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1. Introduction

In one of the earliest papers on automorphic functions, Poincaré constructed funec-
tions automorphic with respect to a Fuchsian group by means of the now well known
Poincaré series. If ¢ is a Fuchsian group with oo an ordinary point of @, the convergence

of the Poincaré series depends upon the convergence of the series
2@zt = 3 [V @)
VeG

where 2 is any ordinary point of G. In 1882, Poincaré [15, p. 206] showed that this series
converges if {>1.
Now suppose that ¢ is finitely generated. If G is of the first kind, then [13, p. 181]

2(G,2,1) = + o0 1.1)
whereas if G is of the second kind, then [13, p. 178]
S(G, 2, 1)< + oo (1.2)

An obvious question, then, is to what extent can (1.2) be improved upon. In this paper we
show that (1.2) is best possible when regarded as being a statement applicable to all finitely
generated Fuchsian groups of the second kind but nevertheless can be improved upon for

any given group. More precisely, we prove the following two theorems.

THEOREM 1. Given any number t satisfying t <1, there exists a finitely generated Fuch-

stan group of the second kind with oo an ordinary point of G and with

2(G, 2 t) = +oo
for every ordinary point z.
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THEOREM 2. Let G be a finitely generated Fuchsian growp of the second kind with oo

an ordinary point of G. Then there exists a real number t satisfying t¢<1 and
2(G, 2, )< o0 (1.3)
for every ordinary point z.

Now let L be the set of limit points of &, denote by m(L) the linear measure of L and
again assume that G is a finitely generated Fuchsian group. If @ is of the first kind then
obviously m(L) >0 whereas if G is of the second kind, then m(L)=0 [13, p. 324]. We prove
that this latter result is best possible when regarded as a statement applicable to all
finitely generated Fuchsian groups of the second kind but can also be improved upon for

any group. More precisely, we prove the following two theorems.

THEOREM 3. Given any number t satisfying t <1, there exists a finitely generated Fuch-
sian group of the second kind with oo an ordinary point of G and with L having infinite I-

dimensional Hausdorff measure.

TuHEOREM 4. Let G be any finitely generated Fuchsian group of the second kind. Then
there exists a real number t satisfying t<<1 such that L has zero t-dimensional Hausdorff

measure.

The striking parallel between the first two and the last two theorems is explained by

the next result.

TuEOREM 5. Let G be a finitely generated Fuchsian group with oo an ordinary point of G.
If t s a real number such that
2(G, 2, 1) < oo (1.4)

for some ordinary point z, then L has zero t-dimensional Hausdorff measure.

We note immediately that Theorem 1 is an immediate consequence of Theorems
3 and 5 and that Theorem 4 is an immediate consequence of Theorems 2 and 5; thus we
need only prove Theorems 2, 3 and 5. The proofs of Theorems 2 and 3 are long and for the
benefit of the reader it seems desirable to discuss these results in a more general context
before giving the proofs.

First, we write m,(L) for the f{-dimensional Hausdorff measure of L and use d(L)
to denote the Hausdorff dimension of L. This is defined by

d(L) =inf {>0: m(L) =0}

and the details of the construction of the measures m, can be found, for example, in [5].

Next, we write
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(@) =inf {{>0: 2 (G, 2, ) < + o0} (1.5)

where z is an ordinary point of G. As is well known, §(G) is independent of z. An immediate

consequence of Theorem 5 is the following (weaker) result.

CoROLLARY. In the above notation, d(L)<§(G).

The conclusion in Theorem 5 has been proved in the case when @ is a Schottky group
by Akaza [2], [3] and [4]. Our proof of Theorem 5 is, however, quite different.

Theorem 5 contains two well-known but non-trivial results. If G is a finitely generated
group of the first kind, then m,(L)>0 and so using Theorem 5 we can deduce (1.1). If ¢
is a finitely generated group of the second kind, then it is very easy to establish (1.2) and
so, using Theorem 5 again, we can deduce that m,(L)=0.

In [9] Dalzell proved that if G is a finitely generated Fuchsian group of the second

kind and if G contains no parabolic elements, then

2|7 @} log (|7 (2)| ™) < + e (1.6)

for every ordinary point z. Theorem 2 is clearly an improvement of this result both in
that (1.3) is stronger than (1.6) and also that @ may contain parabolic elements.
The group @, generated by the elements.

PQe)y=2z+4, E(z)= —1/z, >0,
is called a Hecke group and is of the second kind if 1>2. In [7] the author studied the

function 6(@;) as a function of A (note that the notation in [7] differs from that used here;
the §(¢) used in [7] is twice that defined by (1.5)). In particular, it was proved that (in our
present notation) §(G,) >3, that

8(@;) =1 +0(A™)
as A~ + <o and that 6(G;)<1 if 1>2.8.... The natural conjecture was then made that
0(G;) <1 if 2>2 (that is, if @, is of the second kind) and we see now from Theorem 2 that
this is so.

In [6, p. 734] the author showed that there exists a finitely generated Fuchsian group
with d(L)>%. This is contained in the much stronger Theorem 3 and indeed, Theorems
3 and 4 completely solve the problem of the range of values of d(L) in the case of Fuchsian
groups.

In the last few years, several papers have appeared in which there are estimates of
my(L) for various Fuchsian and Kleinian groups (e.g. [1], [2], [3], [4] and [6]). Some of the
results in this paper have been generalized so as to be applicable to Kleinian groups and

so generalize some of these results. It is hoped to publish these later.
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The theorems stated above are all concerned with finitely generated Fuchsian groups.
The results have been stated this way for brevity; the real requirement is the geometrical
one that the groups possess a fundamental region having a finite number of sides and it is
known that these two conditions are equivalent (e.g. [11], [14]). Indeed, if G is finitely
generated, the fundamental region N,, defined as the set of points hyperbolically closer
to a point w than to any other image of w (see [13, p. 146]), has a finite number of sides.
This follows from the results contained in [11]. We shall use these facts implicitly through-
out this paper.

We can easily see that Theorem 5 is false for infinitely generated Fuchsian groups
and we give two counterexamples. First, it is easy to construct an infinitely generated
Fuchsian group of the second kind with m,(L)>0. To do this one simply constructs a se-
quence of hyperbolic elements, each leaving the unit disc invariant and having the isometric
circles of all of these elements and their inverses external to each other. This construction
can be carried out in such a manner that the images of o under these elements accumulate
at a set of positive one-dimensional measure and so if ¢ is the group generated by these
elements, G is of the second kind and so >(@, z,t) < +co. By construction, however,
mq(L)>0.

A counterexample of a different type is suggested by a remark of Tsuji[17, p. 515].
Here Tsuji suggests the construction of an infinitely generated group of the first kind in
which 2(G, 2z, 1)< + oo and again, the existence of such a group shows that Theorem 5
is false for infinitely generated groups.

The remainder of the paper consists of the proofs of Theorems 2, 3 and 5. From now on,
and without further mention, we will reserve the symbol & to denote a finitely generated

Fuchsian group and the symbol L for the set of limit points of G.

2. The proof of Theorem 5

Let G be a group satisfying the hypotheses of Theorem 5. If ¢, =AGA4 for some
bilinear transformation 4 satisfying A—'eo ¢ L, then G, also satisfies the hypotheses of
Theorem 5 and further, > (G, z, £), >.(G,, 4z, t) converge or diverge together. Also, the set
of limit points of G} is 4(L) and it is easily seen that m,(L) and m,(A(L)) are zero or positive
together (this follows as 4 and A~ satisfy a Lipschitz condition of order 1 on some neigh-
bourhood of L and A(L) respectively). Thus we may consider @, rather than ¢ and this
implies that without loss of generality we may assume that the unit circle {z: |z| =1}
is the principal circle of G.

The proof of Theorem 5 depends on a theorem on Diophantine approximation for
Fuchsian groups proved by Rankin [16] and Lehner [13, p. 334]. The form of this result
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given in [13] is not in the form best suited to our needs and it is simpler to deduce a modified
version directly from Lehner’s generalization [13, p. 181] of a result of Hedlund [12, p. 538].
We need

Lumwma 2.1, [13, p. 181]. Let G be a finitely generated Fuchsian group with {z: |z| =1}
as its principal circle. Then there exists a constant m satisfying 0 <m <1 and depending only
on G with the following property. If { is a limit point of G but not a parabolic vertex, then
there exists a sequence of poimts z, tending radially to £ as n—>oo and a sequence of distinct
elements V., in G with | Vi'(z,)| <m.

With £, 2, and ¥V, as in Lemma 2.1, we have
IC—VTL(O)] < Ic_znl + lzn_Vn(0)| = (1_ Izn|)+ lzn_Vn(O)l
=1 =|V,0)])+(|Val0)| = |2,]) + |2, — Va(0) |
<(1—|V,,(O)|)+2|zn—Vn(0)[. 2.1)

In order to estimate these last two terms, we write

=anz+c',, 2 a_
V= e et

and note that
(1— | Vn(O)[)<1 — | I/'n(())|2 = (1+ [cnlz)—1< [0n|"2~ (2.2)

Also, if ¢ is the straight line segment joining the origin to V;(z,), then V,(s) has end-
points V,(0) and z, and so

|20 — V,(0)| <length [V,,(0)] = f LA AP L/ P o g )

e[ info 2= V¥ (o0)
Using this together with (2.1) and (2.2) we find that
[¢—Va(0)] <31 —m)=2|c,| 2 (2.3)
for infinitely many n. If we now write
QV) ={z: [2—V(0)| <3(1—m)~2|c| %}

az+¢
cz+a’

where V(z) laf?—|cP=1,

is in @, we see from (2.3) that any limit point { of G that is not a parabolic vertex lies in
infinitely many of the dises (V) for V in G.
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If (1.4) holds then {>0 and

o] 2 < + eo
VeGR, Voo oo

and so > [diam (V)< + oo,

VeG@, Vooskoo

Thus for any positive ¢, we can find a finite subget K of G (including all those V in @
for which Voo =co) such that

> [diam Q(V)[<e (2.4)
VeG—-K

(where here and elsewhere the minus sign denotes the set-theoretic difference). If P denotes
the set of parabolic vertices of @, then, as we have already seen,

L-P< U Q)

VeG-K

for every finite subset K of ¢ and this together with (2.4) implies that m, (L —P)=0. As P
is a countable set, m(P)=0 for all ¢>0 and so m,(L)=0 if (1.4) holds. The proof is now
complete.

In view of the fact that this result is perhaps, the basic result of this"paper, the author
feels that it is worth giving a second, and completely different, proof of it. The above
proof does not depend on the fact that (1.1) holds for groups & of the first kind nor on
the fact that m,(L)=0 for groups of the second kind and so gives an alternative proof of
these results. If we use the fact that >(@, 2, t) converges if £>1 and diverges for =1
when ¢ is of the first kind we see that Theorem 5 has been proved for groups of the first
kind. We thus assume that G satisfies the hypotheses of Theorem 5 and is of the second
kind. The fundamental region N, constructed with z=0 as its centre (by considering a
conjugate group we may assume that no element of @ other than the identity fixes z=0)
has a finite number of free sides s, ..., s, which we regard as open ares of |z] =1. Clearly

{z: |2] =1} is the disjoint union
{z:lz|=1}=LUEU (U UV(s))
VeG@ i=1

where L is the set of limit points of G and E is the set of end points of the free sides and
their images. As there are only countably many free sides, m;(E)=0. We need the following

result.

LemmaA 2.2, [8]. Let I be an open subset of the interval J =[0, 1] with m,(I)=1. If the
components I, of I have length a, and if 2.af converges for some B with 0<B<1, then
mp(J —I)=0.
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By moditying this result so that it applies to subsets of {z: |2| =1} rather than J or
by considering a conjugate group to ¢ so that the limit set is contained in J, we see that
my(L U E)=0 if

S 3 [length (V(s))I' < + oo (2.5)
YeG i=1
As tength (V(s)) = [ 17"2)lde| < 3]l

(this holds as the orbit of oo cannot accumulate at any point in the closure of any s;) we
see that (1.4) implies (2.5) and hence that m,(L)=0. This completes the second proof of
Theorem 5.

3. The proof of Theorem 3

To prove Theorem 3 it is sufficient to consider any number ¢ satisfying 0<¢<1 and
to construct a group G with d(L)>t. The group that we shall use is the Hecke group Ge]

generated by the transformations
P(2) =2+2(1+¢), E(z) = —1/z (3.1)

where ¢ is a real, positive parameter. The limit set L of this group is an unbounded subset
of the real line; thus oo is not an ordinary point of G[¢]. Theorem 3 requires that oo be an
ordinary point of G and this condition is easily met. We shall show that for sufficiently
small &, we have d(LN[—1, 1])=¢. If AG[c]A~' is any conjugate group which has oo as

an ordinary point, then
dAL)) = dALN[-1, 1)) =d(LNn[-1,1]) =1,

the second inequality holding as A-! satisfies a Lipschitz condition with exponent 1 in
some neighbourhood of A(LN[—1, 1]) (the results contained in the Appendix of [6] show
that the first two inequality signs could be replaced by equality signs; we shall not need
this however). In any event, 4G[e] A1 is a finitely generated Fuchsian group of the second
kind (G[e] is of the second kind) with <o as an ordinary point and with d(4(L))>t. We
therefore need only prove that

dLN[—1,1]) =1 (3.2)

where L is the set of limit points of G[e].
It will be helpful to bear in mind during the proof that the region

{x+iy: |[2]| <l+e 22+42>1}
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is a fundamental region for G[e] and that the action of E is an inversion in the

boundary of the closed disc
Q={z |2] <1} (3.3)

followed by a reflection in the imaginary axis. We shall use @ to denote the disc (3.3)
throughout this proof and without further mention.

For each non-zero integer =, define
V,(2) = EP"(z)
which is in G[e], and, for each finite sequence 7, ..., %, of non-zero integers, define
Vs ooy 1) (2) = Vi wve Vial2) (3.4)
and QR ooy 1) = V(ng, ooy 7 ) (@) (3.5)
As V(@) <=@ we see that for any sequence n,, ..., 7y,
Q> Q(n) > Q(ny, ny)> .2 Q(ny, ..., M)
and also that if s, then
QR veovy Ty )N Q(Ry, ..ey Ty, 8) =D (3.6)
These results show that the system of dises
{Q(ny, ..., m): k>0; my, ..., ny =0}
yields a Cantor-like construction with residual set
L-0 U@ (3.7)
where G, is the set of elements of the form (3.4) for varying #, ..., %, but fixed k. We shall
need the following elementary result.
Levma 3.1. L, is a subset of LN [—1, 1].

Proof. We see from (3.5), (3.6) and (3.7) that the points of L, are precisely those points

that can be written in the form

A Qs ..., m) (3.8)

k=1

for some fixed infinite sequence %, s, .... As



INEQUALITIES FOR CERTAIN FUCHSIAN GROUPS 229

V(ng, oy me) (0) €Q(ny, -, my_y) < @

we see that the point (3.8) of I, is in the closure of the orbit of oo (which itself is in L)
and hence is in LN[—1, 1] provided that

|Q(ny, .., mie)| >0 (3.9)

as k— oo for every fixed sequence ny, n, ... (here and elsewhere in this proof we use |A|
to denote the diameter of a dise A). Using (3.4), an elementary computation shows that
for all non-zero n, | Vy(2)| <(1+2¢)~! on @ and so

| @7y, oo )| < (1 426)HQ(ny, ooy mp—y) | <2(1+26)77

the second inequality following from repeated applications of the preceding one. This
establishes (3.9) and completes the proof of Lemma 3.1.

The techniques for estimating the Hausdorff dimension of a set formed from a Cantor-
like construction are reasonably well developed (see, for example, [5]). There are, however,
two major difficulties to overcome in applying these technigues to our construction. The
first is that in passing from one stage of the construction to the next, one replaces, say,
Q(nq, ..., m;) by infinitely many (rather than finitely many) Q(n,, ..., %, 7,4). This dif-
ficulty is overcome by selecting only a finite number of suitable @(ny, ..., %, 7;.,) at each

stage and using only these in the construction. The second difficulty is that the ratios

IQ(”’J.: ey Ty nk+1)| * ]Q(nl, (] nk)]—l

are not well-behaved in the sense of constructions of this nature. We avoid this ditficulty
by modifying the above construction of L, so as to avoid images of @ under successive
applications of ¥V, or of V_; (for it is these that give rise to the badly-behaved ratios).
Roughly speaking, we replace V; and V_; in G, by a set of elements V{’, ..., V¥, VY,
s V¥ (to be described in detail later) and then use the modified G, to generate a semi-
group of transformations (each of which will still be of the form (3.4)). The images of @
under the transformations of the semi-group yield a Cantor-like construction with a residual
set L, which is a subset of L;. This and Lemma 3.1 imply that

d(Ly) <d(LN[-1,1])) <1 (3.10)
and then there remains a rather delicate estimation of d(L,) to show that

lim lim sup d(Ly)=1 (3.11)

&0 Nz=2
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which, together with (3.2) gives the required result. We proceed now with the formal
proof.

Let £ be a positive number and N an integer satisfying N >2 (¢ and N are the para-
meters occurring in (3.11) and will be held fixed until just before the end of the proof).
Next, let G[e] be as previously described in (3.1) and let I'; be the set consisting of the ele-

ments

(A) V27 V-z: ey VN7 V—N:

together with the elements V(ny, ..., 7, m) where n,, ..., n;, m satisfy one of the following

conditions:

(B) 1<k<N,n=..=m=1 and2<|m|<N,
(B") 1<k<N,ny=..=m=—1and 2<|m| <N,
(0) 1<E<N,n=..=wn=1 andm=-—1,
(0 1<k<N,n=..=n,=—1and m=1.

We shall refer to these elements as being of type 4, B, B, C and (¢’ respectively.
Having defined I'y, we now define I', for all positive integers » by the inductive

definition
[p={UV:Uel,, Vel } ={U, ... U,y U;€ly,i=1, .., n+1}

and further, define

L,= n u V(Q). (3.12)

k=1 Vel
It is clear that if V€I, and T, and T, are in I'; with 7', 4T, then
V(@)= VIyQ)
and VI@)NVTyQ) =2.
From these facts and Lemma 3.1 we can easily prove that
LycLi<cLn[-1,1]

and so (3.10) holds. It remains therefore to establish (3.11).

To do this we need the concept of a spherical Cantor set. This is essentially a set con-
structed in a similar manner to the classical Cantor set but with a little more metrical
freedom in the construction. This construction may be carried out (as in our case) in the
plane using discs instead of intervals and details of such sets together with estimates of their

Hausdorff dimension can be found in [5].
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LemMMa 3.2. In the above notation, L, is a spherical Cantor set constructed from the discs
{U@Q):UEeL,, n>1}.

The construction of L, is that of replacing U(Q), UET, by

VRUAA(Y]

Vely

at each stage of the construction. We now write I' = U,, T, and so, by virtue of Lemma 3.2,
we may rewrite [5, Theorem 4(ii), p. 683] in our present notation to give the following result.

Levmwma 3.3. If 0 satisfies 0<6<1 and if

2 UV@)P=U@] (3.13)

Vels

for all U in T, then d(L,)=0.

The validity of Lemma 3.3 thus depends upon Lemma 3.2 which has yet to be proved.
In order to attain continuity of the basic ideas involved in the proof we proceed a little

further before proving Lemma 3.2. Our next step is to establish the following simple result.

Lemma 3.4. Let k be any inieger greater than one and let the positive numbers oy, ..., O,
8 and s satisfy 0<4;<0<1 and

0<s<dq+... +8.<1. (3.14)
Then 8+ +8l=1, (3.15)
where 6=1—(1—s)(1-6)"1. (3.16)

We shall use Lemma 3.4 by taking the numbers §,, ..., §, to be the ratios
[OV@]-|U@], UEeT, Vel (3.17)

for then the inequality (3.13) is precisely (3.15). We thus obtain the estimate of d(L,) given
by (3.16) and Lemma 3.3 if we establish Lemmas 3.2 and 3.4 and verify that with the
above choice of d;, ..., d;, the hypotheses of Lemma 3.4 are satisfied. We now begin the task
of establishing these results.

Proof of Lemma 3.4. Let v be the unique positive number satisfying

Nn+...+o=1, (3.18)
thus 0 <y <1, Next,
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16 = fld(xl"”) =(1— v)flx"”dx> 1—2)(1—8)> 1~ 1-9).
be)

U] 7

Using this inequality together with (3.14) and (3.18) we have

l-s>
j

LM

F1L—8")>(1-2) (1-9)

and so using (3.16) we can easily deduce that § <y. This together with (3.18) yields (3.15)

and the proof of Lemma 3.4 is complete.

Proof of Lemma 3.2. The definitions in [5, p. 680] imply that we must establish the
existence of positive constants 4; and A4, such that (i) for all U in I" and all ¥V in T,

[UV(@)|>4,|UQ) (3.19)
and (ii) for all U in I" and all distinet 7, and 7' in I},

elUT,(Q), UTy(Q)]1>4,|U(Q)] (3.20)

where g is defined by
o(E, F)=inf {|e—f|: ¢e€E, fEF}.

‘With our choice (3.17) of the ,, ..., §, in Lemma 3.4 the constants s and § in Lemma 3.4
also become bounds on the ratios (3.17) and so at this point it is advantageous to derive a
general distortion theorem for the family I'. An application of Koebe’s distortion theorem
[10, p. 175] would give a short proof of Lemma 3.2 but does not, however, seem strong

enough to yield useful estimates for the constants appearing in Lemma 3.4. We prove the

following result in which the estimates are more explicit.

Lemma 3.5. Let J=[—1,1], let I be any sub-interval of J and let U€ET'. Then

o)
o)

1/5)|I]< <(5/4)|1].

Also, if VET, then UV < (5/6)|UW)]. (3.21)

We remark that we are using |I| to denote the length of I (a one-dimensional disc).
No ambiguity will arise from the two uses of this symbol; indeed as @ has its centre on the

real line and as elements of I" leave the real line invariant, we do have
|T@)] = |UW)]. (3.22)

The proof of Lemma 3.2 is easily completed. By taking I to be the intersection of V(@)
with the real axis we have from (3.22) and Lemma 3.5 that
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|UV@)] = |U)] = 4,|U@Q)|
where A4, =(1/5) min {| V(Q)|: VET}

and this is positive as I'; is finite. This establishes (3.19). The proof of (3.20) is similar.

The set
(=11~ U V(@)

consists of a finite number of open arcs ¢; and, if 7, and T, are distinct elements of I},
there exists a subarc ¢ of J lying between T,(Q) and 7T'y(Q) with |¢|>min|c,| >0. As
U(o) lies between UT4(Q) and UT,(Q) we may use Lemma 3.5 and (3.22) to deduce that

elUT,(@), UTy(Q)] = | Ulo)] = (1/5)|o| - | U@)] > (1/3)| U(@)](min|o,])

which established (3.20). This completes the proof of Lemma 3.2 subject to Lemma 3.5.

Indeed, the proof of Lemma 3.5 is the only outstanding item in our programme so far.

Proof of Lemma 3.5. Let I, J and U be as in the statement of Lemma 3.5 and put

w=U"Y(o0)} (thus w is a real number). Our first task is to estimate w. As U €', we see that
U=U,;..U,=V(n ..n,n.4) (Ul

where Uy =V (n,, ..., ns,y), say. If Uy is of type 4, then r=s-+1 and [n,,| >2. If Uy is of
type B or B', then r<s and again, |n,|>2. Finally, if U, is of type € or ", then r<s

and either n,=1 n ;= —1, or ny=—1, n,,—=1. Noting that
w=(EP™ ... EP 1) (c0) = P~ 1(EP~" ... EP~™) (0)
which belongs to P~ "s+1Q( —n,, ..., —n,), we find that
wE P~m1Q( — ). (3.23)
If Uy is of type A, Bor B’, then |n,,4| >2 and so replacing (3.23) by the weaker statement:
wEPs+1(Q)
we find that [w]|>3. If U, is of type C or (', then (3.23) becomes

wEPQ(—1)UP(Q(1))
or, equivalently P1EP(w)€J or PEPYw)€J.

This in turn implies that
|w|ZA+1+1)1>17/3

16 — 712907 Acta mathematica 127. Imprimé le 8 Octobre 1971
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where 1 =2-+2¢>2. In all case, then, we have |w|>7/3. We now put I =[a, 8] (as we are

only concerned with || we may assume that I is closed) and note that

I)| 1 , -1 B . 1 5 -1
—Jl (j |U’ x)ldx) (f71|U (x)]dx) =(f (& —w)~ dx) (f_l(x—w)‘ dx)
zllll{(wﬂ)‘(wq)}
2 (w— o) (w—p) ’
Using —1 <a<f <1, we find that if w>7/3, then

L (w_‘})g_g(f | 1
2w 78 S o) <2

1
and so 7[ ](w—i—l) TJ)<§|

which gives the required estimate as w>7/3. A similar argument establishes the result if

w< —7/3 and this completes the proof of the first part of Lemma 3.5.
Finally, if V€I, then V=V{(n,, ..., n,} for some n,, ..., n, and we have

V(Jy<= V(ng)(J).
An elementary computation shows that
| V(n) ()] = (0 A—1)"1 —(ngA+1)"1 < 2/3
as |m 4| >2. Applying the first inequality in Lemma 3.5 with I=7V{(J) we find that
[UV()] <(5/4)23)| U]

and the proof of Lemma 3.5 is complete.

Lemmas 3.2 to 3.5 inclusive have now been proved and, with the choice (3.17) of the
Oy --v» O in Lemma 3.4, we can use Lemma 3.5 to obtain estimates of the constants s and
0 occurring in Lemma 3.4. Indeed, the inequality (3.21) in Lemma 3.5 shows directly that
we can take § to be 5/6. Next, we note that

it ... +8,= §|UV IRILZCAl (3.24)

If we now write F=(-1,1)- U V{J) (3.25)

Vel's
then F is an open subset of (—1,1) and we have

VD =m UEN + 3 [TV, (3.26)
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As F isa union of open intervaly, we deduce from Lemma 3.5 that m,(U(F))<
(5/4)my(F)|U(J)| and using this inequality with (3.24) and (3.26) we find that

8+ +0, = 1—my(U(F)) | UJ)| L = 1 — (5/4)my(F).
We have taken § to be 5/6; we now define s by
s =1—(5/4)m,(F).

Lemmas 3.3 and 3.4 together with (3.17) and (3.24) enable us to deduce that d(L,) >0 where
0=1—(15/2)m(F). This gives
d(Ly) = 1 —8m,(F). (3.27)

Recalling that in order to prove Theorem 3 it is only necessary to establish (3.11), we now

find that it is only necessary to prove that

lim lim sup m, (F) =0

>0 N—>oo

where F is defined by (3.25). This is geometrically obvious; however, we prefer an analytic

proof. To achieve this, we define a set 7' by
T=1I- U Vn)(J) (3.28)

where J=(—1,1) and also, for convenience, define #,=1 and v,= —1 for each positive

integer n. We then have

N
F-T= UVn)/)— UV)= U V) J)- UV(J)

|n|=1 Vel n=-1,1 Vel

=[Fn VL) NULFnV(-1) ()] (3.29)
as for every subset K of I, we have

K- L%V(J):KHF.
Vel'y
Next, we have
FOViwg,...,w)(JJ)=V{ug, ..., u,) (T)

=V(up oo, ) ()= U VI = V(g oo w) (T) = V(ug, oo, u) (J=T) = U V(J)

Vel'y Vel
=[V(w, ..., u) (Inl|J=1V(%) IV IV (uy, o, u) {—1,+1}] _VGL% Vi)

=TV (g, ooy thy, Upr) (JYU Vg, oo, ) {—1,+1},
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the penultimate equality following from (3.28) and J=[—1, 1] and the last equality from
the definition of I';. This gives

My F 0 V(g oo ) ()] = [V (2, oo, ) (D) F 1 [V (%35 o0 Wpia) ()]

A similar equation holds with w, ..., u,.; replaced by v, ..., v, and using these two
equations for r=1, ..., N —1 and also (3.29) we find that

N-1 N-1
my (F)=m (T)+ Tgl my [V(ug, ..., %) (T)]+ rzlml[V(”v v 1) (1]
Fm [Vt oonsuyer) (D] +m [ Vv, ..., ys1) ()]

As both T and J are symmetrical with respect to the imaginary axis, we find that
my [Vt ..., ) (T)] = my[V(vy, ..., v,)(T)] and also that a similar equation holds with 7'
replaced by J. Thus we have

my (F) <m (T) + 2N§im1[V(uI, v ) (T + 2my [V (g, ..., unir) ()] (3.30)

Although it is easy to obtain simple estimates for these terms it does not seem a trivial
matber to obtain estimates delicate enough to give the required information when ¢ tends
to zero and N tends to oo.

We first estimate m(7"). To do this note that 7' consists of the origin together with the
images under an inversion in the boundary of @ of the intervals [Ar+1, A(r+1)—1]
r=~—0N, .., N—1 and the intervals (— oo, —[NA+1]), (NA+1, +o0), where, as before,
A=2-+2¢. This enables us to compute m,(7):

1 1
< N . 31
(D)= it Z{MH Ar+1)— } (1/N)+2 2 A )2 <(N)+3e (3:31)
We next estimate m,[ V(uy, ..., w,) (T)]. If we put
a,z+b,
Vi, oy (V=3 0 ards by =1 (3.32)

we know that the pole of V(u, ..., u,) lies in P-1(Q) and so |d,| > |¢,|. Thus we can obtain

the following estimate:
my [V (uy, ..., ) (T)]= L]V(ul, cees ) (2)] - | de|

=J‘ e,z +d,| 2| dz| < (|d,| = |e,])2my (T). (3.33)
T
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Our next task is to compute ¢, and d,. By definition we have V(uy, ..., 4,) =(EP) and so if

a,, b,, ¢, and d, are as in (3.32), we have
Vg, ooy Urq) = Vg, ooy %,) EP
and so (ar+l br-l—l) - (ar br) (O - 1).
Crr1 i1 ¢ d) \1 A
From this we deduce that ¢, ., =d, and d, , =Ad,—c, with initial conditions ¢; =1, d, =A.

Eliminating ¢, and using standard techniques to solve the resulting difference equation

(with constant coefficients) we find that
=0 -9Np-—9™
and d, = (" ~q N (p—q)

where p and ¢ are the roots of a2 —Ax+1=0.
We remark that ¢, and d, are only determined to within a factor of —1 (although

d,/c, is unique) and this corresponds to the two choices of the ordered pair (p, ¢). If we write
p=30+12 A1), g=3A—[E-4])
we find that p>¢ >0 and that

(p—a)(ld;| —[e;.|) =p"(p—1) +¢'(1 —q) = p"(p—1) (3.34)

as pg—=1 and p>¢>0 implies that 0 <¢g<1. From this we can deduce that

N-1 0 _ 2 _ 2
d,|—le,|)2< (p Q) ~2r _ (p Q) 2_ 1)1
El(l I —1le) 2 o 1) 7 ,~1) @D
If we now write bo=%(A2—4) = (2¢)} (3.35)

we find that p=1+4e+u, ¢g=1-+&—pu and so we have

4M2 }-2_4 3 1
< < <(4e+26%) (26) ¥ <3/et
Etu)P@retu) = 24° (he+267) (2¢) Je

N-1
2 (Idr I - lcrl)_2
r=1

if & <1, the penultimate inequality following from (3.35). From this and (3.33) we can deduce

that
N-1
> my[Viug, ..., u) (TV]<3m,(T) ()%, (3.36)

r=1

Next, the estimate (3.33) is valid with 7' replaced by J and this and (3.14) yields
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my [V (uy, oo s uyer) (J)]< (%}%)220‘2(””%1@7)- (3.37)

Using (3.30), (3.31), (3.36) and (3.37) we find that

-1 P~ 4\ vy (L -1 P—4\" _swwin
my (F)<m(T)[1+6&:]+4 1 P < N—I—Ss (1+6&77)+4 o1 P .

As p and ¢ depend only on ¢ and as p>1, we deduce that

lim sup m, (F) <3¢+ 18 Ve.

N—>oo

As L (the limit set of ([¢]) is independent of N, this inequality together with (3.10) and
(3.27) implies that

dLN[—1,1]) > 1—8(3¢ +18¢%).
It is now clear that if t<1, then for sufficiently small positive &,

dLN[-1,1]) > ¢

and the proof of Theorem 3 is complete.

4. The proof of Theorem 2

We begin by proving a lemma on Dirichlet series which will be used later and which

does not depend on the notion of a Fuchsian group.

Lemma 4.1. Let A,, 4,, ... be a sequence of positive numbers such that
A@y= 2> 45,
n=1

converges if t>%. If ay, ay, ... ts any sequence of numbers satisfying 0<a, <4, (n=1,2, ...)
and if t satisfies 5/6 <t <1, then

ZaK 2:10,,, +6(1 —£)[4(2/3) + 4(4/3)].

Proof. If f is defined by
o) 3 d

then f is defined and analytic on {Re (z)>1} and satisfies
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o]
&)< S ah<A(@) (z=—v+iy)
n=1

there. If |z—1|<1/3, then A%

N

L

A;+ 4

Sl

(the inequality holding with one term of the sum according to whether 4, is not greater
than or not less than 1) and so |f(2)| <A(3) +4(4) on |z—1| <3}. Cauchy’s inequality implies
that |f'(2)| <6[A(3)+4(%)] on |2—1|<}. Thus if 3<¢<1, then f(t) <f(1)+|f(t) —f(1)| <
F)+6(1 ~)[A(3)+A(%)] and this is the required result.

We return now to the theory of Fuchsian groups. As Theorem 2 is known (and easily
proved) to be true when ¢ has at most two limit points [7, p. 474] we assume that G has
uncountably many limit points. As we have already mentioned in the proof of Theorem 5,
it is sufficient to consider a conjugate group AGA-1 provided that A-1(o0) 4L, the set of
limit points of G. Without loss of generality, then, we assume that the elements of G
preserve the upper half-plane and, of course, the extended real axis which we shall denote
by R'. We note that R is considered as a subset of the extended complex plane and hence
contains the single point at infinity.

As is well known, the upper half-plane can be given a hyperbolic metric and a normal
(or Dirichlet) polygon N, constructed from this metric is a fundamental region for the
action of ¢ on the upper half-plane (for details of this, see [13, Chapter IV] where this is
done for the disc rather than the half-plane). We now wish to make certain justifiable
assumptions on ¢ and N, First, by choosing the centre of N, outside of some set of plane
measure zero we may assume that each parabolic cycle on the boundary of N, consists of
a single vertex and also that (in the notation of [13, p. 149-151]) there are no accidental
vertices of the first kind lying on R!. We note that as @ is finitely generated, N, has only
finitely many sides ([11], [14]) and so every vertex of N, which lies on R!is either a parabolic
vertex p or an accidental vertex ¢g. Our choice of centre as given above implies that in the
former case the sides of N, that meet at p are conjugated by a parabolic element of the
group whereas in the second case, ¢ is the intersection of a side of N, and a (closed) free
side of Ny. This means that ¢ is the common end-point of two images of Iree sides of N,
and that some neighbourhood of ¢ is covered by the closure of the union of two images of
N,. These properties are preserved under conjugation; thus by considering (if necessary)
a conjugate group we may assume that oo or one of its images lies in the open set N,
After relabelling (if necessary) we may assume that oo € N,. It is more convenient in this
proof to consider the action of G on the extended complex plane rather than on the upper
half-plane; thus we modify our notation and from now on denote by N, the union of the

normal polygon described above as N, its reflection in the real axis and its free sides on R1.
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Thus N, is a fundamental region for the action of G on the extended plane; it is finite sided,
symmetric with respect to the real axis; it contains a neighbourhood of oo and its vertices
have the properties listed above. The free sides of Njare those of the N, as originally defined.

In this proof we shall use 4’, 4 and 84 to denote the closure, the reflection in the real
axis and the boundary respectively of a set 4 and we shall use | E| to denote the linear
measure of a measurable subset E of the real line. We shall also make an attempt to avoid
as much as possible of the geometrical argument that is so common in this subject. With
this in mind we first construct a function = that is defined on the extended plane, that
satisfies a Minimum Principle both there and on the real line and that analytically describes
the tesselation of the plane by N, and its images under G.

First, we say that two elements U and V in G are adjacent if and only if
U(Noyn V(No) 2.

Next, we put Gy={I} (I is the identity element in ) and assuming that G,, Gy, ..., G,
have been defined we define G, ,; as the set of those V in @ satisfying

(a) V¢4, G, ..., G, and
(b) V is adjacent to some U in G,.

From (a) we see that the G, are mutually disjoint and so we can define a function z* on
U2o @G, by n*(V)=nif and only if V €G,. Our immediate task is to show that G = U5%-oG,.
If U and V are adjacent and if z*(U) is defined and equal to n, say, then (b) holds. If (a)
holds, then by definition, V€@, and so #*(V)=n-1 whereas if (a) fails to hold, then
a*(V) is already defined and is not greater than n. Thus if U and V are adjacent, #*(U)
and sr*( V) are either both defined or both undefined. If V is now any element of G, the hyper-

bolic line joining oo to V(co) crosses, in turn, the adjacent regions
NO = I(NO)} VI(NO)’ Vz(No): () Vs(NO) (V = Vs)

and as 7*(I) is defined, so is m*( V). Thus G = U;L¢ G, and 7r* is defined on G. If U is adjacent
to V, then V is to U and the above argument shows that in this case
[7n*(U)—a*(V)| <1 (4.1)
We also note that if P conjugates the sides of IV, ending at a parabolic vertex on 0N,
then P" €@, for all non-zero integers n. A similar statement holds for parabolic vertices on
the boundaries of the images of N,.
We are now in a position to define the function »# mentioned above. If 2€ V(N,) for

some V in G, we define n(z) to be x*(V). This defines 7z on a dense subset of the complex

plane and we complete the definition by the requirement that
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7t(z) = lim inf m(w) (4.2)
w2
the lower limit being taken over w in Uvyeqe V(N,).
The following remarks and lemmas describe some of the basic properties of the funetion
7. First, 7 only assumes the values + 0,0, 1,2, .... Next, although (4.2) was only intro-

duced to define 7z on a nowhere dense set of points it is, in fact, valid for all z.

LemmA 4.2. n(2) < +- o0 if and only if z is an ordinary point of G or the fixed point of

a parabolic element in G.

LeMMma 4.3 (The Minimum Principle I). Let 9 be a closed Jordan curve in the finite
complex plane and let D be the interior of v. Then

min 77(z) > min 7(z). (4.3)
zeD zey

Further, if V(Ny)< D and w€V(N,), then

(V) = m(w) >min 7(2). 4.4)

ZEY

LEmumA 4.4 (The Minimum Principle 11). Let a and b be points in V(Ng) N R with

a<b. If x€(a, b) then
a(x) > min {n(a), 7(d)} (4.5)

with equality holding if and only if x€ V(Ny).
LEMMA 4.5. Suppose that VE€G and z€ V(Ny). Then 7*(V)—1<m(z)<a*(V).
LEMMA 4.6. For n>1 the set A, ={z: m(z)>n} is open. Further, ;=n—1 on 6A,—L.

We remark immediately that the upper bound in Lemma 4.5 follows immediately from
(4.2) and we shall need this before proving Lemma 4.5. Also, with reference to Lemma 4.6,
it is false that w =» —1 on A,,. This is easily seen as Lemma 4.2 implies that any parabolic
vertex p is a point of accumulation of points at which 7 = oo; thus 7(p) < + o and p €A,
for all n. It is true, however, that w=n—1 on the boundary of each component of A, and

this will be proved in the proof of Lemma 4.8.

Proof of Lemma 4.2. If z is an ordinary point of G, then z€ V(N;) for some V in G.
The same holds if z is fixed by a parabolic element in G [13, p. 149] and so in both cases
q(z) Sa*(V) < + oo,

Now suppose that 7(2) < + co. The result is obvious if 7z(z) =0, thus we assume that
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n(z) 2 1. The definition of & implies that there exist sequences z, and V, with z,€ V, (V,),
z,—>2 as n—>°0 and

7(2) = 7(z,) =7 (V ). (4.6)
We first rule out the possibility that there are infinitely many distinct V,, in the sequence.
If so, we may consider a subsequence and relabel; equivalently we assume that V=V,
if n=m. Asa*(V,) =1, each ¥V, is adjacent to some U, with 7z*(U,) =a*(V,) —1 and so there

exists a sequence w, satisfying
wy, € Vo(No) N Un(Ho).

As the V,, are distinet and as oo €N, the euclidean diameter of V,(N,) tends to zero as
n—co and 80 w,—~z as n-> oo, This implies the existence of a sequence w, with w, € U, (N,)

!
and w,—~z as n—oo, Thus

n(z) < lim zw(wy) =a*(V,) —1

which contradicts (4.6). Thus there exists a V in ¢ with V,=V for infinitely many =.
For these n we have 2, € V(IV,) and z,~z as n—co. Thus z€ V(Ny) and z is an ordinary point

or a fixed point of some parabolic element in 6.

Proof of Lemma 4.3. We first establish (4.4). Suppose that we V(NV,) and V(N,)<D
and, for convenience, put *(V)=n and V=7V,. It follows that ¥V, is adjacent to some
Vg with 7*(V,_;) =n—1. This process can be continued and so we construct a sequence

of elements
L=V Vi oty Vo=V

in G with z*(V,)=r and V, adjacent to V,,; (r=0, ..., n—1). This implies that there exist

points w,, ..., w,_; such that

w, €V, (No)N V,1(No) (=0, ...,n—1)
and 5o K= [rl;njo V. (N)]U {20, .. s w1}
is arcwise connected. Further, we have <<n—1 on
K, = [7:9: V(N U {wg, ..., wp1}

as n(w,) <r. Now construct a simple arc v lying in K and joining w (inside y) to o (out-
side y). It follows that T meetsy at a point z,, say, and by our initial assumption z, € K,. Thus
¥ (V) =n>za(z;) > min 7(2)
zey

and this is (4.4).
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To prove (4.3) define

D*=Dn UV,
VeG
and note that if 2€ D, then

m(z)= lim inf m(w). 4.7)

w—>2, weD*

Let we€ D*, then w€ V(N,) for some V. If V()< D then by (4.4),

a(w)=a"(V)>min n(z).

The alternative hypothesis, namely V()& D, implies that V(NN y=9 and so

a(w) =7*(V) = min 7(2).

In any case, then, this last inequality holds and we see that 7z >min,., 7(z) on D* and hence,
by (4.7), on .D. This establishes (4.3) and completes the proof of Lemma 4.3.

Proof of Lemma 4.4. This follows easily from the Minimum Principle I. We
join @ to b by a Jordan arc y, which lies entirely in V(IN,) N {Im (2) >0} except for the
end-points @ and b. Then y,U#, is a closed Jordan curve y lying entirely in V(Ng). If
x€(a, b) then x lies inside y and so by (4.3),

7t(z) 2 min 7(2).
zey

As w<a*(V) on V(Ng) with equality on V(N,) we see that
min 7z(z) = min {r(a), 7(b)} (4.8)

zey

and so (4.5) follows. Suppose now that equality holds in (4.5). We can find
sequences z, and V, such that 2, €V, (&,), V,€Q, a(z,)=n(x) and z,—~x as koo, If
Vi(Ng)< D, then (4.4) (with V=1V, and w=2,) and (4.5) (with equality holding) contradict
7t(z) =m(x). Thus Vi (N,) ¢ D and so, as V,(N,) meets D, we see that V (N;) meets y. This
implies that V,(N,) meets V(N,y) and so V=V for all k. Thus z, € V(N,) and so € V(Ny)

as required.
Proof of Lemma 4.5. To establish the lower bound we consider two cases.

Case 1. Suppose that 2 §L. Then there exists a finite maximal subset V,,..., V of G
with, say, V=V, and a neighbourhood N of z such that

2€ N V.N), N U 7,0, (4.9)

This implies that each V, is adjacent to V,(=V) and so by (4.1) and (4.2),
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a*V,)z2aX(V)~1 (1<r<s)
and 7t(z) = min {7*(Vy), ..., z%(V,)}

The second inequality in this case is a trivial consequence of these last two results.

Case 2. Suppose that z€L. The upper bound for n(z) established above together with
Lemma 4.2 shows that z is the fixed point of some parabolic element P in G. As z€E0V(N,),
there exists a horocycle H (an open disc lying in the upper half-plane and having z on its
boundary) with

H Uﬁcr+lj;P'V(N5).
Next, choose a point z, in a free side of V() and note that the circle y having the segment
with end-points z; and z as diameter lies entirely in V(N,) U {z}. For each integer r, write
v, =P'(y) and let D, be the interior of y,. For sufficiently large r, say r=Fk, », and y_, lie
on different sides of z (which lies on R!') and the set

DyUD_ Uy Uy U [ITHkPrV(N(;)]

covers a neighbourhood N of z. Now let 7'(V,) intersect V. Then either 7'= P"V for some
r satisfying |r|<k or T(N,) is contained in either D, or D_,. If T(N,)< D,, we deduce
from (4.4) that

7*(T)> 1 + min (w) = 1 + min {z(z), #P*V)} > 1 + min {z(z), x* (V) — 1}

weYy

=min {1+ a(z), 7*(V)}

the last inequality holding as for each 7, ¥V and P’V are adjacent (at z). A similar
inequality holds if T'(N,) < D_, and the same reason shows that if 7= P"V for some r

satisfying || <k, then
a*(Tyz=*(V)—-1.

Thus in all cases a*(T) = min {1 +x(z), z*(V)—1}

and so

7(z) = lim inf 7o(w) > min {1 +n(z), 2*(V) =1} =2*(V)~1 (BE= U T(N,) n N)

w—>Z, WeE Te@

as required.

Proof of Lemma 4.6. Let z€A,, then there exists a neighbourhood N of z such that
azn on Uyeg V(N NN. It follows from (4.2) that #>n on N and so A, is open.
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Now suppose that 2 is an ordinary point on 8A,. Then there exists a maximal finite
subset V5, ..., V of G satisfying (4.9) and by (4.1) and (4.2),

7(z) =min {7*(V,): r=1, .., s} 2max {z*(V,):r=1,.,8} -1 >2n-1

as 2€(A,). As z€A,, n(z)<n—1 and so x=n—1 on A, —L.
Our proof of Theorem 2 depends upon a detailed examination of the topological and
metrical properties of the sets A,,. Clearly the sequence of sets A, is monotonic with #, thus

we can label the components of A, as A(zy, ..., ¢,) in such a way so that
Ay, ooy LD A(y, vy Ty Tpgq)-

For the sake of brevity we introduce the following notation. We denote by 1, (n=>1) the
set of n-tuples i=(¢,, ..., ;) for which A(q,, ..., 4,) is defined and rewrite A(sy, ..., %,) as
A(i); we also write I for U3_¢L,. Next, we denote by Z(i) the set of 1-tuples j = (§) for which
A(ty, ..., By, §) is defined and write A(, j) for A4y, ..., i,, j) where jEZ(i).

In order to proceed with the examination of the sets A, we make the following defini-
tions. We write

A, (i) = {z€A(i): =(2) = n}

and note that A(i) is the disjoint union of the sets

A, (), U AG,j) (4.10)
jezd
Next, we write =M, NE, o(i)=AG)NR' and o,{i)=A,{i)Nn R

Finally, we denote by G(i) the set of V in G with the properties (i) V(Ny)<A(i) and
(ii)) #*(V)=n where i€l,. If UEG, if

U(N)NAG{) 29
and if #*(U)=n, then U €G(i).

The outline of the remainder of the proof of Theorem 2 is as follows. We see from (4.10)

that ¢(i) consists of the disjoint union of the sets

o@, U ofi, ) (4.11)

jez)

We first prove three lemmas which describe G{(i) and the topological properties of the of(i).
After this, we need two more lemmas which give information on the metrical properties

of the sets o(i). Then (4.11), these last two lemmas and Lemma 4.1 yield the required result.

Levmma 4.7. (i) The o(i) (i€L,) are disjoint open intervals and hence are the components
of o,.
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(i) A1) ts the closure relative to A) of Uveca V(N,).
(i) Each component of a,(i) is either (a) a parabolic vertex on 0V(N,) for some V in
G(i) or (b) the closure relative to o(i) of a finite union of intervals V (t,) where V,€G(i) and the

7, are free sides in N,.

LemmA 4.8. Bach interval o(i, j) abuts (and so lies between) intervals V(r) and U(ry)
where U and V are in G(i) and where each of T and t, is a free side in N, or a parabolic vertex
on ON,,.

(1) If, for some choices of U and V, we have U=V then this choice is unique and
A, j)=V(A(r)) for some r in L.

(ii) If, for all choices of U and V, we have U &V, then U and V are unique and A(i, j) =
V(X) where T is a component of the complement of NoU (V-1U)(Ng). Further, this latter set
contains ot least one ordinary point.

The transformations U and V in Lemma 4.8 are not necessarily unique. However,
(1) and (ii) do show that if there is more than one possible pair (U, V), then among all such
possible pairs, there is a unique pair with U=V. Lemma 4.8 also implies that A(i, j)
is bounded by one (if U=V) or two (it U =V) regions U(N,) and V(N,) and that these
regions are unique if chosen according to (i) and (ii). Typical situations in cases (i)

and (ii) are illustrated in figures 1 and 2 below.

V(Ny)

Fig. 1
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In the course of the proof of Lemma 4.8 we shall apply the transormation V- to the
situation described in figures 1 and 2. This leads to the situations illustrated in figures
3 and 4 respectively. In particular, these figures illustrate the A(r) and ¥ occurring in (i)
and (i) of Lemma 4.8.

No= VUV (W)

Vi)
VUW)

Vi) Vi)
Fig. 4

Lemma 4.9. There exists a positive integer K (depending only on G) such that for each

iin I, G(i) in the disjoint union

Qi) = G°{H) U ... U GX(i) (4.12)

where G°(i) has at most K elements and where G'(i) (1 <r<K) is a subset of a set of the form
{TP}V,: n an integer} where T, P, V, are all in G, P, is parabolic and where Py, ..., Py,
Vi oo, Vi depend only on G.

Proof of Lemma 4.7. We note that o, = Ujc1,0(), thus we need only show that the
(i) are connected for they are obviously disjoint relatively open subsets of R!. Suppose now
that o and b are two points in o(i) with @ <b. Then as A(i) is open and connected we can join
@ to b by a curve y in A(i) in such a way that y consists of only finitely many straight line
segments. As V(N,) is symmetric with respect to the real axis for all ¥ in G we have
7(z) =n(z) and so A, and the A(i) are also symmetric with respect to the real axis. If we
now let $ be the reflection of ¢ in the real axis we see that every @ in (a, b) either lies on y

or lies inside a closed Jordan curve consisting of an arc of y and an arc of $. In the first
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case xE€A(); in the second case the Minimum Principle I implies that n(z)># and so
x€A,. It follows that [a, b]= A, and so [a, b]< A(i). Thus [a, b]< (i), o(i) is connected and
the proof of (i) is complete.

The proof of (ii) is easy. First, n =n (i€1,) on E(i)=Uveco V(&N,) and so if z lies in
the closure of (i) relative to A(i), then both n(z) <n and z€A(). As z€A(i), #(2) =2n and
80 71(z) =n, that is €A, ().

Conversely, suppose that z€A,(i). If z does not lie in the closure of H(i) relative to A(i)
then there exists a neighbourhood N of 2z contained in A(i)—E(i). If we€N N V(N,) for
some V, then m(w)=n and #n*(V) +n and so s(w)=n+1. This implies that n(z)=>n+1
contrary to our assumption that z€A,(i), thus (ii) is proved.

We now prove (iii). Let ¢ be a component of ¢,(i); we again consider two cases.

Case 1. Suppose that o N L=+¢. By Lemma 4.2, ¢ contains the fixed point p of some
parabolic element in . As ¢ is a non-elementary group, there exist limit points of & which
are not fixed points of elements of G and which are arbitrarily close to and on both sides of p.

Lemma 4.2 implies that 7 = 4 oo at these points and so o ={p} which is of the required form.

Case 2. Suppose now that o containg only ordinary points of ¢ and let ¢ have end-
points o and f where a <. We first show that «<f. If €0 then « lies in some free side
V(z) of V(IV,) or is the common end-point of two abutting free sides V(z) and U(zy), say.
In the first case 7*(V)=n(x) =n and so V €G{(i) while in the second case, the set V(No)U

U(Ng) contains a neighbourhood of z and so
n =n(z) = min {z*U), n*(V)}.

It follows that V(7)< ¢ in the first case while in the second case either V(r)<o or U(r,)<o.
In any event, «<f. The same reasoning as in Case 1 shows that [«, f] consists entirely
of ordinary points and, being compact, therefore meets only a finite number of free sides.
If a free side meets ¢, then it is contained in ¢. Hence ¢ contains a finite number of free
sides and meets no other free side. It is now clear that ¢ is the closure relative to o(i) of

the union of these free sides and the proof of Lemma 4.7 is complete.

Proof of Lemma 4.8. Lemma 4.7 (i) implies that o(i, j) is an open interval, say (a, b)
where ¢ <b and where @ and b are not in A, ;. Thus n(a) <n and z(b) <n. We first show
that n(a) == and =(b) =n. Lemma 4.6 shows that n{a)== if ¢ is an ordinary point of @,
thus we assume (by Lemma 4.2) that a is a parabolic vertex of G. The situation at such
points is described in the proof of Lemma 4.5 (Case 2) and we use the notation used there.
For suitably large |r|, there exist points in P"V(N,)UP~"V(N,) lying arbitrarily close to
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and on either side of a. It therefore follows that some of these points lie in ¢(i, §) and so for
some 7, say r=Fk, a*(P*V) 2n-+1. As a€2P*V(N,), Lemma 4.5 implies that

afa) Za*(P*Vy—12n

and so we see that s(a)=n. Similarly, we have 7z(b) ==.
Next, Lemma 4.7 (iii) implies that there exist U and V in G(i) and 7, and 7, either a
free side in N, or a parabolic vertex on N, with ¢ € V(z,) and b € U(r,). We now show that

8AG, §) < 2U(N)UV(N,).

The argument used to prove Lemma 4.7 (i) together with (4.4) shows that if « and § (x<<f)
lie on the real axis and are also in the closure of A(i, j), then z=% +1 on («, §). This implies
that a <o and f<b and so

8A(i, j)N B! = {a, b} <aU(N) UV (). (4.13)

Now let w€0A(l, j) and suppose that Im (w)=0. Lemma 4.6 implies that m(w)=n
and so there exists a T in G(i) with w€oT(NV,). Next, let x, be any point in a free side of
T(N,). Then, by the hyperbolic convexity of the intersection of the upper half-plane and
T(N,), the circular arc joining w to @ and passing through x, lies entirely in 7T'(¥,) except
for its end-points w and @. Next, join w to @ by a curve in A(j, j) that meets the real axis
at exactly one point, say y,. Thus ¢ <y,<b and, asz =n on a neighbourhood of z, (T € G(i)
and so n*(T') =n) we see that either x,<a or x,>b. We tirst assume that xy<<a. Then as the
interval (z,, y,) lies inside the closed curve y constructed above and passing through z,,
w and @, we see that the point ¢ lies inside y. Thus V(XN;) meets the interior of y. By con-

struction
y < TN U {w, @} UAG, j)

and so either V(N,) meets T(N,) or V(IN,) lies inside y. The latter assertion is false as in

this case we can deduce from the Minimum Principle I, (4.4), that

n=n*V)>1+minn(z) =1+a*(T)=1+n

zey

which is false; thus V(N ;) meets T(N,) and V="T. 1f x,>b a similar argument shows that
U =T and we have proved that, relative to the union of the upper and lower half-planes,

OA®, NSOV (N HUU(N,). (4.14)
Using (4.13) we see that, as asserted above, this is valid relative to the extended complex
plane.

17— 1712907 Acta mathematica 127, Imprimé le 11 Octobre 1971
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Now note that as A(i, j) is connected, it lies in one component of the complement of
V(No)U U(Ng). Using (4.14) a simple topological argument shows that A(i, j) is in fact
this component and also (as 0A(i, j) meets both dV(NV,) and 8U(N,) and is connected) that
there exists a w* (see figs. 2 and 4) satisfying

w*E€BV(N,) NoU(N,). (4.15)

We may thus write A(i, j)= V(X) where £ is a component of the complement of
NoU (V-1U)(N;) and where Ny and V-1U(Ng) have a point in common, namely V-1(w*).

If, for some choices of U and V, U=V, then 2, is a component of the complement of
Ng and hence X = A(r) for some r in I, (this is the definition of I,). Suppose also that U, and
V, are two other choices of U and V with U, =V,. Then A(i, j) = V;(A(8)) for some 8 in I,

and so

A(r) = V-1V, A(s).

This implies that V;=V. A similar argument shows that U is unique and this completes
the proof of (i).

Now suppose that for all choices of U and V, U =:V. The point w* oceurring in (4.15)
cannot be a or b (otherwise we could choose U=7V), thus by (4.13), Im («*) =0 and so
w* is an ordinary point. Thus to complete the proof of (ii) we need only show that U and V
are unique.

Suppose that a€ V(No)N V(Ng) and z*(V)=n*(V;)=n. Choose points z, and #, in
free sides of V(NV,) and V() respectively and suppose that V +=7V;. Thus x, =+, and we
may suppose without loss of generality that x,<z;. We note also that z, and =, lie outside
(@, b). If 2y >b the Minimum Principle IT applied to the interval (a, 2,) shows that z=n +1
on (a, z,) except at points in V(N,). We thus see that b€ V(N;) and for some choice of U,
U=V. This possibility has been excluded, thus z,<ae and similarly, x; <a. This gives
Z2y<x; <a and the Minimum Principle 1L applied to (2, @) shows that n(z,)=n+1 or
2, € V(Ng). The inequality is false, thus ¥ = V. A similar argument shows that U is unique

and the proof of Lemma 4.8 is complete.

Proof of Lemma 4.9. Referring to and temporarily using the notation used in Lemma
4.8 (ii), we see that whichever ¢(i, j) is chosen, the possible choices of V-1U are finite as
NoN (V-1U)(Ng) contains some ordinary point. Thus the possible choices of the sets T as
deseribed in Lemma, 4.8 (ii) are also finite. We now say that a set is a 2-set if and only if it
is of the form A(r) for some r in I, (see fig. 3) or of the form X as described in Lemma 4.8 (ii)
(see fig. 4). The point here is that the A(i) can only arise as images -of X-sets. Indeed,

Lemma 4.8 completely characterizes the A(i) for i in I, n>2 and we see that in this case
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A(l) =T(Z,) for some T in G and some X-set, say X, If i€];, A(i) is itself a X-set and we
put 7 =1I. It now follows that for each i in I, there exists a X-set X, and a 7' in G with

AG) = T(S,).

Next, as we have seen above, there are only finitely many 2-sets and these each have a
relatively simple structure (see figures 3 and 4). The boundary of each Z-set consists of fini-
tely many sides and vertices of images of Ng. It follows that there are only finitely many
sides of images of N, which lie on the boundary of some X-set; hence only finitely many
images Q(Ny), say at most K, which meet one of these sides in an ordinary point. Next,
there are only finitely many parabolic vertices, say K,, that lie on the boundary of some
2-set. It is more convenient to assume that K, =K, and this can be arranged as follows.
If K,>= K, we may replace K, by K, in the above argument without destroying its validity;
we then write K=K, If K;>K, we put K=K, and adjoin (K;-K,) other parabolic
vertices to our above set of parabolic vertices to give a set {p,, ..., px} of parabolic vertices
which now includes all those parabolic vertices lying on the boundary of some X-set.
Thus there exists an integer K and a set {p, ..., pg} of parabolic vertices of ¢ (both depend-
ing only on @) such that

(a) there are at most K elements Q in G such that the intersection of Q(No) and the
boundary of some Z-set is a non-empty set of ordinary points of G' and

{(b) if p is a parabolic vertex on the boundary of some X-set, then p=p, for some r
in {1, .., K}.

Now let i€, where n>1. If V€0(i), then #*(V)=n and V is adjacent to some U with
a*(U)=n—1. It follows from Lemma 4.5 that mx=n-—1 at some point of 8V (N,) and so
oV (N NOA() =D. Recalling that A(i)=7T(Z,), we see that

TV (NN A(Z,) = 2.

We denote by G°(i) the set of V in G(i) for which 7'V is some element @ as described in
(a) above. Thus G9(i) contains at most K elements. If T-1V(Ng) meets 8%, at some limit
point, this point must be one of the parabolic vertices py, ..., px and we denote by G'(i)
the set of V in G(i) for which

P.eT-1V(N,)NOZ,.

If under this classification some V appears in more than one set G'(i) we merely regard
V as being in that set for which ¢ is minimum and not in the others; thus G(i) has the de-
composition (4.12) and it remains to establish the description of G'(i), 1<r<K as

given in Lemma 4.9.
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For each p, we choose V, such that p, is a parabolic vertex on &V, (N,). Next, we choose
P, to be a parabolic element in (¢ that generates the stabilizer of p,. Our earlier choice
concerning the centre of N, implies that the only images of N, which have p, on their
boundary are the images PPV (&,) for integral m. It follows that if V€G'(i), then (as
above) p, € T-1V(N,) and so T-1Ve€{PyV.}. Thus

Gr(i) = {TP]V,: integral m}

where P, is a parabolic element in ¢ and where V,€@. This completes the proof of Lemma,
4.9.

Before proceeding to the metrical properties of the ¢(i) we need to introduce our last
piece of notation. First, we recall from (4.11) and Lemma 4.7 (iii) that o(i) is the

disjoint union of the following sets

(@) o, ), jE€4(D),

(b) V() where VEG(i) and 7 is a free side in N,
and

() E= U 8V(Ny)n R

VeGm

In fact, E consists only of end-points of the intervals described in (b) and parabolic
vertices on oV(N,), VE€G(); thus £ is countable.

Now let A, be the smallest interval containing (i.e. the convex hull of) V(Ng)Nn RL
The Minimum Principle IT implies that 1,<o(i) and also that the 4, (V €G{(i)) are non-
overlapping. Note that [Jveemdy certainly includes all sets V(t) as described in (b) above.
It also includes some sets o(i, j) as described in (a); namely those that are described in
Lemma 4.8 (1), for in this case, o(i, j) <Ay Apart from a subset of E, then, o(i) — Uveam Ay
consists of the union of those o(i, j) described in (a) above which are also described by
Lemma 4.8 (ii). In this case we assume that A lies to the left of o(i, j), Ay to the right of
o(i, j) and adjoin ¢(i, j) to A,. The intervals ¢y, (V €G(i)) are the intervals A, with o(i, j) ad-
joined where applicable. More precisely, if the right hand end-point of 4., say fy, is the
left-hand end-point of some o(i, j), then o,=2,U0(i, j); otherwise 1,=0y. It follows that

o)= U oy
VeGd)

and that the oy are non-overlapping. Thus

lo@)|=_3 [av]. (4.16)

VeGd

Next, every interval as described in (a) or (b) above is a subset of exactly one oy, V€G(i),



INEQUALITIES FOR CERTAIN FUCHSIAN GROUPS 253

and the number of intervals of the type (a) and (b) contained in any one ¢y is bounded above,
the bound being independent of V. Another important property of the ¢y is expressed in
the following lemma.

LEMMA 4.10. There exists a positive § depending only on G such that if z€ Vo), then
|z— V(o) =6 >0. (4.17)

Proof. The definition of ¢y shows that V~(¢y) consists of a union of free sides of N,
and some sets of the form XN R! where X, is a Z-set as defined in the proof of Lemma
49. As co€N,, there exists a positive § depending only on G such that (4.17) holds
whenever 2 lies in a free side in N, Thus we need only establish the existence of such a
6 for sets of the form 2N RL

Let (i, j) be one of the intervals in ¢y, VE€G(i). Then we may write o(i, j) = (e, §)
and use the notation of Lemma 4.8 where V() occurs on the left of o(i, j) and U(z,) on
the right of of(i, §).

If the hypotheses of Lemma 4.8 (ii) hold, that is if U 4V for all choices of U and V,
then a free side of V(V,) must lie to the left of « (this is proved in the proof of Lemma 4.8
(ii)) and similarly, a free side of U(N,) must lie to the right of 5. Thus, in the obvious sense,
oo is separated from o(i, j) by free sides of U(N,) and V(N,). Thus V-1co is separated from
V-1, j)) by free sides of N, and V-1U(N,). As V*U(N,) abuts N, at some ordinary
point, we see that there exists a positive d, depending only on & and such that a free side
of V1U(N,) has length at least ;. Thus (4.17) is established in this case.

There remains the case when for some choice of U and V, U =7V. In this case there
may exist free sides in V() lying both to the left and right of a(i, j). If so the argument
given in the preceding case is valid. If not, we may assume that all free sides of V()
lie to the left of o(i, j) and certainly there is at least one free side of V(N,). It follows that
f is a parabolic vertex on 6V(N,) and so there exists an image W(N,) abutting V(N,)
on a side through f§ and such that a free side of W(V,) lies to the right of 8. We now con-
sider the two possibilities (a) W =1 and (b) W=1I. In (a), o is separated from o(i, j) by
a free side of V() and a free side of W(,) and these two images of N, about along a
side. This is precisely the situation we have already considered, namely when U=V and
8o we need only consider (b). In this case V() abuts N, along a side ending at a parabolic
vertex and so V is one of a finite number of parabolic generators of G. As oo ggy, V1o g
V-lo, and a § satisfying (4.17) exists in this case too as we are only considering a finife
number of possible ¥. Thus Lemma 4.10 is established.

We now select a compact sub-interval 7* of RN N, such that |[7*| >0. This interval

will remain unaltered throughout the remainder of the paper. Our next lemma may be
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explained intuitively as follows. We have seen that each o(i) is the disjoint union of the
sets of types (a), (b) and (c) (these are the sets used in defining the o). There may be
infinitely many sets of types (a) and (b) in ¢(i); however the general form of these sets is
determined by G{i) and this is adequately described by Lemma 4.9. If no parabolic elements
were present, ((i) would be finite and we could easily complete the proof using a lemma
similar to Lemma 3.4. As we are allowing the existence of parabolic elements, we see that
G(i) may be infinite. In this case we shall use Lemma 4.1 (a result similar to Lemma 3.4
but applicable to infinite sequences). This requires the sets of types (a) and (b) to satisfy
some regularity condition; this is ensured by Lemma 4.9. The next lemma is simply a veri-
fication of the required regularity condition. For technical reasons we prefer to discuss
images of 7* rather than images of free sides of N,. This is done in (i); in (ii) we discuss the

regularity of the o(i, ).

LeMma 4.11. (i) There exists a sequence A, (n=1, 2, ...} of positive numbers depending

only on G and such that
(a) > AL < +ocoift>1 and
n=1
(b) for all i in I, there exists an enumeration {V.,} of G(i) such that |V, (z*)| <4,|o()].

(ii) There exists a sequence B, (n=1,2,...) of positive numbers depending only on G
and such that
(¢) > Bi<+4ooift>% and
n=1
(d) for all i in 1, there exists an enumeration {a(n)} of {o(i, §): j€Z(i)} such that |o(n)| <

B,|o(i)].

Temporarily assuming the validity of this lemma we can now complete the proof of

Theorem 2. First, we write

b
V(z)=jjid, ad—bc=1 (4.18)
and note that if V<=1, then
1 dx _
V(T*)ZWL* PR e V_Ioo|2>m]c[ 2 (4.19)

where m is positive and depends only on G. Next, Lemma 4.10 implies that

, 1 - <\ (dx) 2
lov| <J‘|2—V—1oo|>5lv (z)|.]dz[<W(f_w+L ) (?) ~5[of (4.20)
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The inequalities (4.19) and (4.20) imply that

2
lov] < @) [V(x)] (4.21)
and so > ol < |ov| =1V ¥ < |ov] (1 —Emd).

o, j)Co‘V
The fact that each ofi, j) is a subset of some o, (V €G(i)) together with (4.16) implies that

> e, i<~ %ma)vezmj oy|=m,|o()] (4.22)

jez

where m,; depends only on G and satisfies 0 <m,<1. Lemma 4.1 (with 4, and a, replaced
by B, and |o(n)|-|a(i)|* respectively) and Lemma 4.11 show that if ¢ satisfies 5/6 <t <1,

then I | I l
_‘Z(i’i)t (o(i,j)) -
je;@('f’(i)l 2ol o)) 700

where M depends only on (. An application of (4.22) yields

2 o plF<|o®[ {m + M1 -1} <0|o@) (4.23)

jezd
where ¢ is now chosen in the interval (5/6, 1) so as to satisfy
0<f=m+M(1—-1t)<1

(this is possible as 0<<m, <1 and M >0). From now on the symbol ¢ is reserved for this
fixed value that depends only on G. We now deduce from (4.23) that

2 JoMmf=3 > o i)f<03 o)
icl,

kelp,+1 iel, jezd
and so Slof= 2> Dlo@f<@—-0)"13 o)< + oo (4.24)
iel n=1 iel, iel,

as I, is a finite set, the A(i), i€I, simply being the components of the complement of Ng.
Next, Lemma 4.1 and Lemma 4.11 (i) yield the inequality

E’Eﬂ)t (LV(T*”) -
Veza<i)(|0(i)l <Ve%:(i) [ (1)

(where M, depends only on &) which in turn yields
> VM f<lo®[ {1+ 2} (4.25)

Vecd

as £>0 and as (4.16) implies that
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VeGd

> V< 2 Jov|=]o)]-
Vecd
If we now combine (4.18), (4.19), (4.24) and (4.25) and note that

{Iyul U eil=¢

we deduce that > e < 4o
Ved, v+l
which is well known to be equivalent to the conclusion (1.3) of Theorem 2. It therefore

only remains to prove Lemma 4.11.

Proof of Lemma 4.11. The proof of (ii) follows easily from (i) and so we temporarily
assume that (i) holds. Let o(n) be an interval as described in (d) and suppose that o(n)<
ovy where V, €Q(i). Then (4.21) and (b) imply that

[o(n)] < |ove| < (2/0m)| Vi(z*)| <(2/0m) A, |o(D)].

We thus define B, =(2/dm) A, and so (d) holds. Each # determines a unique k and the num-
ber of g(n) satisfying o(n)<o, for any given V is at most K; where K, is the number
of components of V(Ng)N B! (or equivalently, of Ngn R!). This implies that

it

S Bi<K,@fom) 5 4,
and so (c) follows from (a). We have now shown that (ii) follows from (i).

The proof of (i) uses the decomposition of G(i) as described in Lemma 4.9, (4.12).
First, we may clearly define 4, =1 for those V in G°(i). Next, it is clearly sufficient to estab-
lish (i) in the case when {V,} is an enumeration of some G"(i) rather than of G(i) and this is
simpler because Lemma 4.9 gives an explicit characterization of the G"(i). Finally, it is
sufficient to find such a sequence A, where n assumes all integral values.

We now recall the following facts from Lemma 4.9 and its proof. If i€l, and n=1,
then T=1. If however n=>2, then we write A(i)=A(j, k), k€Z(j) (more explicitly,
1=(4g, oy 2), §={815 - 0p_q), K =14,) and note that T is the V appearing in Lemma 4.8 (i)
and (ii) if, in the statement of this lemma, we replace i and j by j and k respectively and if
we agsume in (ii) that V(t) appears on the left of (i, j). If n>2 then, we have n*(T)=n—1,
T eG(j) and o(j, k) (=0(i)) meets T(N;) at the left hand end-point of (], k). As 7' is the V

appearing in Lemma 4.8 we have the vital relations

o(i) < oy (4.26)
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and Al) =T(Z,) (4.27)
where X2, is some X.set. The general element V in G'(i) satisfies

V{z*) < o(i) (4.28)

and by Lemma 4.9 is of the form V =TP; V,. Writing t*(n,7) =P7 V,(z*) we see from (4.26),

(4.27) and (4.28) that
T*(n, r) < TYHoy) (4.29)
and also that

V@) _ | T (n, )|
le®| |7, nRY|

-1
= (f lx—-T‘loorzdx) (fx . |x—T“1w]‘2dx) <m|t*(n,7)| (4.31)
*(n, 1) o0 R?

=m| PV, (%)

(4.30)

where m depends only on @. This follows as (4.29) allows us to use Lemma 4.10 in estimating
the numerator in (4.31) while the denominator in (4.31) is bounded below by a quantity
depending only on G. This estimate has been made under the assumption that »>2.
If n=1, T=1I and (4.30) reduces to (4.31), thus (4.31) holds for #>1. The interval V,(z*)
is one of a finite number of compact intervals in B! none of which meet the orbit of oo and

P, is one of a finite number of parabolic elements in G. We prove

Lemma 4.12. There exists a positive number M (depending only on G) such that
[ P?V,(x*)| < Mn—2 (4.32)

With this available we put A, =Mn~2 for each integer n for which TPV, is in G(i).
This proves Lemma 4.11 (i) for G"(i) and hence in general. The last stage, then, of our proof
of Theorem 2 is the following proof.

Proof of Lemma 4.12. The set
F =V, (t*)U..UV%

is a compact set not meeting the orbit of o© and not containing any p,. Thus for each r

and each »
| P2V, ()| <|PF(F)| < + oo, (4.33)

Next, put o =inf {[z—p,|: 2€F, r=1, ..., K}.
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n . — z—pr‘
AS PT (z) pT (z‘“pr)k,”‘l‘l
d -2
for some k,, we have £P," @)|=|@—p,) nk,+1|

and so for all sufficiently large =,

F
Pl o1 F| (o],

A O e e

Clearly this and (4.33) imply (4.32) and the proof of Theorem 2 is now complete.
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