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1. In  this paper  I investigate the lower bound M (B) of a bilinear form 

B (x, y, z, t) = ~ x z  + f l x t  + y y z  + 8y t ,  (1.1) 

where x, fl, 7, ~ are real, and x, y, z, t take all integral values subject to 

x t - y z =  _+1. (1.2) 

We say that  two bilinear forms are equivalent if one may be transformed into 

the other by  a substitution 

(: :)(:: ::) ;:) 
where p, q, r, s are integers and p s - q r =  _+ 1. I t  is clear tha t  equivalent forms 

assume the same set of values for integral x, y, z, t subject  to (1.2), and so have the 

same lower bound M (B). Further,  if we set 

A =  A ( B ) = c c O - f l y ,  

O=O(S) = I ~ - r l ,  

then A and 0 are invariants of B under equivalence t ransformation,  of weights two 

and one respectively. 

Associated with a bilinear form B is the quadratic form 

Q (x, y) = B (x, y, x, y) = :r x ~ + (8 + F) x y + ~ y2, (1.4) 
of discriminant 

D= (~+r) ~- 4 ~ =  0~-4 ~. (2.5) 

I f  two bilinear forms are equivalent under a t ransformation (1.3), then, put t ing x = z ,  

y = t ,  we see tha t  the associated quadratic forms are also equivalent. Conver~ly ,  a 

quadratic form Q (x, y) = a x 2 + b x y + c y2 is associated with the  two bilinear forms 
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B (x, y, z, t) = a x z +  �89 (b+_ O) x t + ~  (b~- O) y z + c y t  (1.6) 

for arbi trary 0->0, and these two forms are equivalent under the transformation 

x-~z, y->t, z->x, t-+y. Thus there is a one-one correspondence between classes of 

equivalent bilinear forms with given invariants A, 0 and classes of equivalent quad- 

ratic forms with discriminant D =  0 ~ -  4 A. 

We shall suppose throughout tha t  D ~ 0 ,  and also, when D >  0, that  Q(x, y) is 

a non-zero form, i.e. tha t  Q(x,y)  does not represent zero for integral x , y~O,O.  

Under these conditions, the problem of finding best possible estimates for M (B)has  

been studied in detail for two particular classes of forms. 

First, if 0 = 0 ,  then f l = ~  in (1.1) and B is symmetrical; Schur ~ has then proved: 

T h e o r e m  (Schur). I /  B is symmetrical and D ~ O, then 

Vi) 
i (B) < 5 '  (1.7) 

with equality i] and only i / B  is equivalent to a multiple o/ x z+ �89 (xt + y z ) -  y t. 

Secondly, if D > 0  and 0 = V D ,  then A = 0 ,  and B may be factorized as 

B = (2 x + Ft y) (~' z + # '  t), where 2, #, 2', # '  are real. Davenport  and Heilbronn2 have 

then proved : 

T h e o r e m  (Davenport and Heilbronn). 11/ B is /actorizable and D > O, then 

3-V8 Vb (1.8) M (B) < ~ -  , 

with equality i/ and only i~ B is equivalent to a multiple o/ 

(z+ 
Now if we define o~ = co (B)_>0 by 

0 

VIDI' 
then co is an absolute invariant of B, and the forms considered by these authors 

are characterised by the relations D > O ,  t o = 0  and 1 respectively. Their results 

therefore suggest the problems of finding for M (B): 

1 Sitz.-Bericht Akad. Wiss. Berlin (1913i, 212--231. 
2 Quart. Journal o] Math. 18 (1947), 107--123. The author has given an alternative proof of 

their complete results, based on the ideas of this paper, in Acta Math. 
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(1) an estimate independent of the value of co; 

(2) the best possible estimate in terms of co and D. 

The first problem is easily solved, and I establish the following theorem: 

T h e o r e m  1. (i) I /  D >  O, then 

V~ 
M (B) < ~ ,  

with equality i/ and only i/ B is equivalent to a multiple o~ one o/ the ]orms 

x z  § �89 (1 -eo  V5) x t  § �89 (l + eo V 5 ) y z - y t ,  

where eo = 2 ]~ /V5  (1r = O, 1, 2 . . . .  ). 

(ii) / ]  D < 0 ,  then 

v ~  
M ( B )<- ~ 3 ' 

(1.9) 

(1.1o) 

with equality i/ and only i~ B is equivalent to a multiple o~ one o~ the /orms 

x z + �89 ( 1 - m V 3 )  x t +  �89 (1 + eo V3) y z + yt, 

where eo = 2 k / V 3  (k = O, 1, 2 . . . .  ). 

The second problem is more difficult�9 I give here the complete solution, in the 

ease D > 0, for the range 

0-<~~ e~176 �89 1/2+ 4 V2--  1 

of values of co, which may be of interest since it includes the values ~o = 0 and co= 1 

considered above. 

We define the ~umbers ~ (i = 0, 1 . . . . .  8) and ~, (i = 1, 2 . . . .  , 9) (the significance 

of which will become clearer in Lemma 2 below) by 

1 1 1 1 
~o=-~ ,  ~1=o, ~2=v~, ~3=v/~, ~4=f~, 

V3 1 1 5 
xs= 4 '  ~ 6 = ~ '  u v = ~ '  x s = 4 V ~ _  1, 

1 1 3 3 3 

�9 1= ~ ,  ~2=V~' ~ 3 = ~ ,  ~4=V~, ~5=V~ ~ ,  
3 y ,  =~ 

(1,.11) 
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Each of the sequences (u~) and (2.~) is increasing (strictly,  except  t ha t  ~8=v9),  and 

xi < ri for each i. In t e rms  of these numbers  we define a funct ion g(r176 b y  

Z ((D) = T t --  (2} f o r  �89 (~gi 1 ~- Ti) --~ (3) ~ 21- (;gi ~- 2.i) / 

J X (r = o~ - at for �89 (a~ + 2.~) < co < ~ (a~ + Ti+l) 
(i = 1, 2 , . . ,  8). 

(1.12) 

(1.1a) 

This defines Z (co) for the  range 0 = �89 (~o + 2.1) --<: (1} __~ �89 (~8 -~ 2"9) = CO0 as a cont inuous 

funct ion of r The g raph  of Z (~o) is easily seen to be a zig-zag line, wi th  tu rn ing  

points  a t  to = �89 (ui-1 + v,) and co = �89 (st + 2.~) (i = 1, 2, . . . ,  8). 

Final ly  we define the quadra t ic  forms Qt (x, y) for i = 0, 1 . . . . .  8 b y  

Qo = Q6 = x2 + x y - y2 / 

Q1 = Q7 = x2 + 2 x y - y2 I 
! 

Q2=2x 2+ 3 x y - y 2  [ 
I 

( Qa= 3x2 + 6 x y -  2 y 2 

Q4=x2 + 3 x y - y  2 [ 

Q s = 4 x 2 + 1 2 x y - 3 y 2  ] 

Os = x2 + 3 x y  - (6 - V 8 )  y2 

(1.14) 

With  these definitions, we can s ta te  the  results  obta ined  as 

T h e o r e m  2. I/  D > O and 0 < o J < w o = l ' 2 4 3 9  . . . .  then 

M (B)  < �89 V D  X (~o). (1.15) 

For any such value o/ co, there exists a/orm B/or  which equality holds in (1.15). More 

precisely, i/ the quadratic /orm Q associated with B is equivalent to a multiple o/some 

Q~ ( i = 0 ,  1 . . . . .  8), then equality holds in (1.15) when eo satis]ies 

�89 (z ,+ 2.i)_< o~_< �89 (~, + ~+1) ( i=  1, 2 . . . .  ,8)  
or (1.16) 

�89 (u, + v,+D < w < �89 (x~+l + 2.~+ D ( i = 0 ,  1 . . . . .  7); 

and every co satis/ying O~o<_e% lies in one o/ the intervals (1.16). 

The  result  (1.15) reduces of course to (1.7) and ( 1 . 8 ) w h e n  w = 0  and e o = l  

respect ively.  In  fact ,  since �89 ( x o + v l ) = 0 ,  (1.12) gives z (O)=v l= l /V5 ;  and, since 

�89 (u e + 37) = 2 / V 5  < 1 < 1_ (x 7 + 2.7) = �89 ~V2 V5/ '  

(1.12) gives g (1) = r7 - 1 = (3 - V5)/V5. 
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2. The first step in the proof of these results is to reduce the problem to one 

in the theory of quadratic forms, by means of the following lemma. 

Let Q be the quadratic [orm associated with B, and suppose that L e m r n a  t .  

D~O. Then 

M (B) = �89 V~D~ l'b" I V~D~ I - w  , (2.1)  

where b runs through the coe//icients o] x y in the ]orms a x 2 + b x y + c y~ equivalent to Q. 

Proof. If a xU+bxy+ey  ~ is any form equivalent to Q, then B is equivalent to 

the form a x z + � 8 9 1 8 9  [cf. (1.6)], which assumes the value 

�89 (b - 0) for (x, y, z, t) = (1, 0, 0, 1). Conversely, if B (p, q, r, s) = t3, where p s - q r = __+ 1, 

t h e n ,  applying the first of the transformations (1.3), we obtain an equivalent form 

B' for which B ' ( 1 , 0 , 0 , 1 ) = f l .  Hence f l=�89 where a x ~ + b x y + c y ~ = Q ' ( x , y ) i s  

the quadratic form associated with B' and which is therefore equivalent to Q. 

Thus all numbers represented by B are of the form fl= �89 (b -0 ) ,  whence 

+ I M ( B ) = � 8 9 1 8 9  V ~ - m  �9 

Proof of Theorem 1. Let ao be any value assumed by the associated quadratic 

form Q (x, y) for coprime integers x, y. Then there exists a form ~v (x, y)=aoX2+ 

+boxy+ Coy ~, say, equivalent to Q. Applying the substitution x - + x + p y  (p integral), 

we see that  Q is equivalent to the form ao x 2 + (bo + 2 p ao) x y + (ao p* + bop + Co) y2 for 

any integer p. Given any a), we can now chose p so that  

bo + 2 p_ a o _ o~ [ a~ [ 

VIDI <- V~I'  
since ao~0  by our hypothesis that  Q does not represent zero. Lemma 1 now gives 

M (B) _< �89 ]ao]. (2.2) 

Suppose now that  D > 0. Then, by a well-known theorem of Markoff, we can 

choose a 0 so that  

l aol < ' (2.3) 

where the equality sign is necessary if and only if Q is equivalent to a multiple of 

x ~ + x y - y  2. The required result (1.9) now follows at once from (2.2) and (2.3). 

If equality holds in (1.9), then equality must hold in (2.3), and Q is equivalent 

to a multiple of x ~ + x y - y  ~. For this form, b/V-D takes the values ( 2 k + l ) / V 5  
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(k=O, +_ 1, •  and these values only. Hence, b y  (2.1), equality holds in (1.9) 

if and only if Q - a ( x 2 + x y - y  2) and 

1.b. V5 . . . .  

i.e. e o = 2 k / V 5  for some integer k. This completes the proof of Theorem 1 (i). 

Suppose next that  D ~ 0. Then we can choose a o so that  

, a 0 . < V ~ ,  (2.4) 

where the equality sign is necessary if and only if Q is equivalent to a multiple of 

x ~ + x y + y  ~. (1.10) now follows from (2.2), (2.4). The forms for which equality occurs 

in (1.10) may be established by an argument precisely similar to that  used above. 

3. We now show that  Theorem 2 may be deduced from Lemma 1 and the 

following result, which wlll be proved in w 4. (The notation is t h a t  of w 1, (1.11) 

and (1.14)). 

L e m m a  2. (i) Suppose that Q (x, y) is a non-zero quadratic/orm o/ discriminant 

D > O .  Then, /or each i = 1 , 2  . . . . .  8, there exists a /orm q a ( x , y ) = a x ~ + b x y + c y  ~ 

equivalent to Q / o r  which 
b 

~ <- V D  <- v~. (3.1) 

(if) I /  Q is equivalent to a multiple o/ Q~ /or some i = O, 1 , . . . ,  8, then b/V1) 

assumes no value lying strictly between u~ and v~+l. The equality sign is there/ore nec- 

essary on the le/t O/ (3.1) when Q is equivalent to a multiple o/ Q~, and on the right 

when Q is equivalent to a multiple o/ Qt-~. 

Deduction of Theorem 2. (i) By Lemma 2, given any eo we can satisfy 

for each i = 1, 2 . . . .  ,8  with an appropriate ~0 (x, y) = a x ~ + b x y + c y~ equivalent to Q; i.e. 

I;I -co <v~-o~ when ~o_<�89 (3.2) 

( i = 1 ,  2 . . . . .  s ) .  

~ - ~ o  < o ~ - ~  when o~>_�89 (3..3) 
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Hence, from the definition (1.12), (1.13) of g (w), we can satisfy 

- to -< x (to) 3,4) 

for any to with 0 _< to _< to 0 . The required result (1.15) now follows from (2.1) and (3.4). 

(ii) Suppose tha t  Q is equivalent to a multiple of Q~ for some i = 0 ,  ] . . . . .  8. 

Then, by Lemma 2 (ii), 

1;1 - t o  > min {z~+l-to, to-do} 

for all b and to satisfying ~_<to_<z~+x, so that ,  in particular,  

- co  >_v~+l-to when �89189 ( i = 0 , 1 , . . . , 7 ) ,  (3.5) 

- t o  _ _ t o - ~  when �89189 ( i = 1 , 2  . . . .  ,8) .  (3.6) 

Comparing (3.5), (3.6) with the definition of Z(to) (replacing i by  i + 1  in (1.12)), we 

see tha t  when Q is equivalent to a multiple of Q~ for some i = 0 ,  i, . . . ,  8 we have 

I; ol  ,o, 
for all b and all to lying in the intervals specified in (1.16). Lemma 1 now gives 

M (B)  >_ .I 1 / ~  Z (to), 

and so equality holds in (1.15). 

g. This and the following two sections will be devoted to the proof of Lemma 2. 

Since Q does not represent zero, it is equivalent to a form ~v (x, y ) =  a x e +  b x y  + cy  ~ 

for which 

0<VD-b<21~I  < 1/~§ (4.1) 

and which we call a reduced fo rmJ  The reduced forms equivalent to Q may  be 

ordered as an infinite chain 

- "  " ,  ( t 9 - 2 ,  ( P - I ,  ~iO0, (ji01, ~02 . . . .  
where 

% = ~ o , ( x , y ) - - ( - l ) ' - ~ a ,  x 2 + b ~ x y + ( - 1 ) ~ a , + t y  2 (v=0 ,  •  + 2 ,  . . . ) ,  (4.2) 

and all the coefficients a~, b~ may  be assumed positive. Each f ,  is t ransformed into 

its right neighbour ~ + ~  by  the substitution ( _  1)~k " , 

1 For these results on reduced forms, see I. Schur, loc. cir., 214--216. 

17-523803 Acta mathematica. 88. Irnprlme 16 21 novembre 1952 
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is a positive integer. 

whence 

k, by+b~+~ (4.3) 
2 av+l 

We set 

V ~  + b, V~  - b~ 
r~ - -  , s~ , (4.4) 

2 a~+l 2 a~+l 

V ~  
a~ =r~s~, b~ - r ~ - s , ,  - r ~ + s , .  (4.5) 

av+ l  av+l av+l 

In *he usual notation for simple continued fractions, we then have 

r, = (k,, k,+t, k~+2 . . . .  ), s, = (0, k,_~, k,_2 . . . .  ). (4.6) 

We also write 
r~ = rv --  kv = (0,  k v + l ,  ]~v+2 . . . .  ), (4 :7 )  

so that  
0 < r ' ,  s, < 1. (4.8) 

We denote by (K) the infinite series of positive integers 

. . . .  ]~-2, k - l ,  k0,  k l ,  ]~2, . . .  �9 

(K) is then determined by Q, and, conversely, (K) determines to within an arbi t rary 

multiple the class of forms equivalent to Q. 

Finally we define the numbers T, (p) for all integral v and p by 

T, (p) = b , -2pa~+i  k ~ + r ' - s ~ - 2 p  (4.9) 
VD L + r: + s, ' 

where the identi ty of the last two expressions follows from (4.5) and (4.7). The con- 

nection between the numbers T~ (p) and Lemma 2 is shown by the following result: 

L e m m a  3. (i) For any integers v, p, there exists a /orm q~ (x, y) = a x 2 + b x y + c y~ 

equivalent to Q / o r  which 

b = T,(p) .  (4.10) 

(ii) Suppose that Q is equivalent to a ]orm q~ (x, y) /or which 

Ibl _<V2. 
V ~  

(4.11) 

Then (4.10) holds /or some integers v, p. 

Proof. (i) Q is equivalent  to the reduced form % for any v, and so also to 

q J ( x , y ) = q ~ , ( x , ( - 1 ) ~ p x + y )  for any integer p. This gives b=b~-2pa~+l ,  whence 
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b/V-D = T~ (p), by  (4.9). Since the forms a x 2 __+ b x y + c y~ are equivalent ,  we m a y  take  

ei ther  sign in (4.10). 

(ii) I f  (4.11) holds for some q ~ = a x 2 + b x y + c y  2, then  

whence 

b 2 4ac 
=1+-B-_<2, 

]acl<_lD. 

B y  in terchanging x and y, if necessary,  we m a y  take  la[>lc[,  so  t h a t  I c l < � 8 9  

Apply ing  a t r ans format ion  y--> q x + y, we obta in  an equivalent  form ~ '  - a' x 2 + b' x y + c yZ 

for which b ' = b + 2 q c .  We choose the integer  q so t h a t  

O<<_ V 1 ) - b -  2qc < 2[cl, 
whence 

0 <V-b-b' <21el, 

since b ' ~ V D  b y  our hypothes is  t h a t  Q is a non-zero form. Since 2 ]e [_<VD,  this 

gives b " >  0, and so 

Now this is just  the condition (4.1) t h a t  ~v' be a reduced form. Hence  ~o'=~v~, 

c = ( -  1)~a~+l, b'=b~ for some v, a n d b = b ' - 2 q c = b ~ - 2 ( - 1 ) ~ q a ~ + l .  Thusb/V1)=T~(p)  

for p = ( - 1)~ q. 

F r o m  the definit ions (1.11), we see t h a t  0 ~ ,  v~_<V2 ( i = 1 ,  2 . . . . .  8), so tha t ,  

b y  L e m m a  3, any  value of b/l~1) sat isfying (3.1) mus t  be of the  fo rm IT (v)l for 

some integers v, p. Thus L e m m a  2 (i) is equivalent  to the  asser t ion tha t ,  for any  

sequence (K) and any  i =  1, 2 . . . .  , 8, we can find a T~ (p) sat isfying 

x~ < I T ~  ( p ) [ <  r , .  (4.12) 

We now establish some general  results  (Lemmas  4, 5, 6, 7) which will help to 

s implify la ter  calculations. 

L e m m a  4. (i) I /  n is a positive integer, and k~ > n ]or any v, then tl~ere exists 

a T~(p) lying in any interval o/ length 2 ( n + l ) / ( n 2 + n + 2 ) .  

(ii) I~ k~>_5 /or any u, there exists a T~ (p) lying in any interval o/ length 3/8,  

and so in any o] the intervals (~,  v~) /or i= 1, 2, . . . ,  7. 

Proof .  (i) We have  
2 

T ~ ( p - 1 ) -  T~(p)= k~+r" +s~ 
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If now any k, >_ n +  1, this gives, using also (4.8), 

2 < 2 ( n + 1 )  
0 <  T , ( p -  1 ) - T ,  (p) < ~ _  n 2 + n + 2 -  

Otherwise we have max {k,}=n;  then, for some v, k~=n, ]Cv_l<_n, k,+l<_n, so that  

r~, s , >  l / (n+ l) and 
2 ( n + 1 )  

0 < T, ( p - 1 ) -  T~ (p) < n ~ + n + 2  

Par t  (i) of the lemma follows immediately. 

(if) The first s tatement of (if) is merely the case n =  5 of (i); and it  is easily 

verified that,  for i= l ,  2 , . . . ,  7, we have 

T, - u, _> % - x5 = 0"399 . "  > ~. 

Lemma 5. 

(if) I /  k, >_ 3, 

(i) For all v, 
k~-  1 

Ir,(o)l, IT,(L)I > L+ 1" 

Proof.  (i) We have 

]G, - -  1 
[T,O)I, IT,(L- 1)1 < 

k ,+  l 

IT,(O)I= L + / - s ,  
�9 k ,+r '+s , '  

and this is an increasing function of r: and a decreasing function of s~, since 

k,_> 1 >  r; ,  s, > 0. Hence 
k, - 1 

IT,(o)I> kZ+l' 
and a similar argument shows that  

[ T , ( L ) ] =  L - / + s ,  L - 1  
k , + r ' + s , > k , + l  

(ii) We have, for k~ >_ 3, 

IT,(1)[= L + / - s , - 2  

and this is an increasing function of r~' and a decreasing function of s~ for 0 < r~', 

s~ < 1. Hence 
L + 1 - 2  L - 1  

I / ' , ( 1 ) 1 <  - -  k , + l  k , + l '  
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and a similar argument shows that  

lT,(k _ l ) l=L-r;  +s,-2 L -1  
k ~ + r ' + s ,  < ~ + 1  

L e m m a  6.  

i.e. 

263 

(i) Suppose that 0 < v < 1 and that IT,  (p)] > 3/or  p = 0 and p = lc,. Then 

r' ,  s, < _ _ . k "  (1 - 3) (4.13)  
23 

(ii) Suppose that 0 < :* < 1, k,  >_ 3, and [ T ,  (p) I < :*/or p = 1 and p = k,  - 1. Then 

r',, s,  > L (1 - : * )  - 2 (4.14) 
2: ,  

Proof. (i) We have 

k, + r~' - s~ ' s~ 
~ =  >3, I~v(L)l k'-r~+~>3, I T,(0)I L+r,+s, L+r~+ 

( 1 - 3 ) / >  (1+ 3) s , -  k, ( 1 -  3), 

( l - v )  sv > (1 +3)  r ' -  k, ( 1 -  3). 

From these two inequalities we derive 

(1 - 3)* r: > (1 + 3) {(1 + 3) r : -  kv (1 - 3)} - k, (1 - 3)*, 
o r  

k, ( 1 -  v) > 2 3 / .  

This establishes (4.13) for r:; and, from the symmetry in r:, s, of the above in- 

equalities, the same result holds for s,. 

(ii) For k , _  3, we have 

k , + r ~ - s , - 2  
IT , ( I ) ] -  : - - - 7 - -  <~ ,  [T , (k , -1) l  

k, + r, + sv 
i . e .  

( l = n )  r" < ( l + ~ ) s , + 2 - k , ( 1 - n ) ,  

( 1 - u ) s ,  < (l  +:*)r" + 2 - k , ( 1 - x ) :  

whence we derive (4.14) precisely as above. 

L e m m a  7. I /  max {k,} =2 ,  there exists a T , ( p )  satis/yina 

1 
0"527 < IT, (p)[ < ~ = 0"707 . . .  

Proof. Since 1 < k ,<  2 for all v, we have 

r ' ,  s,<_(O, 1, 2, 1, 2, . . . ) = V 3 - 1 ,  

r:, s,_> (0, 2, 1, 2, 1, . . . ) = � 8 9  1). 

t 
k,  - r, + s, - 2 

ICy + r" + Sv 

(4.15) 
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Take now any v with k~ = 2. 

2+r'-s~ 
IT~(o)I=  2 + r ' + s ~  

and similarly 

Then 

2 + �89 (V3 - 1) - (V3 - 1) _ 5 - V 3  

- 2 + 1 ( V ~ -  1 ) + ( V ~ -  1) l + a V 3  

I T~ (2)] > 0"527. 

0"527, 

Hence if (4.15)is not satisfied, we must have [T~(0)I, ]T~(2)J> l/V2. Lemma 6 (i) 

(with k~=2, z=l/V2) now shows that  

r:, s~ < V2 - 1 = (0, 2). (4.16) 

This implies in particular that  k,_l _> 2, k,+~ > 2, whence k~_l = k v + l  = 2. Repeating the 

argument with v replaced by v - 1  and v+  1, and so on, we see that  k,=2 for all v. 

But  then r~' = s~ = (0, 2), contradicting (4.16); this contradiction establishes the lemma. 

5. We now proceed to a systematic discussion of the inequality (3.1) or, what 

is the same thing, (4.12), for i= 1, 2 . . . . .  7. (The case i = 8  will be treated in the 

following section.) 

By Lemma 4 (ii), we may suppose throughout that  k~<4 for all v. We note 

also that  if every k ,=  1, then r:=s~= (0, ~)= �89 (V5-1), and so 

Tv (p) = 1 - 2 p  1 3 
V5 ' 1T~(0) ]=~-~=0"447. . . ;  IT~(2)]=~; 5. (5.1) 

Case I: i=1. Here (4.12) is 

1 
~ l = o _ ~ ] T ( v ) l _ ~ l =  V5 = 0 4 4 7  . . .  (5.2) 

If  any k, > 2, then, by Lemma 4 (i), there exists a T, (p) in any interval of length 

3/4, and so in the interval ( - l / V 5 ,  l /V5) ;  thus (5.2) is certainly satisfied. Other- 

wise every k ,=  1, and then, by (5.1), (5.2) holds with p = 0 .  

Case II: i = 2 .  Here (4.12) is 

1 1 
~2 = ~ = 0 2 4 2  _< I r~(~)l_< ~2 = ~ = 0"707. . .  

[17 [ 2  
(5.3) 

If  max {/~} = 1, (5.1) shows that  (5.3) is satisfied with p = 0 ;  if max {k,} =2 ,  Lemma 7 

gives the result; and if any k~_>4, Lemma 4 (i) with n = 4  shows that  there is a 

T~(~) in any interval of length 5/11=0"45 . . . .  and so in the interval (~2, 32). 
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We m a y  therefore suppose now tha t  max  {]~} = 3. Take any ~ with k~ = 3. Then,  

by  L e m m a  5, [T~(0)[, I T ~ ( 3 ) l > � 8 9  I T ~ ( 1 ) I , [ T , ( 2 ) I < � 8 9  Lemma  6 (with 

k~ = 3, ~ = ~2 = 1/] /2 ,  ~ = ~ = 1/Vi7-) then  gives 

r', s~<~(1/2-1)=(0,~1,  1, 1, 1, 1, 3), 

/ ,  ~ > �89 W i g -  3) = (0, 1, 1, 3). (5.4) 

From these two inequalit ies for r~'= (0, k~+~, k~+2,/c~+~, . . . ) ,  we see at  once tha t  

k,,+l=k~+2=l, 1<k~+3_<3. Suppose now tha t  /c~+a~3, so t ha t  k~+a<2. Then  

k~+2 = 1, r;+2 = (0, k~+~, . . . ) ,  s~+~ = (0, 1, 3, k~_~ . . . .  ), 

and so 

H e n c e  

( 0 , 3 ) = � 8 9  ( 0 , 1 , 3 ) = ~ < s ~ + 2 < ( 0 , 1 , 4 ) - 4  

1-r'~+~ + s~+22> 1 -  1+ ~ _ 3 
I T ~ + ~ ( 1 ) l -  l + / + ~ + s , + ~  1 + 1 + ~  > ~ '  

IT~+~(1)] < 1 - 1 + i  11 
1 + ~ + ~  16 <~2, 

and ( 5 . 3 ) i s  satisfied by  ]T~+2(1) I. Thus if (5.3) is not  satisfied, the only remaining 

possibility is t ha t  k~+~=3. Bu t  then  we m a y  repeat  the above argument ,  with 

replaced by  v + 3 ,  to  show tha t  /~+4=k~+5=1, k~+6=3. In  this way we see t ha t  
te 4b 

r" = (0, 1, 1, 3, 1, 1, 3 . . . .  ) = (0, 1, 1, 3), which contradicts  (5.4). 

Case I I I :  i = 3 .  Here  (4.12) is 

1 3 
~ = . ~ = :  = 0 -25S l  . .  _< I T~ (~)f_< ~ = 0 - 7 2 7 6 . . .  

V ~  V15 
(5.5)  

The initial a rgument  of case I I  shows tha t  we need consider only sequences (K) for 

which max  {k~} = 3. Then, taking any  v with k~=3,  we mus t  have 

IT~(0)l,  t T ~ ( 3 ) r > ~ ;  [ r , ( I ) l ,  f T ~ ( 2 ) l < ~ ;  

if (5.5) is not  satisfied. Lemma  6 (with k~ = 3, ~ =  ~a = 3 / V ~ ,  u = za = 1 / W ~ )  now gives 

r: ,  s~ < �89 (V i7 - -  3) = (0, 1, 1, 3), (5.6) 

r:, 8~ > ~ W i g -  3) = (0, ~, ~). (5.7) 

From (5.7) we have r~' = (0, k~+l . . . .  ) > (0, 2, . . . ) ,  whence k~+l _< 2. We distinguish the  

two cases k~+l= 1 and k~+i= 2. 
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Suppose first tha t  k v + l  = 1. Then, by (5.6), 

r: = (0, 1, k~+2, k~+a,. . .)  < (0, 1, 1, 3, 1 . . . .  ). 

Comparing successive partial quotients in this inequality, we find in turn:  k,+2_<1, 

whence kv+2 = 1; k~+3 > 3, whence k~+a = 3; k,+4_< 1, whence k,+4 = 1. But  now we may 

repeat this argument with v replaced by u +3 ,  since k~+3=3, k~+~=l, and deduce 

tha t  k~+5 = 1, k~+6 = 3, k~+7 = 1. Thus, repeating the argument indefinitely, we find tha t  

r: = (0, 1, 1, 3), which contradicts (5.6). 

Suppose next  tha t  k~+x=2. By (5.7), 

r: = (0, 2, k~+2, k~+~ . . . .  ) > (0, 2, 3, 2 . . . .  ), 

whence kv+2>3, and so kv+2=3; and then k~+~<2. Also, k ~ a ~ l ,  since otherwisewe 

should have /~+2 = 3, k~+8= 1, and so should arrive at a contradiction as in the pre- 

ceding paragraph. Thus k~+~=2. From k~=3, k~+1=2, we have therefore deduced 

tha t  k~+2=3, k~+8=2. Repeating this argument indefinitely, with v replaced by 

v+  2, v + 4  . . . . .  we find that  r~'= (0, 2, 3), which contradicts (5.7). 

Case IV." i = 4 .  Here (4.12) is 

1 3 
~4 = ~ =0"2773. . .  < [T,,(p)[_< ~ -  V-I~ - 0 7 7 4 5 . . .  (5.8) 

The initial argument of case II  applies again to show tha t  we need consider only 

sequences (K) for which max {k~}=3. And then, taking any v with k ,=3 ,  we 

must  have 
IT~(0)I, IT~(3)I>v~;  IT~(1) l , [T~(2) [<u4 ;  

if (5.8) is not satisfied. Lemma 6 (with k~ = 3, v = v4 = 3/V1-5, x = ~4 = 1 /1 /~ )  now gives 

r~', s~ < �89 (]/1-5- 3) = (0, 2, 3), (5.9) 

r  ~ > �89 (VYS-  3) = (0, ~). (5.10) 

From (5.9), ' r ' =  (0, k~+l , . . . )  < (0, 2 . . . .  ), and so k~+l >_ 2. We distinguish the two 

cases k~+l = 2 and k~+l = 3. 

Suppose first that  k~+1 =3 .  Then, by (5.10), 

r" = (0, 3, k,,§ . . . .  ) > (0, 3, 3 . . . .  ), 

whence k~+2_> 3, k~+2 = 3. We may now repeat this argument with v replaced by v + 1, 

since k~+l=k,+2=3, and deduce that  k ~3 =  3. Repeating the argument indefinitely, 

we see that  r~= (0, 3), which contradicts (5.10). 
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Suppose next  t ha t  k~+l = 2. Then, by  L e m m a  5 (i), 

[T~+I(0)[ ,  I~v+l (2)] > ~ > ~4, 

and so, if (5.8) is not  satisfied, we require 

I n+~ (o) 1, In+,  (2) 1 > ~,. 

Lemma  6 (i) (with k~+1=2, ~=v4=3/V]-5) now gives 

' ( V ~  Tv+l, 8~+1 < ,~ -- 3) = (0, 3, 2), 
whence 

r~ - - - w -  > (0, 2, 3), 
lru+l 2 -~ rv+l 

which contradicts  (5.9). 

Case V: i = 5 .  Here  (4.12) is 

V~ 3 
x 5 = ~ -  = 0"4330..- -<IT~ (P)l-< ~5 = V ~  = 0.8Z20. . .  (5.11) 

I f  max  {k~}=l,  (5.11) is satisfied with p = 0 ,  by  (5.1); and if max  {k~}=2, Lemma  7 

gives the result.  We may  therefore  confine ourselves to sequences ( K ) f o r  which 

max  {k,} = 3  or 4. 

(a) Suppose t h a t  m a x  {k~} = 3 .  Take any  v with k , = 3 .  Then, by  L e m m a  5 (i), 

I T~(0)J, IT,(3)[ > �89 > zs,  and so if (5.11) is not  satisfied we mus t  have 

I:r,(o)l, [T~(3)I > ~5. 

Lemma  6 (i) (with k~ = 3, ~ = r  5 = 3/V1--3) now gives 

/ ,  sv < �89 ( V i S -  3) = (0, ~). (5.12) 

Thus r,' = (0, k,+l . . . .  ) < (0, 3 . . . .  ), whence k,+l _> 3, k,+l = 3. Repea t ing  the a rgument  

with v replaced by  v + 1, v + 2, , . . ,  we see t h a t  r~' = (0, 3), which contradicts  (5.12)i 

(b) Suppose t ha t  max  {4} = 4 .  Take  any  v with k,=4. Then, by  L emma  5, 

hence, if (5.11) is not  satisfied, we mus t  have 

IT,(o)l ,  I T ~ ( 4 ) I > ~ ;  In (1 ) l ,  IT~(3)I < ~ .  

Lemma 6 (with k~ = 4, v = v5 = 3 / V ~ ,  u = x5 = V3/4) now gives 

/ ,  ~ < i ( 1 / i 5 -  3) = (0, 2, 2, 10 . . . .  ), (5.13) 

r : ,  s, > ~ (4V3 - 6) = (0, 3,~).  (5.14) 

F rom these two inequalit ies for r : ,  we see t ha t  2 ~k~+~_< 3. 
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Suppose now that  ]c~+1=2. Then (5.13) gives 

r" = (o, 2, ~.+~, k,+~,. . .)  < (o, 2, 2, lO, . . . ) ,  

whence k~+2_<2. Also, if k ,+2-2 ,  this last inequality gives k,+3~ 10, which is im- 

possible. Hence k~+2= 1. We therefore have 

ku+ l  = 2 ,  ?'vt+l = (0 ,  1 . . . .  ), S~+I = (0, 4 . . . .  ), 
so that  

But  then 
(0, 2) = ~ < ?'vr+l <~ (0, 1, 5 )_5 .  -- ~, (0, 5) = ~ < S~+, < (0, 4)-- �88 

ITv+x(2)l=2-r:+i+s~+~> 
2 + r'+i + s~+l 

2 - ~ + I _ 4 1  
0"45- �9 �9 ~ 5 ,  

2 ~ 91 ~ 6 ~ 5  

~ - � 8 9 1 8 8  7 =0"63-.  �9 ~Ts,  ]T,+~(2)]< T �89188  11 

and (5.11)is  satisfied by  IT~+~(2)]. 

Thus if (5.11) is not satisfied, we must have k~+~=3. 

r: = (0, 3, k,+z . . . .  ) > (0, 3, 4 , . . . ) ,  

Then, by (5.14), 

whence k~+2 >_ 4, k~+2 = 4. We may now repeat the above argument with v replaced by 

v+  2, and deduce that  k~+3= 3, }~+4 = 4. Repeating the argument indefinitely, we see 

that  r~ = (0, 3, 4), which contradicts (5.14). 

Case VI: i =  6. Here (4.12) is 

1 ;/~ 
u 6 = ] / 5 - 0 " 4 4 7 < ] T ~ ( P ) ] - < T  6 = - 2  = 0 8 6 6  (5.15) 

If max {k~}=l, (5.1) shows that  (5.15) is satisfied with p=O; and if max {kv}=2, 

Lemma 7 gives the result. We need therefore consider only sequences (K) fo r  which 

max {k~}=3 or 4. 

If now k s = 3  for some ~e, Lemma 5 (i) gives 

IT.(o)l ,  iT.(3)[ > ~ > ~ ,  

and so, if (5.15) is not satisfied, we must have 

I r , (o ) l ,  [T.(3)l > ~6. 

Lemma 6 (i) (with ku= 3, v=v6=V3/2) then shows that  

f r~, st < �89 (2 V 3 -  3) = (0, 4, 3), (5.16) 

whence k~+l_> 4, and so k~+l = 4. 
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We m a y  therefore  suppose t ha t  max  {k~}=4. Take any  v with k~=4.  Then,  

by  Lemma  5, 

I T , ( 0 ) I , ] T ~ ( 4 ) [ > ~ - > x 6 ;  IT , (1 ) l ,  l r ~ ( 3 ) l < ~ < v 6 ;  

and so, if (5.15) is not  satisfied, we require 

IT~(O)I, IT~(4)I>~; IT~(1)I, IT~(3)I<~. 

Lemma  6 (with k~ = 4, v = 36 = V3/2, ~ = :r = l / V 5 )  now gives 

45 4t 

r s, < .~ (4 V 3 -  6) = (0, 3, 4), (5.17) 
45 

r', s~ > V ~ -  2 = (0, 4). (5.18) 

From these two inequali t ies for r~', we see t h a t  3 _<k,+l < 4 .  We dist inguish the two 

eases k ,+1=3 and k ,+1=4.  

Suppose first  t ha t  k ,+1=4.  Then  (5.18) gives 

r~' = (0, 4, k~+2 . . . .  ) > (0, 4, 4 . . . .  ), 

whence k~+2_> 4, k~+2 = 4. Repea t ing  the a rgument  with v replaced by  v + 1, v + 2 . . . .  , 
! 45 

we see t h a t  r,=(O, 4), which contradicts  (5.18). 

Suppose nex t  t h a t  k,+l = 3. Then  (5.16), with # = v + 1, gives 

r,:+~ = (0, k,+2, k~+3 . . . .  ) < (0, 4, 3 . . . .  ), 

whence k~+2>_4, k ,+2=4;  k~+~-<3, whence k ,+8=3 (since, as was shown above, any  

e lement  4 mus t  be followed by  3 or 4). Repea t ing  the a rgument  with v replaced by  
t 

v +  2, v + 4 . . . . .  we see t h a t  r~= (0, ~, 4), which contradicts  (5.17). 

Case VII: i = 7 .  Here  (4.12) is 

1 3 
~7 = ~ = 0"707. . .  < ] T~ (p)] -< v7 = V5 = 1.341.-- (5.19) 

If  any  k~> 3, Lemma  4 shows t h a t  there  exists a T ,@)  in any  in terva l  of length 

4 / 7 = 0 " 5 7 . . .  < v T - z ~ ,  so t ha t  (5.19) is cer ta in ly  satisfied. Also, if eve ry  k , =  1, (5.1) 

gives I T,(2)I=3/V5=.~ 7. We need therefore  consider only sequences (K) for which 

m a x  {k,} = 2. 

Take any  v wi th  k, = 2. Then  

' 2 - r : + s , <  1 < ~7; (5.20) 2 + r ~ - s ' < l < v T ;  Ir , (2 ) l - -  2 + r  Ir~(o)l= z+r 

4 -  r" + s, > 1 > ~ .  (5.21) IT~(3)I= 2+r 



270 E.S.  Barnes. 

Suppose now that  (5.19) is not satisfied. Then, by (5.20), I T~(0)[, [T~(2) I <u7 ,  

whence (by the analysis of Lemma 6 (i), reversing the inequality sign throughout) 

r'~, s~ > k~ (1 - UT! = V2 - 1 = (0, 2). (5.22) 
2 g7 

If k~+l = 2, (5.22) gives 
r: = (0, 2, k~+2 . . . .  ) > (0, 2, 2 . . . .  ), 

whence k,+2___ 2, k,+2 = 2. Repeating the argument with v replaced by v + 1, v + 2 . . . . .  

we see that  r~' = (0, 2), which contradicts (5.22). Similarly, if k,_l = 2, we find s, = (0, 2), 

again contradicting (5.22). Thus kv_1r k~+~2 ,  and so k ,_~=k,+~=l ,  

r '=(0 ,  1 . . . .  ) > � 8 9  s~=(0, 1 . . . .  ) > � 8 9  

But then, since ITs(3)[ is a decreasing function of r: and of s~, 

IT,(3)[ < 4 - � 8 9 1 8 9  4 3 
2+�89 

and so, by (5.21), (5.19) is satisfied by IT~(3) I. 

This completes the proof of Lemma 2 (i) for i =  1, 2 . . . . .  7. Before proceeding 

to the case i = 8 ,  we establish the assertion made in Lemma 2 (ii) for i = 0 ,  1 . . . . .  7; 

namely that  when Q is equivalent to a multiple of Q~, b / l / D  assumes no value lying 

strictly between u~ and $i+1. 

Since the numbers ui, ~ satisfy -1/V5<__:~, v~ <_V2, it  suffices, after Lemma 3, 

to consider only the values of T ~ ( p ) = ( b ~ - 2 p a ~ + l ) / V L )  corresponding to the reduced 

forms q, equivalent to each Q~. As is easily verified, each of the forms Qt is reduced, 

and so may be taken to be q~l(x, y ) = a l x ~ + b l x y - a z y  ~. 

(i) i = 0 or 6. Q0 = Q6 = x2 + x y -  y2, and so 

~vl = x! + x y -  y ~, q~2 = - x~ § x y + y 2, 

these being the only distinct elements of the chain {~}. Hence 

1 - 2 ~  
T~ ( v ) :  r~(v) = V ~ '  

and the only values of ] T ~ ( p ) I < V 2  are: 1/1/5 ~o=~1=~6, 3 / ] /5=~7.  

(ii) i = 1  or 7. Q I = Q T = x ~ + 2 x y - y ~ ,  and so 

r = X2 + 2 x y - y 2, r = - x2 + 2 x y + y 2, 

'these being the only distinct elements of the chain {~v,}. Hence 
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1 - p  
T1 (P)= T~ (p)= ~ - ,  

and the only values of IT~(p)I<V2 are: 0=~1; ]/V2=Te=~:7; V2=zs. 

(iii) i = 2. Q2 = 2 x 2 + 3 x y -  y2, and so 

91=2x2+3xy-y  2, 9 z=-x3+3xy+2y  2, 93=2x3+xy-2y2; 

94, 95, 96a re  derived from these by changing the signs of the extreme coefficients, 

and these are the only distinct elements of the chain {9~}. Hence 

3 - 2 p  
T1 (P) = T4 (P) = V ~ '  

3 - 4 p  
T3(p)=Ts(P)= V~ ' 

T 3  = = 1 - 4 p 

and the only values of [T~(p)[<~3=3/V~ are: ]/V1-7=~te, 3/V]7=7:3. 

(iv) i=3. Qa=3x~+6xy-2y 2, and so 

91=3x 3+6xy-2y3, 92= - 2 x  2+6xy+3y2, 

these being the only distinct elements of the chain {9~}. Hence 

3 - 2 p  3 - 3 p  

and the only values of IT~(p)l<_v4=3/]/~ are: 0, 1/V~=~:3, 3 /V~=v  4. 

(v) i=4 .  Q t = x 2 + 3 x y - y g ,  and so 

q~1=x2 + 3 x y - y  2, q~2= -x2 + 3xy+y ~, 

these being the only distinct elements of the chain {9~}- Hence 

3 - 2 p  
TI (P) = T3 (P) VY5 ' 

and the only values of [T~(p)[<Ts=3/]/~ are: 1/V]-3=~4, 3 / ] / ~ = ~ 5 .  

(vi) i=5. Qs=4x2+12xy-3y 3, and so 

9 1 = 4 x 3 + 1 2 x y - 3 y  3, 9 2 = ~ - 3 x 2 + ] 2 x y + 4 y  3, 
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these being the only distinct elements of the chain {q,}. Hence 

6 - 3 p  3 - 2 p  

and the only values of ]T~(p)[<%=V-3/2 are: 0, 1/2V3, ] / 3 /4 =x 5 ,  V3/2=vs. 
This completes the proof of Lemma 2 for i_< 7. 

6, For the case i =  8 of Lemma 2, we must first consider the inequality 

5 
= 1"073.. �9 < I f ,  (p)[_< Vs = V2 = 1"414-. �9 (6.1) 

ns 4 V 2  - 1 

We note first tha t  we need consider only sequences (K) with k,_<5 for all v; for if 

any k~___6, Lemma 4 (i) shows that  there exists a T,(p) lying in any interval of 

length 7 /22=0"318. . .  < ~ s - x s ,  so tha t  (6.1) may certainly be satisfied. 

(i) If  max {k,}=l ,  then by (5.1), (6.1) is satisfied with p=2. 

(ii) If max {k,} = 2, take any v with k~= 2. Then 

r,,s,_<(O, 1, = V 3 - 1 ,  
and so 

4 2 
I T , ( - 1 ) 1 ,  I r , ( 3 ) l >  - 2 + 2 ( V 3 - 1 )  V3 = 1"15"'" >gs"  

If  now k,-1, k,+l are not both equal to 2, we may suppose, by symmetry, tha t  

k~+l = 1. Then 
r'=(0, 1, . . . ) >  �89 s , > 0 ,  

whence 

IT,(3) I < 4 - ~  7 
2+~ - 5 < V2, 

and (6.1) is satisfied by /",(3). 

Otherwise we must have k,-1 =k,+i = 2 whenever k, = 2. This implies-that k , = 2  

for all v, and so 

r : = s , = ( 0 , ~ ) = V 2 - 1 ,  T,(-1)=V2=v s. 

(iii) If max {k~} = 3, take any v with k,= 3. Then 

and so 

~,, ,,_< (o, 1, ~) = �89 (V21 - 3), 

5 5 

3+(~-3) VSf I t , ( - ~ ) I ,  I T,(4)I > = 1 '09 . . .  > a s .  
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If  now k~_l, k~+~ are not  bo th  equal to  3, we m a y  suppose, by  symmet ry ,  t ha t  

k~+L_< 2, k~-l_< 3. Then  
~/'vt = (0, k~+l . . . .  ) > i ,  8 v > l ,  

whence 

IT~(4)]< 5+~-$ 
3+I+~ 

= 59 = 1"37.-. < l/2, 
43 

and (6.1) is satisfied by  T~ (4). 

Otherwise we must  have k,_, = k,+~ = 3 whenever  k , =  3. This impl ies  tha t  k~= 3 

for all v, and so 

r; = s, = (0, 3) = } (V1-3-- 3), T,  ( - 1) - 5 1"38... 
Vi-~- 

(iv) If  max  {k~}=4, take any  v with k~=4.  Then 

/ ,  s,>~,  
6 1 1 + ~ - . ~  _ 15 

I T , ( -  1)l, IT, (5)I  < 4 + ~  + ~ l l < T S  �9 (6.2) 

We now show tha t ,  if (6.1) is not  satisfied, 

k,-1 = k~+l = 1, k,-2 _> 3, k,+2_> 3. (6.3) 

Fo r  if kv_ l=  1 and k,-2_<2, we have 

- - 2 ( 4 -  V 2 ) .  
s, = (0, k , - i  . . . .  ) _< (0, 1, 2, 1, 4) = 7 ' 

while if k , - i  _> 2, then  
2 (4 - V2) .  

s ~ < � 8 9  
7 ' 

(6.4) 

so t ha t  (6.4) holds in either case. Also, since max  {k~} = 4 ,  

r~' _< (0, 1, 4) = 2 (V2 - 1). (6.5) 

F r o m  (6.4) and (6.5) we see tha t  

IT,(-1)I_> 6 +  2 ( V 2 - 1 ) -  { ( 4 - V 2 )  

4 + 2  ( V 2 - 1 )  + {  ( 4 - V 2 )  
= _2 ( 1 + 2 V 2 ) =  1 " 0 9 3 . . .  > gs;  

7 

and i t  follows from (6.2) t ha t  (6.1) is satisfied by  T , ( - 1 ) .  In  the same way  (inter- 

changing the roles of r; a n d  s, in the above), we m a y  show tha t  (6.1) is satisfied 

by  T~ (5) if ei ther k,+l _> 2 or k~+l = 1 and k,+~_< 2. 
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We may therefore suppose now that  (6.3) holds whenever k ,=  4. If we suppose 

farther tha t  k ~ 3  for any v, it  follows from (6.3) and our assumption that  max {k~} = 4 

that  (K) is the periodic sequence 

. . . .  1, 4, 1, 4, 1, 4 . . . .  (6.6) 

For the sequence (6 .6)we have, whenever k , = 4 ,  

g = s , = ( 0 , ~ , ~ ) = 2 ( V 2 - 1 ) ,  T ~ ( - 2 ) = V 2 = 3  s, 

so that  (6.1) is satisfied. 

If (K) is not the sequence (6.6), it  follows from (6.3) that ,  for some v, k, = 4 

and either k~-2 = 3 or k,+~= 3; by  symmetry,  we may take k,+~ = 3. Thus 

Then, since 

we have 

and, since 

we have 

k , _ l = l ,  k,=4, k, .+t=l ,  k,+2=3. 

,,'+~, ~,+~_< (o, ],])= 2 (V~- i), 

IT,+~(4)I 
r 

5 - r ,+~  + sv+2 5 
> " = ~ g S ;  3+r:+,+s,+~- 3 + 4  (V2-1) 

~,+~' = (0,  k ,+3,  . .  .) > (0,  5 ) = ~ , '  

s ,+2 = (0,  1, 4 . . . .  ) > (0,  1, 4) = ~,  

5 - ~ + ~  7 
I n+~(4)l < 3 + ~  - 5 < 38; 

so that  (6.1) is satisfied by T,+~ (4). 

(v) If  max {k,} = 5, take any ~ with k. = 5. Then, since r; ,  s, > 0, 

and, since r; ,  s, < 1, 
I T , ( - a ) l ,  IT,(6)I < ~ <3 . ;  

IT,(-2)I, IT,(7)l > 

Hence, if (6.1) is not satisfied, we require 

IT , ( -a ) t  <~8; IT,(6)I < ~ ,  

9 9 
5 + 1 + 1  7 > u s "  

]T,(-2)1>38; [T,(7)l >38. 

On substituting the values of T, (p), we obtain from the first three of these inequali- 

ties, respectively, 

r~' (us - 1) + s, (u s + 1) > 7 - 5 Us; 

s , ( u s -  1) + g  (us+ 1) > 7 - 5 ~ s ;  

r : ( T s - 1 ) +  s , ( 3 s + l )  < 9 - 5 3 8  . 

(6.7) 

(6.8) 

(6.9) 
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Since r: < 1, (6.7) gives 
8 - 6 gs 1 " 5 5 . . .  

s , >  ~ 8 + 1  2 " 0 7 . . .  > 0 " 7 ;  

and,  since s~ ( 1 ,  (6.8) gives s imilar ly 

r" > 0"7. 

Subst i tu t ing  these inequali t ies  in (6.9), we obta in  

07<?-5~_ 9-5V~ 
2zs  2 V 2  

0 " 6 8 . . . ,  

which is clearly false. I t  follows t h a t  (6.1) m a y  a lways  be satisfied when k~=5 .  

We have  now es t ab l i shed  the f irst  assert ion of L e m m a  2 for i =  8. I t  remains  

to show tha t ,  when Q is equivalent  to a mul t ip le  of the  form 

Qs (x, y) = x 2 + 3 x y - (6 - V8) y~, 

b/V1) assumes no value  lying s t r ic t ly  be tween ~s and  Tg. Since the  sequence (K) 

corresponding to this special  fo rm is 

. . . .  4, 1, 4, 1, 3, 1, 4, 1, 4 . . . .  , (6.10) 

i t  suffices, a f te r  L e m m a  3 (ii), to show t h a t  for the sequence (6.10) we have  either 

5 
[ T,  (P) I < ~ -  - -  - 1"073. (6.11) 

- 4 V 2 - 1  " "  
o r  

I T~ (P) [  >- 39 = V 2  = 1"414 . . . .  
for all in tegral  ~, p. 

(a) Suppose t h a t  k~ = 1, so t h a t  

1 + r" - s~ - 2 p 
T~ (p)  = 

l + r ' + s ~  

For  p = 0  or 1, we have  clearly 
l n ( p ) l <  1, 

and (6.11) holds. Also, since ]G_1_>3, k~+l~3  , we have  

l 1 
r~ ' , s~< �89  I T ~ ( - 1 ) ]  I T ~ ( 2 ) I >  3 + s - ~  

' ' 1 + � 8 9 2 4 7  

and  (6.12) therefore holds for p _ < -  1 and p_> 2. 

(b) Suppose t h a t  k~=3 .  Then 

r" = 8~ = (0, 1, ~) = 2 ( V 2  - 1), 

18--  523804 Acta mathematica. 88. I m p r i m e  16 16 d @ e m b r e  1952 

�9 1"8, 

(6.12) 
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and so 
3 - 2 p  

4 V 2 - 1  

For p < - 2  and p~5 ,  we therefore have 

7 
I T~ (~)l ~ ~V:jL-{ = 1'5o.. .  > ~ ;  

and, for - l < p < 4 ,  

(c) Suppose that k~=4, so that 

By symmetry, 

(6.10). Then 

so that 

5 
- -  ~ r  

4 V 2 -  1 

T~(~)= 4 + r : - s , - 2 p  
4+r~'+s~ 

we may suppose that k ,=4  occurs to the left of the element 3 in 

~, = (0, ~, ~) = 2 ( V 2 - 1 ) ,  

r~' = (0, 1,4, 1,4 . . . . .  1,4, 1, 3, 1,4), 

* 

r: < (0, 1, i) = 2 (V2-1) ,  

r; ~ (0, 1, 3, {, ~) = �89 ( 3 -  V2). 

For p < - 2  and p 2 6 ,  we therefore have 

8 
ITs(p)] > 

4 + 4 ( V 2  - 1) 
Also 

6 -  ~ (3 - V2) + 2 0 /~  - 1) = 5 
IT~(5)I_< 

4+ �89 (3-V2) + 2 ( V 2 - 1 )  4 V 2 - 1  

and (6.12) holds. 

6 +  �89 ( 3 - V 2 ) - 2  ( r 2 - 1 )  < - 8 ,  IT~(-1)[_< 
4 +  ~ ( 3 -  V~) + 2 (V~ - J) 

and so (6.11) holds for - l < p _ < 5 .  

~'8 

This completes the proof of Lemma 2 (ii), so that Theorem 2 is now established. 

7. It is clear, after Lemma 1, that the best possible estimate for M (B) in terms 

of its two fundamental invariants always takes the form 

M (B) < �89 VD Z (co) 
where 

Q b ~ - - 0 )  �9 
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Z (co) has been evaluated above, for the range 0_<co_<~Oo= 1"2439 . . . ,  by  an inductive 

process, each 'crit ical '  form Qi (x, y) providing the link between successive intervals 

(u,, Ti), (u,+l, T,+I) in Lemma 2. 

This process, however, breaks down for values of eo slightly larger than e%. 

For it is easily seen f r o m t h e  analysis of section 6 that ,  for the form Qs (x, y), b/V]) 
assumes values arbitrari ly near to (but greater than) V2. Thus the lower bound of 

the values of b/l~19 > u s assumed for Qs (x, y) is precisely V2 = Vs, and we must  take 

Tg=rs .  Then Us, defined as the upper bound of numbers u for which the inequality 

b 

may  always be satisfied, is clearly equal to u s. 

I have been unable to find any method of evaluating Z (~o) for o~ ~ e%. This 

appears to be a difficult problem; for it m a y  be shown that ,  for any  e ~ 0 ,  Z(W) 

has an infinity of turning points in the interval w o ~ co ~ co o + e, and it is probable 

that  the set of turning points has points of accumulation other than ~o o. 

I shoflld like to note finally tha t  the methods of this paper  may  be used to 

evaluate the 'successive minima'  1 of M (B) for any particular value of ~o. Complete 

results have been found for ~o = 0, by Schur, and for eo = 1, by  Davenpor t  and Heil- 

bronn, in the papers referred to in section 1. 

I am much indebted to Professor L. J .  Mordell for suggesting to me the problem 

of the general bilinear form and for his helpful criticisms during the preparat ion of 

this paper. 

1 Cf. the  a u t h o r ' s  p a p e r  " T h e  m i n i m u m  of a fac tor izab le  b i l ineur  fo rm" ,  to a p p e a r  in  Acta 
Mathematica. 


