.1)

and which we call a reduced form.! The reduced forms equivalent to Q@ may be
ordered as an infinite chain

vees P25, o1, Po5 P1s Pas ve e
where

o= @ y)=(—1V a2 +bzy+t(-1)Vay® =011, +2,...), (42)

and all the coefficients a,, b, may be assumed positive. Hach ¢, is transformed into

. . . L 0
its right neighbour @,., by the substitution ( where

1 (—1)”kv)’

! For these results on reduced forms, see I. Schur, loc. cit., 214—216.

17 — 523808 Acta mathematica. 88. Imprime 16 21 novembre 1952
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k,,= bv+ bH—l (4'3)
2av+1
1s a positive integer. We set
D+ VDb,
7, = ]/_b" s , = s (44)
2av+1 2av+1
whence
% =Ty 8, i‘*__/li"v—s'm Q:7v+sv- (45)
Gy 11 Ay 1 @y 11

In the usual notation for simple continued fractions, we then have

Ty = (k,,, k,,+1, k,,+2, . .), 8§, = (0, k,,_l, k,,_z, . ) (46)
We also write
T;:rv_kv=(0; kw+1, kv+29 .. -), (4-7)
so that
0<r,s <. (4.8)

We denote by (K) the infinite series of positive integers
v s ey k—Z’ k_l, ko, kl’ kz, ee o

(K) is then determined by @, and, conversely, (K) determines to within an arbitrary
multiple the class of forms equivalent to €.
Finally we define the numbers T, (p) for all integral » and p by

_b-2pay ktrn—s—-2p
" vp  ketrts, (4.9)

T, (p)

where the identity of the last two expressions follows from (4.5) and (4.7). The con-
nection between the numbers T, (p) and Lemma 2 is shown by the following result:

Lemma 3. (i) For any integers v, p, there exists a form ¢ (z, y)= axt+bry+cy’

equivalent to @ for which

b
+—_=
“ VD

(ii) Suppose that Q is equivalent to a form @ (x,y) for which

T, (). (4.10)

'Vb—jl) <Va. (4.11)

Then (4.10) holds for some integers v, p.

Proof. (i) @ is equivalent to the reduced form ¢, for any », and so also to

@, 9v)=¢,(x, (—1)’pr+y) for any integer p. This gives b=b,—2pa,,1, whence
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b/VD=T,(p), by (4.9). Since the forms aa®+bzy+cy® are equivalent, we may take
either sign in (4.10).
(i) If (4.11) holds for some @=az®+bzy+cy?, then

b2 dac
0;:7)*14- *‘532,
whence
lac|<iD

By interchanging # and y, if necessary, we may take |a|>|c|, so that |c]<1VD.
Applying a transformation y—gx + y, we obtain an equivalent form ¢’ =a’2*+ b’ xy -+ cy®
for which & =b+2qc. We choose the integer ¢ so that

0<VD-b—2qc<2|el,
whence

0<VD-b' <2|c|,

since b'£VD by our hypothesis that @ is a non-zero form. Since 2]|c|< VD, this

gives b’ >0, and so B B
0<VD-b <2|e|<VD+V.

Now this is just the condition (4.1) that ¢" be a reduced form. Hence ¢'=g,,
e=(—1Ya,s1, b’ =0b, forsomev,andb=0'—2¢ge=5b,—2(—1)" ga,.1. Thusb/V5=T7(p)
for p=(—1)gq.

From the definitions (1.11), we see that Oﬁxi, u<V2 (»=1,2, ..., 8), so that,
by Lemma 3, any value of b/VD satisfying (3.1) must be of the form | T, (p)| for
some integers », p. Thus Lemma 2 (i) is equivalent to the assertion that, for any

sequence (K) and any ¢=1,2,..., 8, we can find a 7, (p) satisfying
w<|T,(p)| <. (4.12)

We now establish some general results (Lemmas 4, 5, 6, 7) which will help to
simplify later calculations.

Lemma 4. (1) If # is a positive integer, and k,>n for any v, then there exists
a T, (p) lying in any interval of length 2 (n+1)/(n*+n+2).
(i) If k=5 for any v, there exists a T, (p) lying in any interval of length 3/8,

and so in any of the intervals (3, ) for 1=1,2, ..., 7.

Proof. (i) We have
2

Tv(’p*l)—Tv(me‘
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If now any k,>n-+1, this gives, using also (4.8),

2 _2(m+l)
nt+l1 - ni+n+2

0<T,(p~D)-T,(p) <

Otherwise we have max {k,} =n; then, for some », k,=n, k,_1<n, kys1 <n, so that

1y, 8 >1/(n+1) and
251)

Ptn+2

0<T(p-1)~-T,(p) <

Part (i) of the lemma follows immediately.
(i) The first statement of (ii) is merely the case n=>5 of (i); and it is easily

verified that, for 1=1, 2, ..., 7, we have

1¢—x1215—x5=0'399 >§

Lemma 5. (i) For all »,

k,—1

7O, 7. 06> 7

() If k>3,
T, ()], 17, (- 1] <21

v bl ‘l'( ¢4 k,,‘*“l

Proof. (i) We have
k41, —s,
IT.(0)]= k,+ri+s,

and this is an inecreasing function of 7, and a decreasing function of s,, since
k,>1>17,,s>0. Hence
k,—1

17O >

3

and a similar argument shows that

b—rts, k-1
k,+r+s " k+1

lT,.(k,,)|=

(i1) We have, for k, >3,
k47 —s,—2

17.(1)]= k,+r.+s,

and this is an increasing function of 7, and a decreasing function of s, for 0 <7,
s, < 1. Hence
k4+1-2 k-1

k+1  k+1°

|7, ()] <
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and a similar argument shows that

ie.

k,—r,+s,—2 k,—1
k.41 4s, k,+1

|T, (), — 1)} =

Lemma 6. (i) Suppose that 0 <t <1 and that | T, (p)| > 7 for p=0and p=Fk,. Then

, k,(1—7)
Tys 8 < 97 (4.13)

(i) Suppose that 0 <x <1, k,>3, and |T,(p)| <x for p=1 and p=Fk,—1. Then

, k(1—x)—2

8> T (4.14)

Proof. (i) We have

k,—r,+s,

k,+1,—s, . .
k,+7,+s, ’

Tv = 7 >
| (O)I k,,+r,+s,,>1

| T, (k)|

(1-7)r,>1+7)s,—k (1—1),
1-7)s,>00+7)r.—k (1—1).

From these two inequalities we derive

or

A—-22rn >0+ {1 +7)r~k (1—1)) —k (1 —17),

k(l-7)>27r,.

This establishes (4.13) for 7,; and, from the symmetry in 7,, s, of the above in-

equalities, the same result holds for s,.

1.e.

() For %, >3, we have

k47 —s—2 B
|Tv(1)|—m<n, [T, (b —1)|=

ky—1,+8—2

7 <x
k,+r,+ 8 ’

(I=s)r, <(l+2%)8+2—k (1—x),
(I—2)s, <(1+x)r, +2—k (1 —x),

wherce we derive (4.14) precisely as above.

Lemma 7. If max {k}=2, there exists a T,(p) satisfying

0527 < | T, (p)| < —]}—é =01707 ... (4.15)

Proof. Since 1<k, <2 for all », we have
rn,$%<(0,1,21,2 ...)=V3-1,
r,8>(0,2,1,2,1,...)=3¥3-1).
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Take now any » with k£,=2. Then

r 1 -_ _ __ - Py
IT,(0)|=§+“, sv22+§(l/§ 1) (Vg) 1) 5 V37‘>0,527’
24n+s " 2+3(V3-1)+(V3-1) 1+3V3

and similarly
|T,(2)] > 0°527.

Hence if (4.15) is not satisfied, we must have |T,(0)], |T,(2)]>1/V2. Lemma 6 (i)
(with % =2, 7=1/V2) now shows that

s <V2—1=(0,2). (4.16)

This implies in particular that %k _1>2, k. >2, whence 4, _; =k, ., =2. Repeating the
argument with » replaced by »—1 and »+1, and so on, we see that k,=2 for all ».

But then r,=s,=(0, 2), contradicting (4.16); this contradiction establishes the lemma.

5. We now proceed to a systematic discussion of the inequality (3.1) or, what
is the same thing, (4.12), for +=1,2, ..., 7. (The case ¢=8 will be treated in the
following section.)

By Lemma 4 (ii), we may suppose throughout that &, <4 for all ». We note
also that if every k,=1, then r,=s,=(0, I)=%(V5—1), and so

1-2p 1 3

T.(p)= Ve ]T,(0)1=]75f=o-447 |Ty(2)l=l—/-g' (5.1)
Case I: ¢=1. Here (4.12) is
#=0<|T,(p)| <7y = 1; =0'447 ... (5.2)

Vs

If any k,>2, then, by Lemma 4 (i), there exists a T, (p) in any interval of length
3/4, and so in the interval (—1/V5, 1/V¥5); thus (5.2) is certainly satisfied. Other-
wise every k,=1, and then, by (5.1), (5.2) holds with p=0.

Case II: +=2. Here (4.12) is

1 1
Hy= ——==0242- .- <|T, <1,=—=0707--- (5.3)
2 Vﬁ I (p) | 2 V2
If max {k}=1, (5.1) shows that (5.3) is satisfied with p=0; if max {k,} =2, Lemma 7
gives the result; and if any %, >4, Lemma 4 (i) with n=4 shows that there is a
T.(p) in any interval of length 5/11=0'45 ..., and so in the interval (x5, 7,).
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We may therefore suppose now that max {k}=3. Take any v with £, =3. Then,
by Lemma 5, [T,(0)], |T.@3)>3>x,; |T.()|, [T.(2)| <} <7,. Lemma 6 (with
k=3, t=1,=1/V2, x=u,=1/V17) then gives

12 y '~ * ‘ *
r, s <3(V2-1)=(0,1,1,1,1,1, 3),
s >3 (V1T-3)=(0,1,1, 3). (5.4)

From these two inequalities for 7,=(0, kvi1, kviz, Ky, - - .), We see at once that
ksi=koo=1, 1<k.3<3. Suppose now that k.3#3, so that k,,35<2. Then

kv+2: 13 7';4-2:(0; kﬂ’ﬁ'r3, .- -); 3v+2:(0, 1, 3; kv—ly .. '),

and so
(0,3)=F<ra<l; (0,1,3)=]<sue<(0,1,4)=14.
Hence
l-rustss 1-1+3 3
T, =15, TR
| +2(1)| 1470+, 14+1+3 11>x2
1-3+i 11
]Tv+2(1)l<1+13,+§~16<12’

and (5.3) is satisfied by |T,,2(1)]. Thus if (5.3) is not satisfied, the only remaining
possibility is that k,,3=3. But then we may repeat the above argument, with »
replaced by »+3, to show that k. 4=k ,s=1, k.,c=3. In this way we see that

r=(0,1,1,3,1,1,3,...)=(0, 1, 1, 3), which contradicts (5.4).

Case III: +=3. Here (4.12) is

3
sy = = =028 < [T, (p)| <Ty= == = 0"T276- - 5.5

The initial argument of case II shows that we need consider only sequences (K) for
which max {k,} =3. Then, taking any » with &, =3, we must have

[T, 0), [ T.3) >z [T, [T, @) <%

if (5.5) is not satisfied. Lemma 6 (with k=3, 7=7,=3/V17, =%, =1/V15) now gives

v, s <3(V1T—3)=(0,1,1, 3), (5.6)
s> 3 (VI5—3)=(0,2, 3). (5.7)

From (5.7) we have r,=(0, k11, ...) > (0,2, ...), whence k.1 <2. We distinguish the
two cases k,.1=1 and k.1 =2.
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Suppose first that &,,.,=1. Then, by (5.6),
=10, 1, kuya, koys, ...) <(0,1,1,3,1,...).

Comparing successive partial quotients in this inequality, we find in turn: A.,2<1,
whence k. o=1; k,13>3, whence k,3=3; k1e<1, whence k,,,=1. But now we may
repeat this argument with » replaced by »-+3, since k,;3=3, k=1, and deduce
that k5=1, %vi6=3, k.7 =1. Thus, repeating the argument indefinitely, we find that
ry=(0, i, 1, §), which contradicts (5.6).

Suppose next that k..;=2. By (5.7),

7‘,’,=(0, 2, ]C,,+2, ]Cy+3, .- .) > (O, 2, 3, 2, .o .),

whence k.5 >3, and so %,,2=3; and then %.,3<2. Also, k.31, since otherwise we
should have %,,2=3, k,,3=1, and so should arrive at a contradiction as in the pre-
ceding paragraph. Thus k,.3=2. From k,=3, k.1=2, we have therefore deduced
that %,,2=3, %.3=2. Repeating this argument indefinitely, with » replaced by

y+2,v+4, ..., we find that r, = (0, 5, §), which contradicts (5.7).
Case IV: 1=4. Here (4.12) is

1 3
#y=——=02173 - <|T\(p)|<Ty= 7= =07745- - 5.8

The initial argument of case IT applies again to show that we need consider only
sequences (K) for which max {k}=3. And then, taking any » with k=3, we

must have
T, (O], | T.3) >z [T, [T,(2)] < 2;

if (5.8) is not satisfied. Lemma 6 (with &, =3, r=1,=3/ V15, 5=, =1/V13) now gives
v, s <1 (VIb—3)=(0,2, 3), (5.9)
ry s >3 (VI3—3)=(0, 3). (5.10)

From (5.9),” rn=(0, kvyy1,...)<<(0,2,...), and so Kk, >2. We distinguish the two
cases k,,1=2 and k,.1=3.
Suppose first that %,.;=3. Then, by (5.10),
rn=(0,3, ks, ...)>(0,3,3,...),
whence %,.2>3, k,42=3. We may now repeat this argument with » replaced by v+1,
since kyi1=h,2=3, and deduce that %,.;=3. Repeating the argument indefinitely,
we see that 7,=(0, 3), which contradicts (5.10).
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Suppose next that %,.1=2. Then, by Lemma 5 (i),
[T O)], | T2 (2)] > § > 2,
and so, if (5.8) is not satisfied, we require
| Ty O], | 1020 (2) | > 7,
Lemma 6 (i) (with k.1=2, v=7,~3/V15) now gives

Fan, e < F(VIB—3)=(0, 3, 9),
whence
, 1. 1

Ty = =—
Tv+1 2+ 74

>(0,2,3),
which contradicts (5.9).
Case V: 1=5. Here (4.12) is

x5=f’=0'4330~-- <|T, ()| <75= — =0.8320... (5.11)

3
V13
If max {k}=1, (5.11) is satisfied with p=0, by (5.1); and if max {k} =2, Lemma 7
gives the result. We may therefore confine ourselves to sequences (K) for which
max {k}=3 or 4.

(a) Suppose that max {k,}=3. Take any » with %, =3. Then, by Lemma 5 (i),
17,(0)], | T.(3)] > 4 > 5, and so if (5.11) is not satisfied we must have

[T, ()], | T\ (3)] > 7.

Lemma 6 (i) (with k=3, 7=7,=3/V13) now gives
7, 5 <3 (VI3—3)=(0, 3). (5.12)
Thus 7,=(0, kvs1,...) <(0,3,...), whence %1 >3, k.1 =3. Repeating the argument

with » replaced by »+1,v+2, ..., we see that r, = (0, §), which contradicts (5.12);
(b) Suppose that max {k,} =4. Take any » with %k, =4. Then, by Lemma 5,

| T, T (> §> %5 [T, [T.03)] <i<s;
hence, if (5.11) is not satisfied, we must have
[T, |To @) [ > [T, | T,(3)] <%
Lemma 6 (with k=4, t=7=3/ V13, %=1,=V3/4) now gives
r, 5 <3(V13-3)=(0,2,2,10,...), (5.13)
7, 8>3 (4V3-6)=(0, 3, 4). (5.14)

From these two inequalities for r,, we see that 2<k,.1<3.
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Suppose now that k.1=2. Then (5.13) gives
7y =10, 2, kuya, kues, .. .) <(0,2,2,10,...),
whence k,.o<2. Also, if f.:=2, this last inequality gives k,.3>10, which is im-
possible. Hence k,.o=1. We therefore have
ki1=2, 1:1=(0,1,...), 811=(0,4,...),

so that
0,2)=% <1 <(0,1,5)=%; (0,5)=1% <841 <(0,4)=1%.
But then
2=t t s 2—§+L 41
T,..2)= ° D — =045 ,
| 7112)] 2+ 11t 242+E 91 045 >
2—3+% 7
T,..(2 £ 273 _"' _09863---

and (5.11) is satisfied by | T,.1(2)].
Thus if (5.11) is not satisfied, we must have %,,;=3. Then, by (5.14),

7,=1{0,38, kuiz,...)>(0,3,4,...),
whence ky,5>4, k1o=4. We may now repeat the above argument with » replaced by
v+2, and deduce that %,.3=3, k4 =4. Repeating the argument indefinitely, we see
that r, = (0, §, Z), which contradicts (5.14).
Case VI: 1=6. Here (4.12) is

1
Vs

Mg =

=0‘447-~~sITv(p)ISTG=%§=O'866--~ (5.15)

If max {k}=1, (5.1) shows that (5.15) is satisfied with p=0; and if max {k}=2,
Lemma 7 gives the result. We need therefore consider only sequences (K) for which
max {k,}=3 or 4.

If now k,=3 for some u, Lemma 5 (i) gives

[T.00)], | T, (3)[> £ > s,
and so, if (5.15) is not satisfied, we must have
| 2, (0)], [T, (3)| > 6.
Lemma 6 (i) (with k,=3, 7=17,=V3/2) then shows that
v s, <3(@V3-3)=(0, 4, 3), (5.16)

whence k,.;>4, and so k,,,=4.
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We may therefore suppose that max {k}=4. Take any v with %k, =4. Then,

by Lemma 5,
1T O], | T ()] > 8> %5 [T, 1T6)] <3 <7e;

and so, if (5.15) is not satisfied, we require
|7, O], | To (@) > 765 | T ()], | T5(3)] < 4.
Lemma 6 (with k=4, t=7,=V3/2, x=x,=1/V5) now gives
v, 8 <1(4V3—6)=(0, 3, 4), (5.17)
v, 5> VB—2=(0, 4). (5.18)

From these two inequalities for »,, we see that 3 <k, ;<4. We distinguish the two
cases ky,.1=3 and k,,,=4.
Suppose first that k..;=4. Then (5.18) gives

ry=(0,4, ke, ...)>(0,4,4,...),

whence k.24, kvi2o=4. Repeating the argument with » replaced by »+1, »+2, ...,
we see that r,=(0, 4), which contradicts (5.18).

Suppose next that k,.,=3. Then (5.16), with u=»+1, gives

7'1:4.1 = (O, ky+2, ky+3, . -) < (0, 4, 3, e .),

whence k., 3>4, koio=4; k.3<3, whence kv.3=3 (since, as was shown above, any
element 4 must be followed by 3 or 4). Repeating the argument with » replaced by
»+2,v+4, ..., we see that r,=(0, g, Z), which contradicts (5.17).

Case VII: v=1T. Here (4.12) is

%7=71§=0'707-“_<_ITv(P)IST7=—3;=1.341"' (5.19)

If any % >3, Lemma 4 shows that there exists a 7T, (p) in any interval of length
4/T=0'57-- < 7,—,, so that (5.19) is certainly satisfied. Also, if every &, =1, (5.1)
gives |T,(2)|=3/ V5=1,. We need therefore consider only sequences (K) for which
max {k,}=2.

Take any » with %,=2. Then

2+1,—s . _2-rts .
ITv(O)l—m<1\T7, ITV(2)I——m<1<T7, (5.20)
|7, (3)] w> 1> x,. (5.21)

=2+r,',+s,,
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Suppose now that (5.19) is not satisfied. - Then, by (5.20), | 7,(0)|, | T, (2)]| <#,,
whence (by the analysis of Lemma 6 (i), reversing the inequality sign throughout)

ky (1 —3)

o =V2-1=(0,2). (5.22)

’
Ty Sy >

If ky1=2, (5.22) gives
7=(0,2, kys,...)>(0,2,2,...),

whence k,.5>2, k.o =2. Repeating the argument with » replaced by »+1, »+2, ...,

*
we see that r,=(0, 2), which contradicts (5.22). Similarly, if k,_; =2, we find s,= (0, 2),
again contradicting (5.22). Thus % _15%2, k1742, and so k_1=k1=1,

rn=(0,1,...)>1%, 5=(0,1,...)>}.
But then, since [7,(3)| is a decreasing function of 7, and of s,,

—1
|T7(3)|<$ﬂ-% 3

2¥3+32 3°Y5

and so, by (5.21), (5.19) is satisfied by |7 (3)].

This completes the proof of Lemma 2 (i) for +=1,2,...,7. Before proceeding
to the case 1=8, we establish the assertion made in Lemma 2 (ii) for :=0,1,...,7;
namely that when Q is equivalent to a multiple of Q;, b/ VD assumes no value lying
strictly between »; and 7.

Since the numbers w;, 7; satisfy —1/V5<u, 7. < V2, it suffices, after Lemma 3,
to consider only the values of 7,(p)=(b,—2pa,.1)/ VD corresponding to the reduced
forms @, equivalent to each ;. As is easily verified, each of the forms @ is reduced,

and so may be taken to be ¢, (z,y)=a, 2>+ b zy—a, y>.
(i) =0 or 6. @=Q;=2"+zy—y*, and so
pr=T+zy—9, @,=—tayt+y,
these being the only distinct elements of the chain {g,}. Hence
1-2p
V5

and the only values of |7, (p)|<V2 are: 1/Vb= —xg=1,=2%,, 3/Vb=1,.

b

T1(p) =Ty (p)=

(i) i=1or 7 @Q=Q,=2"+2zy—y? and so
(p1=¢2+2xy—y2, pa=—2*+22y+4,

‘these being the only distinct elements of the chain {p,}. Hence
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Tl(p>=f’2(p)=1§§—”3

and the only values of |7, (p)|<V2 are: 0=1;; 1/V2=1,=2,; V2=1,.
(iii) 1=2. Q,=2a*+3xy—y?% and so
@1=22"+3zy—9y%, @=—2*+3zy+2¢7 @,=22 +zy—2¢%

P4, P5, Pg aTE derived from these by changing the signs of the extreme coefficients,
and these are the only distinct elements of the chain {¢p,}. Hence

T, (p) =T, (0) = 3;%”,
Ty (5) = Ts () = 3V_1—47-”’
Ty (5)=To (0) = IV"%” :

and the only values of |7, (p)|<7,=3/V17 are: 1/V1T=1,, 3/V17=1,.
(iv) ¢=3. @=32*+62y—2%% and so
@1=32+62y—249", @,=—22%+6xy+3¢7

these being the only distinct elements of the chain {@,}. Hence

3—2 3—3
T, (p)= VT;’, T, (p)= m"’,

and the only values of |7, (p)| <7,=3/V15 are: 0,1/V15=1x,, 3/V15=r1,.
(v) i=4. Q,=2*+3xy—4% and so
o= +3zy—9, @y= —2*+3zy+4’
these being the only distinct elements of the chain {p,}. Hence
3—2p
V13
and the only values of | T, (p)|<7;=3/V13 are: 1/V13=x,, 3/V13=1,.
(vi) i=5. @;=42*+12zy— 34 and so

T,(p)=T.(p)=

2

@1=422+120y—34% @,= -3+ 12xy+44,
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these being the only distinct elements of the chain {g,}. Hence

and the only values of |7, (p)|<t,=V3/2 are: 0,1/2V3, V3/4=x,, V3/2=r,.
This completes the proof of Lemma 2 for ¢<7.

6. For the case =8 of Lemma 2, we must first consider the inequality

5 —
ng=————=1073- <|T,(p)| <75 =V2=1414- - 6.1
8 4V2-1 ' (p)l 8 (6.1)
We note first that we need consider only sequences (K) with k <5 for all »; for if
any k,>6, Lemma 4 (i) shows that there exists a 7,(p) lying in any interval of
length 7/22=0318 - <{7y—#x,, so that (6.1) may certainly be satisfied.

(i) If max {k}=1, then by (5.1), (6.1) is satisfied with p=2.
(i) If max {k,}=2, take any v with k=2, Then

r,5<(0,1,2)=V3—1,
and so

4 i=1'15-~~>x8.

|T,(-1)], |T,(3)lz2—+2(—V§_1~)=V3

If now k._q, k11 are not both equal to 2, we may suppose, by symmetry, that

k.1=1. Then
r=(0,1,...)>14%, >0,
whence

s Y
[T, (3)] <37, —5<V2,

and (6.1) is satisfied by 7),(3).
Otherwise we must have k,_y~=£%,.1=2 whenever k =2. This implies that &, =2
for all », and so

r=5=(0,2)=V2-1, T,(—1)=V2=r,.

(i) If max {k,} =3, take any » with k,=3. Then

r, 8<(0,1,3)=3 (V21 -3),
and so
5

e =109 > .

5
|7 (=D, | T.(4)] Z31 (a3 Va
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If now %,_;, k,+1 are not both equal to 3, we may suppose, by symmetry, that

k,,+1S2, ky_1<3. Then
'r,l,=(0,k,'+1,...)>%, Sp>}1,

whence

5+;}—§_59

3+1+§_E=137”"V2’

T, <

and (6.1) is satisfied by T, (4).

Otherwise we must have k,_;=%,.1=3 whenever k,=3. This implies that k, =3

for all », and so

r=s5=(0,3)=3 (V13-3), T(~1)= 2 =138
(iv) If max {k}=4, take any » with £, =4. Then
Ty, $ > 1,
2.~ 1.0 < pri =10 g,
+i+4 11
We now show that, if (6.1) is not satisfied,
kooa=k1=1, k2>3, ki2>3.
For if k,_,=1 and k,_2<2, we have
s=(0, ks, ..)<(0,1,2,1, Z)=w;

while if k,_;>2, then ~
2(4-V2)

s <3< 7

so that (6.4) holds in either case. Also, since max {k,}=4,
r<(0,1,4=2(V2-1)
From (6.4) and (6.5) we see that

B 6+2(V2-1)-2(4-V72)
2 1)|24+2(V§—1)+%(4—V2)

=§(1+2V§)=1‘093-~>x8;

(6.5)

and it follows from (6.2) that (6.1) is satisfied by 7,(—1). In the same way (inter-

changing the rcles of 7, ‘and s, in the above), we may show that (6.1) is satisfied

by T, (5) if either k,.1>2 or k1 =1 and ki2<2.
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We may therefore suppose now that (6.3) holds whenever k,=4. If we suppose
further that k,73 for any v, it follows from (6.3) and our assumption that max {k,} =4
that (K) is the periodic sequence

cn1,4,1,4,1,4, ... (6.6)

For the sequence (6.6) we have, whenever k, =4,

r=s5=(0,1,4=2(V2-1), T.(-2)=V2=r1,,
so that (6.1) is satisfied.
I (K) is not the sequence (6.6), it follows from (6.3) that, for some », k, =4
and either £, 2=3 or k,.5=3; by symmetry, we may take k,.»=3. Thus
ki=1, k=4, kiz=1, k=3
Then, since
Toig, Sr02<(0,1,4)=2(V2-1),

we have
5“"';+2+3u+2 5
T,0(4)= . > — =g}
e ()] 3trietsie 3+4(V2-1)
and, since
7:+2=(0,kv+3;‘--)>(015)=%:
8.2=(0,1,4,..)>(0,1,4)=1#,
we have
5-%+% 7
!Ty+2(4)l<§_+i+—%=5<‘ts;

so that (6.1) is satisfied by T\,.s(4).
(v) If max {k}=5, take any » with & =5. Then, since r,, s, >0,

. ’ iTv(_l)l,lTy(G)I<%<-{8;
and, since 7, s, <1,
9 9

I (=2 1> 5757 =7

> ng.
Hence, if (6.1) is not satisfied, we require
\Tv(_1)1<"s; IT’(6)1<"8; IT"(‘2)|>78§ ITV(7)| > Tg.

On substituting the values of T,(p), we obtain from the first three of these inequali-

ties, respectively,
7y (g — 1)+ 8 (25 + 1) > T— B3 (6.7)

8 (g — 1)+ 17 (26g+ 1) > T—D5ng; (6.8)
r(tg— 1)+ 8 (13 +1) <9—b 4. (6.9)
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Since r, < 1, (6.7) gives

8—6x, 155...
v = o ;
$> 001 Ceor... o 0T
and, since s, << 1, (6.8) gives similarly
7> 01,
Substituting these inequalities in (6.9), we obtain
07< 278 _9-5V2_ .0 \

274 212

which is clearly false. It follows that (6.1) may always be satisfied when &, =5.
We have now established the first assertion of Lemma 2 for ¢+=8. It remains
to show that, when @ is equivalent to a multiple of the form

Qs (2, ) =2+ 32y — (6-V8) ¢,
b/VD assumes no value lying strictly between x, and Tg- Since the sequence (K)
corresponding to this special form is
o04,1,4,1,3,1,4,1,4,.., (6.10)
it suffices, after Lemma 3 (ii), to show that for the sequence (6.10) we have either

5
4V2-1

[T, (9) | < 25 = =1073 ..., (6.11)

or

| T, (p)| > 7o=V2=1414 .., (6.12)
for all integral », p.

(a) Suppose that k,=1, so that
_ 1+7m—8—2p
@)=,
For p=0 or 1, we have clearly
IT.(0)] <1,

and (6.11) holds. Also, since k,_1>3, k.1>3, we have

3+3-3_9_..
114+ 5 0%

7'1,', 3v<%: I«Tl"(_l)" ITV(Z)‘>

and (6.12) therefore holds for p< —1 and p>2.
(b) Suppose that &, =3. Then

, * % —
r=s,=(0,1,4)=2(V2-1),
18 — 523804 Acta mathematica. 88. Imprime 16 16 décembre 1952
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and so
3—-2p
T” i
(v) 4V2~-1
For p< ~2 and p>5, we therefore have
T @)= =150 > 7y
4V2-1
and, for —1<p<4,
5
Y\ PSS -
(¢) Suppose that k,=4, so that
B 44+7,—8—2p
T.(p)= 447 +s,

By symmetry, we may suppose that k,=4 occurs to the left of the element 3 in
(6.10). Then
5,=(0,1,4)=2(V2-1),

r=(0,1,4,1,4,...,1,4,1,3,1, 4),
so that

* ¥

rn<(0,1,4)=2(V2-1),

f

’ * -
rn>(0,1,314)=3}(3-V2).

For p< —2 and =6, we therefore have

~ ___8__ =V9
!Tv(p)I’ 4-{-4(V§—1) V2,
and (6.12) holds. Also

6—3(3-V2)+2(V2-1) 5

T,; v — — = — S S

| (5)IS4+%(3—V2)+2(V2—1) Va1
ITP(_1)|<6+»21-(3~V§,)~—2(Vé—1)<%8,

T4+1(-V2)+2(V2-1)
and so (6.11) holds for —1<p<b.

This completes the proof of Lemma 2 (ii), so that Theorem 2 is now established.

7. 1t is clear, after Lemma 1, that the best possible estimate for M (B) in terms
of its two fundamental invariants always takes the form

M (B)<iVDy(w)

where

% (w) =u.b. Lb.
Q b

5|
)

VD
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% (w) has been evaluated above, for the range 0 <w <w,=12439 ..., by an inductive
process, each ‘eritical’ form @ (z, y) providing the link between successive intervals
(i, 71), (*i+1, Ti+1) In Lemma 2.

This process, however, breaks down for values of w slightly larger than w,.
For it is easily seen from the analysis of section 6 that, for the form @, (z, v), b/ VD
assumes values arbitrarily near to (but greater than) ¥'2. Thus the lower bound of
the values of b/VD > xg assumed for Qg (z, y) is precisely V§=rs. and we must take
Ty=Ts. Then #,, defined as the upper bound of numbers » for which the inequality

S = <Ty
VD

may always be satisfied, is clearly equal to s,.

I have been unable to find any method of evaluating y(w) for w > w,. This
appears to be a difficult problem; for it may be shown that, for any ¢ >0, y(w)
has an infinity of turning points in the interval w,<<w << w,+¢, and it is probable
that the set of turning points has points of accumulation other than ew,.

I should like to note finally that the methods of this paper may be used to
evaluate the ‘successive minima’! of M (B) for any particular value of w. Complete
results have been found for w =0, by Schur, and for w =1, by Davenport and Heil-
bronn, in the papers referred to in section 1.

I am much indebted to Professor L. J. Mordell for suggesting to me the problem
of the general bilinear form and for his helpful criticisms during the preparation of
this paper.

1 ¢f. the author’s paper ‘“The minimum of a factorizable bilinear form”, to appear in Acta
Mathematica.



