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1. Introduction 

In  one of the earliest papers on automorphic functions, Poincarg constructed func- 

tions automorphie with respect to a Fuchsian group by  means of the now well known 

Poincar@ series. If  G is a Fuehsian group with oo an ordinary point of G, the convergence 

of the Poincar6 series depends upon the convergence of the series 

E(G,~,t)= ~ Iv'(~)l ~ 
VeG 

where z is any ordinary point of G. In  1882, Poincarg [15, p. 206] showed tha t  this series 

converges if t > 1. 

Now suppose tha t  G is finitely generated. I f  G is of the first kind, then [13, p. 181] 

E(G, z, 1)  = + oo (1 .1 )  

whereas if G is of the second kind, then [13, p. 178] 

~(G, z, 1) < -4- oo. (1.2) 

An obvious question, then, is to what  extent can (1.2) be improved upon. In  this paper we 

show tha t  (I.2) is best possible when regarded as being a s tatement  applicable to all finitely 

generated Fuchsian groups of the second kind but  nevertheless can be improved upon for 

any given group. More precisely, we prove the following two theorems. 

T H ~ o ~ ]~ ~ 1. Given any number t satisfying t < 1, there exists a / in i te ly  generated Fuch- 

sian group o] the second kind with oo an ordinary point o] G and with 

~(G, z, t) = + oo 
]or every ordinary point z. 



222 A.F. BEARDO:N 

T~wOR~M 2. Let G be a finitely generated _Fuehsian group o/the second kind with 

an ordinary point o/ G. Then there exists a real number t satis/ying t < 1 and 

~(G, z, t )<  + ~ (1.3) 
/or every ordinary point z. 

Now let L be the set of limit points of G, denote by re(L) the linear measure of L and 

again assume that  G is a finitely generated Fuchsian group. If  G is of the first kind then 

obviously re(L) >0  whereas if G is of the second kind, then re(L) =0  [13, p. 324]. We prove 

that  this latter result is best possible when regarded as a statement applicable to all 

finitely generated Fuchsian groups of the second kind but can also be improved upon for 

any group. More precisely, we prove the following two theorems. 

THEOREM 3. Given any number t satis/ying t < 1, there exists a finitely generated Fuch- 

sian group o/ the second kind with co an ordinary point o/ G and with L having infinite t- 

dimensional Hausdor// measure. 

TH~,OR~M 4. Let G be any finitely generated Fuchsian group o/the second kind. Then 

there exists a real number t satis/ying t< 1 such that L has zero t-dimensional Hausdor]/ 

measure. 

The striking parallel between the first two and the last two theorems is explained by 

the next result. 

T H E O R ~  5. Let G be a finitely generated Fuchsian group with c~ an ordinary point o/G. 

1 / t  is a real number such that 

~ ( G ,  z, t) < + ~ (1.4) 

]or some ordinary point z, then L has zero t-dimensional Hausdor]] measure. 

We note immediately that  Theorem 1 is an immediate consequence of Theorems 

3 and 5 and that  Theorem 4 is an immediate consequence of Theorems 2 and 5; thus we 

need only prove Theorems 2, 3 and 5. The proofs of Theorems 2 and 3 are long and for the 

benefit of the reader it seems desirable to discuss these results in a more general context 

before giving the proofs. 

]First, we write mt(L ) for the t-dimensional Hausdorff measure of L and use d(L) 

to denote the Hausdorff dimension of L. This is defined by 

d(L) = inf {t > 0: mt(L ) = 0} 

and the details of the construction of the measures m t can be found, for example, in [5]. 

Next, we write 
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O(G) = inf {t>O: ~.(G, z, t )<  + ~ }  (1.5) 

where z is an ordinary point of G. As is well known, O(G) is independent of z. An immediate 

consequence of Theorem 5 is the following (weaker) result. 

Co~or.LA~X. In the above notation, d(L) <<.O(G). 

The conclusion in Theorem 5 has been proved in the case when G is a Schottky group 

by Akaza [2], [3] and [4]. Our proof of Theorem 5 is, however, quite different. 

Theorem 5 contains two well-known but  non-trivial results. I f  G is a finitely generated 

group of the first kind, then ml(L ) > 0  and so using Theorem 5 we can deduce (1.1). I f  G 

is a finitely generated group of the second kind, then it is very easy to establish (1.2) and 

so, using Theorem 5 again, we can deduce tha t  ml(L)=0.  

In  [9] Dalzell proved that  if G is a finitely generated Fuchsian group of the second 

kind and if G contains no parabolic elements, then 

IV'(z)l log (IV'(z)1-1) < + oo (1.6) 
V e G  

for every ordinary point z. Theorem 2 is clearly an improvement  of this result both in 

tha t  (1.3) is stronger than  (1.6) and also tha t  G may  contain parabolic elements. 

The group Gz generated by  the elements. 

P(z)=z+~, E(z )=-1 /z ,  ~>0 ,  

is called a t Iecke group and is of the second kind if 2 >2.  In  [7] the author studied the 

function (~(Gz) as a function of 2 (note tha t  the notat ion in [7] differs from tha t  used here; 

the 6(G) used in [7] is twice tha t  defined by  (1.5)). In  particular, it was proved tha t  (in our 

present notation) 6(G~)>�89 tha t  

~(a~) = �89 +O(~t-1) 

as ~ + co and tha t  (~(G~)<1 if ~ 2 . 8  .... The natural  conjecture was then made tha t  

8 (Gz)< l  if 2 > 2  (that is, if Gx is of the second kind) and we see now from Theorem 2 tha t  

this is so. 

In  [6, p, 734] the author showed tha t  there exists a finitely generated Fuchsian group 

with d(L)> �89 This is contained in the much stronger Theorem 3 and indeed, Theorems 

3 and 4 completely solve the problem of the range of values of d(L) in the case of Fuchsian 

groups. 

I n  the last few years, several papers have appeared in which there are estimates of 

mt(L ) for various Fuchsian and Kleinian groups (e.g. [1], [2], [3], [4] and [6]). Some of thr 

results in this paper have been generalized so as to be applicable to Kleinian groups and 

so generalize some of these results. I t  is hoped to publish these later. 
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The theorems stated above are all concerned with finitely generated Fuchsian groups. 

The results have been stated this way for brevity; the real requirement is the geometrical 

one tha t  the groups possess a fundamental  region having a finite number of sides and it is 

known tha t  these two conditions are equivalent (e.g. [11], [14]). Indeed, if G is finitely 

generated, the fundamental  region N0, defined as the set of points hyperbolically closer 

to a point w than  to any other image of w (see [13, p. 146]), has a finite number of sides. 

This follows from the results contained in [11]. We shall use these facts implicitly through- 

out this paper. 

We can easily see tha t  Theorem 5 is false for infinitely generated Fuchsian groups 

and we give two counterexamples. First, it is easy to construct an infinitely generated 

Fuchsian group of the second kind with ml(L ) >0.  To do this one simply constructs a se- 

quence of hyperbolic elements, each leaving the unit disc invariant and having the isometric 

circles of all of these elements and their inverses external to each other. This construction 

can be carried out in such a manner  tha t  the images of ~ under these elements accumulate 

at  a set of positive one-dimensional measure and so if G is the group generated by  these 

elements, G is of the second kind and so ~(G, z, t )<  + co. By construction, however, 

ml(L ) > O. 

A counterexample of a different type is suggested by  a remark of Tsuji [17, p. 515]. 

Here Tsuji suggests the construction of an infinitely generated group of the first kind in 

which ~(G, z, 1) < + co and again, the existence of such a group shows tha t  Theorem 5 

is false for infinitely generated groups. 

The remainder of the paper  consists of the proofs of Theorems 2, 3 and 5. From now on, 

and without further mention, we will reserve the symbol G to denote a finitely generated 

Fuchsian group and the symbol L for the set of limit points of G. 

2. The proof of Theorem 5 

Let  G be a group satisfying the hypotheses of Theorem 5. I f  GI=AGA -1 for some 

bilinear transformation A satisfying A - ~  r L, then G 1 also satisfies the hypotheses of 

Theorem 5 and further, ~(G, z, t), ~(G1, Az, t) converge or diverge together. Also, the set 

of limit points of G 1 is A(L) and it is easily seen tha t  me(L) and m~(A(L)) are zero or positive 

together (this follows as A and A -1 satisfy a Lipschitz condition of order 1 on some neigh- 

bourhood of L and A(L) respectively). Thus we may  consider G 1 rather than G and this 

implies tha t  without loss of generality we may  assume tha t  the unit circle {z: ]z I =1} 

is the principal circle of G. 

The proof of Theorem 5 depends on a theorem on Diophantine approximation for 

Fuchsian groups proved by Rankin [16] and Lehner [13, p. 334]. The form of this result 
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given in [13] is not in the form best suited to our needs and it is simpler to deduce a modified 

version directly from Lehner's generalization [13, p. 181] of a result of Hedlund [12, p. 538]. 

We need 

Lv, M~A 2.1, [13, p. 181]. Let G be a finitely generated 2'uehsian group with {z: l z [ = 1} 

as its principal circle. Then there exists a constant m satis[ying 0 < m < 1 and depending only 

on G with the ]ollowing property. I / ~  is a limit point o] G but not a parabolic vertex, then 

there exists a sequence o /po in t s  z~ tending radially to ~ as n---> ~ and a sequence o/dist inct  

elements V~ in G with ] V;l(z~) [ <m. 

With ~, % and V~ as in Lemma 2.1, we have 

I~- v.(o)l < Ir + l~,-v.(o)l = ( i -  l~.l)+ l~,-v=(o)l 

= ( 1 -  I v.(o)l)+ (Iv,(o)l- Ix, l)+ l~.-v,(o) I 

~< (1-I v,(o)l)+2l~,- v,(o)l. 

In order to estimate these last two terms, we write 

(2.1) 

and note that  

v~(z) = an z +  ~ l ~_  c,~+a-----~.' la, le, i ' = l  

(1-lv~(o)l)<l-lV~(O)l~=(l§ -~ (2,2) 

Also, if a is the straight line segment joining the origin to V;l(z~), then V~(a) has end- 

points V~(0) and z~ and so 

fo Ilength (or) [[e.[ (1 - m ) ]  -~. 
Iz,~- V.(O)l<length [V~(a)]= Iv'~(~)l.ldzl <lenl~infol ~-  V;~(~)I~< 

Using this together with (2.1) and (2.2) we find that  

l ~ -  v.(0) [ < 3(1 -m)-~ l  c. I -~ 

for infinitely many n. If we now write 

Q(V) = {z: [ z -  V(O)I <3(1 -m)-2[c[ -2} 

where V (z) = az + 5 
cz + 5 '  l a l2 -  Icl2= 1, 

(2.3) 

is in G, we see from (2.3) that  any limit point ~ of G that  is not a parabolic vertex lies in 

infinitely many of the discs Q(V) for V in G. 
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If  (1.4) holds then t > 0  and 

VeG,  Vr ~ c ~  

and so ~ [diam Q(V)]t< + oo. 
V e G o V ~ - c ~  

Thus for any positive e, we can find a finite subset K of G (including all those V in G 

for which V ~  = co) such that  

[diam Q(V)] t < e (2.4) 
V e G -  K 

(where here and elsewhere the minus sign denotes the set-theoretic difference). If  P denotes 

the set of parabolic vertices of G, then, as we have already seen, 

L - 2 c  U O(V) 
V e G -  K 

for every finite subset K of G and this together with (2.4) implies that  mr(L-P)  =0. As P 

is a countable set, ms(P)=0 for all t > 0  and so m~(L)=0 if (1.4) holds. The proof is now 

complete. 

In  view of the fact that  this result is perhaps, the basic result of this'paper,rthe author 

feels that  it is worth giving a second, and completely different, proof of it. The above 

proof does not depend on the fact that  (1.1) holds for groups G of the first kind nor on 

the fact that  ml(L ) =0 for groups of the second kind and so gives an alternative proof of 

these results. If  we use the fact that  ~(G, z, t) converges if t > l  and diverges for t = l  

when G is of the first kind we see that  Theorem 5 has been proved for groups of the first 

kind. We thus assume that  G satisfies the hypotheses of Theorem 5 and is of the second 

kind. The fundamental region N o constructed with z =0  as its centre (by considering a 

conjugate group we may assume that  no element of G other than the identity fixes z=O) 

has a finite number of free sides s 1 ..... Sn which we regard as open arcs of ]z] = 1. Clearly 

{z: ]z] =1} is the disjoint union 

n 

{.:[.I=~}=LuEu( U UV(s,)) 
V c G  t ~ l  

where L is the set of limit points of G and E is the set of end points of the free sides and 

their images. As there are only countably many free sides, ml(E ) = O. We need the following 

result. 

LEMMA 2.2, [8]. Let I be an open subset o/the interval J = [ 0 ,  1] with ml(I  ) =1. I / the  

components In o / I  have length an and i/ ~a~ converges /or some fl with 0 < fl <~ 1, then 

m Z ( J - 1 )  =0. 
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By modifying this result so tha t  it applies to subsets of {z: Iz[ =1} rather than  J or 

by  considering a conjugate group to G so tha t  the limit set is contained in J ,  we see tha t  

mt(L U E)=0 if 

~ [length ( V(s~))] ~ < + oo. (2.5) 
Y'eG i=l 

As length (V(s~)) = fs IV' (z) l ldzl <- M lcl -~ 

(this holds as the orbit of Go cannot accumulate at  any point in the closure of any s~) we 

see tha t  (1.4) implies (2.5) and hence tha t  mr(L)=0. This completes the second proof of 

Theorem 5. 

3. The proof of Theorem 3 

To prove Theorem 3 it is sufficient to consider any number  t satisfying 0 < t < 1 and 

to construct a group G with d(L) >~ t. The group tha t  we shall use is the Hecke group G[e] 

generated by the transformations 

P(z) = z+2(1 +e), E(z) = - 1 / z  (3.1) 

where s is a real, positive parameter.  The limit set L of this group is an unbounded subset 

of the real line; thus Go is not an ordinary point of G[e]. Theorem 3 requires tha t  Go be an 

ordinary point of G and this condition is easily met. We shall show tha t  for sufficiently 

small 6, we have d(Lf] [ - 1 ,  1])>~t. I f  AG[e]A -1 is any conjugate group which has co as 

an ordinary point, then 

d(A(L)) >~ d(A(L f] [ - 1, 1])) >~ d(L fl [ - 1, 1]) >7 t, 

the second inequality holding as A -1 satisfies a Lipschitz condition with exponent 1 in 

some neighbourhood of A(L f] [ -  1, 1]) (the results contained in the Appendix of [6] show 

tha t  the first two inequality signs could be replaced by  equality signs; we shall not need 

this however). In  any event, AG[e] A -1 is a finitely generated Fuchsian group of the second 

kind (G[s] is of the second kind) with Go as an ordinary point and with d(A(L))>~t. We 

therefore need only prove tha t  

d(L f] [ - 1, 1]) >t t (3.2) 

where L is the set of limit points of G[s]. 

I t  will be helpful to bear in mind during the proof tha t  the region 

{x+iy: Ixl < 1 + 6 ,  x ~ + y 2 > l }  
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is a f undamen ta l  region for G[s] and  t h a t  the  ac t ion  of E is an  invers ion in the  

b o u n d a r y  of the  closed disc 
Q = {z: Iz] <1}  (3.3) 

fol lowed b y  a ref lect ion in  t he  i m a g i n a r y  axis. W e  shall  use Q to denote  the  disc (3.3) 

t h roughou t  th is  proof  and  wi thou t  fu r the r  ment ion .  

F o r  each non-zero in teger  n, define 

Vn(z) = Epn(z) 

which is in  G[s], and,  for each f ini te  sequence n 1 . . . .  , nk of non-zero integers,  define 

V(nl, ..., nk)(z) = V ~ ,  . . .  V ~ k ( z )  (3.4) 

a n d  Q(nl, ..., nk) = V(n 1 . . . . .  nk) (Q). (3.5) 

As V~(Q)c Q we see t h a t  for a n y  sequence n 1 . . . . .  nk, 

QD Q(nl) ~ Q(ni, n2) D ... D Q(n I . . . . .  nk) 

and  also t h a t  if r ~ s ,  then  

Q(nl . . . . .  nk, r) N Q(n 1 . . . . .  nk, s) = O. (3.6) 

These resul ts  show t h a t  the  sys tem of discs 

{Q(nl . . . . .  nk) : / c>0 ;  n 1 . . . . .  n k ~:0} 

yields  a Cantor- l ike  cons t ruc t ion  wi th  res idual  set 

L I =  5 U V(Q) (3.7) 
k~l V~G~ 

where Gk is the  set  of e lements  of the  form (3.4) for  va ry ing  n~ . . . . .  n~ bu t  f ixed k. W e  shal l  

need the  following e l emen ta ry  result .  

L E ~ M A  3.1. L 1 is a subset o/ LN  [ - 1 ,  1]. 

Proo/. W e  see f rom (3.5), (3.6) and  (3.7) t h a t  the  po in ts  of L 1 are  precisely  those  po in ts  

t h a t  can be wr i t t en  in the  form 

Q(nl . . . . .  nk) (3.8) 

for some f ixed  inf ini te  sequence nl,  n~ . . . . .  As 
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V ( n .  ..., n~) (~ )eQ(n~ ,  ..., n~_~) ~ Q 

we see tha t  the point (3.8) of L I is in the closure of the orbit of ~ (which itself is in L) 

and hence is in LN [ - 1 ,  1] provided tha t  

]Q(n 1 ..... n~)] -> 0 (3.9) 

as k-> ~ for every fixed sequence nl, n2, ... (here and elsewhere in this proof we use ]A[ 

to denote the diameter of a disc A). Using (3.4), an elementary computation shows tha t  

for all non-zero n, I v'(z)l <(1 +2s) -1 on Q and so 

IQ(n~, ..., nk) l <(1 +2e)-~lQ(n~, ..., nk-~)] <2(1 +2s)  -~ 

the second inequality following Dom repeated applications of the preceding one. This 

establishes (3.9) and completes the proof of Lemma 3.1. 

The techniques for estimating the Hausdorff dimension of a set formed from a Cantor- 

like construction arc reasonably well developed (see, for example, [5]). There are, however, 

two major  difficulties to overcome in applying these techniques to our construction. The 

first is tha t  in passing from one stage of the construction to the next, one replaces, say, 

Q(nl ..... nk) by infinitely many  (rather than  finitely many) Q(nl, ..., nk, nk+l). This dif- 

ficulty is overcome by  selecting only a finite number  of suitable Q(n~ ..... nk, nk+~) at  each 

stage and using only these in the construction. The second difficulty is tha t  the ratios 

]Q(~.. . . ,  n~, n~+~)l" ]Q(nl ..... n~)1-1 

arc not  well-behaved in the sense of constructions of this nature. We avoid this difficulty 

by modifying the above construction of L 1 so as to avoid images of Q under successive 

applications of V1 or of V-1 (for it is these tha t  give rise to the badly-behaved ratios). 

Roughly speaking, we replace V1 and V_I in G~ by  a set of elements V(11) ... . .  V(1N), V(_1)1, 

T/(~) (to be described in detail later) and then use the modified G 1 to generate a semi- 

group of transformations (each of which will still be of the form (3.4)). The images of Q 

under the transformations of the semi-group yield a Cantor-like construction with a residual 

set L 2 which is a subset of L 1. This and Lemma 3.1 imply tha t  

d(L2) < d(L~ [ - l ,  1]) < 1 (3.10) 

and then there remains a rather  delicate estimation of d(L2) to show tha t  

lira lim sup d(L~) = 1 (3.11) 
e-->0 N/>2 
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which, together  with (3.2) gives the required result. We proceed now with the formal 

proof. 

Le t  e be a positive number  and /V  an integer satisfying N ~> 2 (e and N are the para- 

meters occurring in (3.11) and will be held fixed until  just  before the end of the proof). 

Next,  let G[s] be as previously described in (3.1) and let 1"i be the set consisting of the ele- 

ments  

(A) V2, V_~ ..... VN, V-N, 

together  with the  elements V(n i ..... nk, m) where •1 . . . . .  9zk, m satisfy one of the following 

conditions: 

(B) l<~k<~N,n~ . . . . .  n z = l  and2<<.[m[<N, 
(B') l < k < N ,  nl . . . . .  n k = - I  a n d 2 < l m  I <N,  

(C) l <<.k<~N, n 1 . . . . .  n k = l  a n d m = - l ,  

(C') l~<k~<2V, n i . . . . .  n k = - - l a n d m = l .  

We shall refer to these elements as being of type  A, B, B', C and C'  respectively. 

Having  defined 1"1, we now define 1"n for all positive integers n by  the induct ive 

definition 

1"n+1 = {UV" UEPn, V E l a l }  = { U  1 ... Un+l :  U i e P l ,  i = l  . . . . .  n - ~ - l }  

and further,  define 

L2= N [.J V(Q). (3.12) 
kffil Vr 

I t  is clear t ha t  if V E Fk and T i and T 2 are in F i with T i # T2, then 

V(Q) D VTI(Q) 

and VTI(Q) N VT2(Q) = f~. 

From these facts and Lemma 3.1 we can easily prove tha t  

L 2 c L i c L N  [ - 1 ,  1] 

and so (3.10) holds. I t  remains therefore to establish (3.11). 

To do this we need the concept of a spherical Cantor  set. This is essentially a set con- 

s t ructed in a similar manner  to the  classical Cantor set bu t  with a little more metr ical  

freedom in the construction. This construct ion m a y  be carried out  (as in our case) in the  

plane using discs instead of intervals and details of such sets together  with estimates of their 

Hausdorff  dimension can be found in [5]. 
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LEMMA 3.2. In  the above notation, L 2 is a spherical Cantor set constructed ]rom the discs 

{U(Q): u E r ~ ,  nJ>l}. 

The construction of L 2 is tha t  of replacing U(Q), UEF~ by 

U UV(Q) 
VeFl 

at  each stage of the construction. We now write F = U nPn and so, by  virtue of Lemma 3.2, 

we may  rewrite [5, Theorem 4(if), p. 683] in our present notation to give the following result. 

LE~tMA 3.3. / /  0 satis/ies 0 < 0 < 1  and i/ 

!UV(Q)l~ IU(Q)l ~ (3.13) 
VeF1 

/or all U in U, then d(L2) >~O. 

The validity of Lemma 3.3 thus depends upon Lemma 3.2 which has yet  to be proved. 

In  order to at tain continuity of the basic ideas involved in the proof we proceed a little 

further before proving Lemma 3.2. Our next  step is to establish the following simple result. 

LEM•A 3.4. Let I~ be any integer greater than one and let the 19ositive numbers (51 . . . .  , (~k, 

6 and s satis/y 0 <(~j <~ < 1 and 

0 ~<s ~<c$1 + ... +c~k < 1. (3.14) 

Then 60 + . . .  + 6~ >~ 1, (3.15) 

where 0 = 1 - (1 - s )  ( 1 - 6 )  -1. (3.16) 

We shall use Lemma 3.4 by  taking the numbers (~1 . . . . .  ~k to be the ratios 

I UV(Q)I.]U(Q)]-I, UEF, VEF 1 (3.17) 

for then the inequality (3.13) is precisely (3.15). We thus obtain the estimate of d(L2) given 

by  (3.16) and Lemma 3.3 if we establish Lemmas 3.2 and 3.4 and verify tha t  with the 

above choice of c$1 .... .  ~k, the hypotheses of Lemma 3.4 are satisfied. We now begin the task 

of establishing these results. 

Proo/ o~ Lemma 3.4. Let  v be the unique positive number  satisfying 

~ + . . .  + ~ - 1, (3.18) 
thus O < v < l .  Next,  
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f 1-6~ -~= d(x ~-') = ( l - v )  x-~dx>~ ( l - v )  (1-~j)>~ ( l - v )  ( 1 - 5 ) .  
i i 

Using this inequality together with (3.14) and (3.18) we have 

k 

1-s~> ~ ~(1-~-~)>~ (1-~)(1-5) 
t = 1  

and so using (3.16) we can easily deduce tha t  0 ~<v. This together with (3.18) yields (3.15) 

and the proof of Lemma 3.4 is complete. 

Proo/o] Lemma 3.2. The definitions in [5, p. 680] imply tha t  we must  establish the 

existence of positive constants A 1 and A 2 such tha t  (i) for all U in P and all V in Pl, 

[ UV(Q)[ >~ AII U(Q)] 

and (ii) for all U in F and all distinct T 1 and T 2 in F1, 

(3.19) 

where @ is defined by  

@[UTI(Q), UT~(Q)] >~A2] U(Q) I 

dE, F) =inf {le-/[: eeE,/OF}. 

(3.20) 

With our choice (3.17) of the 51 ..... ~k in Lemma 3.4 the constants s and ~ in Lemma 3.4 

also become bounds on the ratios (3.17) and so at this point it is advantageous to derive a 

general distortion theorem for the family U. An application of Koebe's  distortion theorem 

[10, p. 175] would give a short proof of Lemma 3.2 but  does not, however, seem strong 

enough to yield useful estimates for the constants appearing in Lemma 3.4. We prove the 

following result in which the estimates are more explicit. 

L~MMA 3.5. Let J = [ - 1 ,  1], let I be any sub-interval o / J  and let UEP. Then 

(1/5) IX[ < I V(I) l-< 1~2~1 ~ (5/4) I l l .  

Also, ~/ v e r l  them 1UV(J)l < (5/6) 1U(J)[. (3.21) 

We remark tha t  we are using I1] to denote the length of I (a one-dimensional disc). 

No ambiguity will arise from the two uses of this symbol; indeed as Q has its centre on the 

real line and as elements of P leave the real line invariant, we do have 

1U(Q)[ = I U(J) I" (3.22) 

The proof of Lcmma 3.2 is easily completed. By taking I to be the intersection of V(Q) 

with the real axis we have from (3.22) and Lemma 3.5 tha t  
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I UV(Q)[ = I U(-/)[ ~ A l l  U(Q)[ 

where A1 = (1/5) rain {I V(Q)[ : VEF1} 

and this is posit ive as F1 is finite. This establishes (3.19). The  proof of (3.20) is similar. 

The set 
( - 1 , 1 ) -  U V(Q) 

Vel~z 

consists of a finite number  of open arcs a~ and, if T 1 and  T 2 are distinct elements  of F1, 

there  exists a s u b a r c a  of J lying between T~(Q) and T2(Q) with la[ ~>min ]as] >0 .  As 

U(a) lies be tween UTI(Q) and UT2(Q ) we m a y  use L e m m a  3.5 and (3.22) to deduce t h a t  

e[UT~(Q), UT~(Q)] ~> ] U(a)] ~> (1/5)]a[ �9 ] U(Q)[ >~ (1/5)[ U(Q)] (rain [a,]) 

which established (3.20). This completes  the  proof  of L e m m a  3.2 subject  to L e m m a  3.5. 

Indeed,  the  proof of L e m m a  3.5 is the only outs tanding i tem in our p rog ramme  so far, 

Proo /o /Lemma 3.5. Le t  I ,  J and  U be as in the s t a t emen t  of L e m m a  3.5 and pu t  

w = U - I ( ~ )  (thus w is a real number) .  Our first  t a sk  is to es t imate  w. As U E P, we see t h a t  

U = U~ ... U k  = V ( n ~  ... n~, n~+~) (U~EG) 

where U k = V(n . . . . .  , ns+l), say. I f  Uk is of t ype  A, then  r = s + 1 and [ n~+l I ~> 2. I f  Uk is of 

t ype  /~ or B', then  r<~s and again, [n~+ll ~>2. Finally,  if U k is of type  C or C', then  r<~s 

and either n ~ = l  n ~ + ~ = - 1 ,  or n ~ = - 1 ,  n~+l -1 .  Not ing t ha t  

w = (EPic. . .  E P  ~.+')-1( o o  ) = P-~+~ ( E P - ~ . . .  E P - ~ )  (0) 

which belongs to P-~,+~Q( - ns . . . . .  - nl), we find t h a t  

w E P -  ~+~ Q( - n~). (3.23) 

I f  U k is of type  A, B or B ' ,  then  ] n~+ 1 ] ~ 2 and  so replacing (3.23) by  the  weaker  s ta tement :  

wEP-~+I(Q) 

we find t h a t  [w]/>3.  I f  Uk is of t ype  C or C', t hen  (3.23) becomes 

w EP(Q( - 1)) U P-~(Q(1)) 

P-~EP(w) EJ or PEp-I (w)  EJ. or, equivalent ly  

This  in tu rn  implies t h a t  
]w I >~ ~+(1+~)-1 >7/3 

1 6 -  712907 Acta mathematlca 127. Imprlm6 le 8 0 c t o b r e  1971 
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where 2 = 2 + 2 s ~ > 2 .  I n  all case, then, we have lwl ~>7/3. We now put  I = [ ~ ,  fl] (as we are 

only concerned with ] I  I we m a y  assume tha t  I is closed) and note t h a t  

_ , -1 _ w)-2dx ]-1 ,U([)] ( f  [Vt(x)[dx) (fl[ v (x)]dx) =(f  (x-w)-2dx) (;l(x IU(J) I / 
1 {((w+l)(w-1;} = 1II 

U s i n g - 1  ~ < f l ~ < l ,  we find tha t  if w>~7/3, then 

1 t (I)i<_ l l(w§ 

which gives the required estimate as w ~> 7/3. A similar a rgument  establishes the result if 

w ~ < - 7 / 3  and this completes the proof of the first par t  of Lemma 3.5. 

Finally, if VCF1, then V =  V(n I .....  n~) for some n 1 .. . .  , n~ and we have 

V(J) ~ V(n~) (J). 

An elementary computa t ion  shows tha t  

] V(n~)(g)] = ( n l ~  - 1 )  - 1  - ( n l ~  -~ 1 )  - 1  < 2/3 

as l n ~ [  ~>2. Applying the first inequali ty in L e m m a  3.5 with 1 =  V(J) we find tha t  

] UV(J)]  <~ (5/4)(2/3) I U(J)[ 

and the proof of Lemma 3.5 is complete. 

Lemmas  3.2 to 3.5 inclusive have now been proved and, with the choice (3.17) of the 

81, .-., 6k in Lemma 3.4, we can use Lemma 3.5 to obtain estimates of the constants s and 

occurring in Lemma 3.4. Indeed,  the inequali ty (3.21) in L e m m a  3.5 shows directly t ha t  

we can take (~ to be 5/6. Next,  we note t ha t  

~ + ... +(~= ~ Iuv(J) l .  Iv(J)l -~. (3.24) Ve F 
I f  we now write F = ( - 1, 1) - (J V(J) (3.25) VeF~ 

then F is an open subset of ( - 1 ,  1) and we have 

]U(J) I = m~ (U(F)) § ~ I UV(J)[ .  (3.26) VeF~ 
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As Y is a union  of open intervals, we deduce f rom L e m m a  3.5 tha t  m l ( U ( F ) ) ~  

(5/4)ml(F)[u(g)] and using this inequali ty with (3.24) and (3.26) we find tha t  

31 + ... § = 1 - m I ( U ( F ) ) ]  U(J)] -~ >~ 1 - ( 5 / 4 ) m ~ ( F ) .  

We have taken 5 to be 5/6; we now define s by  

8 = 1 - ( 5 / 4 ) m l ( F ) .  

Lemmas  3.3 and 3.4 together  with (3.17) and (3.24) enable us to deduce tha t  d(L2) >~0 where 

0 ~ 1 - (15 /2)ml(F) .  This gives 

d(L2) >~ 1 - 8m~(F). (3.27) 

Recalling tha t  in order to prove Theorem 3 it is only necessary to establish (3.11), we now 

find tha t  it is only necessary to prove tha t  

lim lira sup m 1 (F) = 0 
e-->0 N--~ c~ 

where F is defined by  (3.25). This is geometrically obvious; however, we prefer an analytic 

proof. To achieve this, we define a set T by  

N 

T =  I -  (J V(n) (J) (3.28) 
] n l = l  

where I = ( - 1 ,  1) and also, for convenience, define u ~ = l  and v ~ = - 1  for each positive. 

integer n. We then  have 

N 

F - T =  [J V ( n ) ( J ) -  (J V ( J ) =  (J V ( n ) ( J ) -  [J V(J)  
I n l ~ 1 V e F 1  n -  - 1 , 1  V e F I  

= [F ~ V(1) (J)] U [F N V ( -  1) (J)] (3.29~ 

as for every subset K of I ,  we have 

K -  U V ( J ) = K n F .  
V e F ~  

Next,  we have 

F (~ V(u  1 . . . . .  u~) (J) - V(u  1 . . . . .  u~) (T) 

= V(u l  . . . . .  u~) (J) - [J V (J )  - V (u  1 . . . . .  u~) (T) = V(u  1 . . . . .  Ur) ( J -  T )  - (J V(J)~ 
Vel~l VeF~ 

N 

= [V(u~ . . . . .  u~) ( IJ V(n) (J))] U [V(u  x . . . . .  ur) { - 1, + 1}] - LJ V(J)  
[ n [ ~ l  VeFx 

= V(u  1 . . . . .  u~, ur+l) (J) (J V(ul  . . . .  , u~) { - 1, + 1}, 
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the penult imate equali ty following from (3.28) and J = [ -  1, 1] and the last equali ty f rom 

the definition of Pl. This gives 

m l [ F  (I V(ul,  ..., ur) (J)] = m l [ V ( u l  . . . . .  ur) (T)] ~ - 7 / / , l [ V ( u  I . . . . .  $ r 4 1 )  (J)]. 

A similar equat ion holds with u 1 ..... ur+l replaced by  v 1 . . . . .  V~+l and using these two 

equations for r = l  . . . .  , N - 1  and also (3.29) we find tha t  

N - 1  N - 1  

m 1 (F) = ml  (T) + ~ m 1 [V(ul  . . . . .  u~) (T)] + ~ m 1 [V(v 1 . . . . .  Vr) (T)] 
r = l  r = l  

+ ml  [V(u  1 . . . . .  uu+l) (J)] + m 1 [V(vl  . . . . .  VN+I) (J)]. 

As both  T and J are symmetr ical  with respect to tile imaginary axis, we find t h a t  

m l [ V ( u  1 . . . .  , Ur)(T)] = ml[V(v  I . . . .  , vr)(T)] and also tha t  a similar equat ion holds with T 

replaced by  J .  Thus we have 

N - 1  
m 1 (.F) <~ m 1 (T) + 2 ~ m 1 [ V(uz . . . . .  u~) (T)] + 2 m 1 [ V(u 1 . . . . .  UN+ 1) ( J ) ] .  (3.30) 

Al though it is easy to obtain simple estimates for these terms it does not  seem a trivial 

ma t t e r  to  obtain estimates delicate enough to  give the required information when e tends 

to  zero and N tends to oo. 

We first est imate re(T). To do this note t ha t  T consists of the origin together  with the 

images under  an inversion in the boundary  of Q of the intervals [ 2 r + l , 2 ( r + l ) - l ]  

r = - N, ..., N -  1 and the intervals ( -  c o  - [2(2 + 1]), (N2 + 1, + oo), where, as before, 

2 = 2 + 2 e .  This enables us to compute  ml(T):  

2 N- I f  1 1 ] J ~z-1 2e 
m l ( T ) - N ~ + l + 2 ~ = o l ] ~ r - + l  2 ( r + l ) - l I  ~ - ( 1 / N ) + 2 ~ - o ( ~ r ) e < ( 1 / N ) + 3 s "  (3.31) 

We next  estimate ml[V(ul . . . .  , ur)(T)]. I f  we pu t  

arz + b~ ard~ - b~ cr = 1 (3.32) 
V(u~ . . . . .  u~) (z) crz + d /  

we know tha t  the pole of V(u  1 . . . . .  Ur) lies in p- l (Q)  and so ]d~ ] > ]Cr I" Thus we can obtain  

the  following estimate: 

m l[V(u~ . . . . .  ur) (T)] = f T l V ( u  1 . . . . .  u~)' (z)[. ]a r 

= fr lCrZ+dr]-21dz]<~(Id~]- Icr] ) -em~(T) .  (3.33) 



I ~ E Q U A L I T I E S  x~og C E R T A I ~  F U C H S I A ~  GROUPS 2 3 7  

Our nex t  t ask  is to compute  Cr and dr. B y  definit ion we have  V(u:t . . . . .  ur) = ( E P )  T and so if 

at, br, C r and dr are as in (3.32), we have  

V(ul  . . . .  , Ur+l) = V(u l  . . . . .  ur) E P  

(ar+l  br+l -- 
\cr+1 d r + l ) = ( : :  ~ : ) ( ~  12)" 

andso  

F r o m  this we deduce t h a t  cT+l=d ~ and dr+~=2dr -c r  with initial conditions c1=1,  d 1 =2.  

El iminat ing cr and  using s tandard  techniques to solve the  result ing difference equat ion 

(with constant  coefficients) we find t h a t  

cr = (pr_qr)(p_q)_~ 

~nd dr = (pr+l _qr+l)  (p _ q ) - i  

where p and q are the  roots of x 2 - 2 x + l = O .  

We remark  t h a t  cr and dr are only  de termined to wi thin  a factor  of - 1  (al though 

dr/cr is unique) and this corresponds to the  two choices of the  ordered pair  (p, q). I f  we write 

p = �89 q = �89 

we find t ha t  p > q > 0 and  t h a t  

(p -- q) ( [dr I - I or I ) = s  _ 1) + qr(1 - q) ~> pr(p _ 1) (3.34) 

as .pq = 1 and p > g > 0 implies t h a t  0 < q < 1. F r o m  this we can deduce t h a t  

N-1  Z < Z iv-q\2 2r=(v-q]2(v -l) 

I f  we now write /z = �89 2 - 4 ) I  >~ (2s)~ (3.35) 

we find t h a t  p = l + s + # ,  q = l  + s - #  and so we have  

N-1 4 #  2 
2 2 - 4  ~< ( 4 s + 2 e  2) (2e)-~ ~< 3/e~ rZI (Idr l -  Icrl)-2 < (s +/~)~(2 + c + #) 2~3 

if r < 1, the  pemfl t imate  inequal i ty  following f rom (3.35). F r o m  this and (3.33) we can deduce 

t h a t  
N-1  

m l [ V ( u  I . . . . .  ur) (T)] ~< 3 m l ( T  ) (~)-'~. (3.36) 
r = l  

Next ,  the es t imate  (3.33) is val id with T replaced b y  J and this and (3.14) yields 
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?~1 IV(u1, UN+I) (J)] < (P - q]2P-2m+l)ml(J) �9 . . . .  \ p _  ] /  

+ 3  

Using (3.30), (3.31), (3.36) and (3.37) we find tha t  

ml (F) ~ ml (T) [1 + 6e-~J + 4 (P--  q~ eP-2(N+ I) ~ ( 

(3.37) 

~)(1 + 6 ~ ~) + 4 (P -  q]~P 2 ( ~ + 1 " ~ p  - 1/ 

As p and q depend only on s and as p > 1, we deduce that  

lim sup m 1 (F) ~< 3 e + 18 t/ss. 
N ' - ~  

As L (the limit set of G[e]) is independent of N, this inequality together with (3.10) and 

(3.27) implies tha t  
d(Ln [ - 1 ,  1]) >~ 1-8(3~  §189 

I t  is now clear tha t  if t < l ,  then for sufficiently small positive s, 

d(LN [--1, 1]) ~>t 

and the proof of Theorem 3 is complete. 

4. The proof of Theorem 2 

We begin by  proving a lemma on Dirichlet series which will be used later and which 

does not depend on the notion of a Fuchsian group. 

L]~MMA 4.1. Let A1, A S .... be a sequence o] positive numbers such that 

n = l  

converges i~ t > �89 I / a l ,  a S . . . .  i8 any sequence o/ numbers satis/ying O <~an ~ A ~ ( n = l ,  2 . . . .  ) 

and i ] t  satisfies 5/6 ~ t  ~ 1, then 

a~< ~ an + 6(1 - t) [A(2/3) + A(4/3)]. 
n = l  n = l  

Pro@ I f  ] is defined by  

/ ( z )  = a s  
n - - 1  

then / is defined and analytic on {Re (z) > �89 and satisfies 



I N E Q U A L I T I E S  FOR C E R T A I N  F U C H S I ~ N  GROUPS 239 

1/(~)1< ~ ~<A(x) (z=x+iy) 
n ~ l  

there. If [ x -  11 < 1/3, then A~ < A~ + A 

(the inequality holding with one term of the sum according to whether A~ is not greater 

than or not less than 1) and so [/(z) I ~ A(~) + A(-~) on [ z -  11 < �89 Cauchy's inequality implies 

that  [/'(z)l ~6[A(~-)+A(~)] on ] z - I [  ~-~. Thus if ~<~t<~l, then/(t)<~/(1)+ I/(t)-/(1)l<~ 

](1) +6(1- t ) [A(~)  +A(})] and this is the required result. 

We return now to the theory of Fuchsian groups. As Theorem 2 is known (and easily 

proved) to be true when G has at most two limit points [7, p. 474] we assume that  G has 

uncountably many limit points. As we have already mentioned in the proof of Theorem 5, 

it is sufficient to consider a conjugate group A G A  -1 provided that  A - l ( ~ )  ~L, the set of 

limit points of G. Without loss of generality, then, we assume that  the elements of G 

preserve the upper half-plane and, of course, the extended real axis which we shall denote 

by R 1. We note that  R l is considered as a subset of the extended complex plane and hence 

contains the single point at infinity. 

As is well known, the upper half-plane can be given a hyperbolic metric and a normal 

(or Dirichlet) polygon N 0 constructed from this metric is a fundamental region for the 

action of G on the upper half-plane (for details of this, see [13, Chapter IV] where this is 

done for the disc rather than the half-plane). We now wish to make certain justifiable 

assumptions on G and N 0. First, by  choosing the centre of No outside of some set of plane 

measure zero we may assume that  each parabolic cycle on the boundary of N o consists of 

a single vertex and also that  (in the notation of [13, p. 149-151]) there are no accidental 

vertices of the first kind lying on R 1. We note that  as G is finitely generated, N 0 has only 

finitely many sides ([11], [14]) and so every vertex of N o which lies on R 1 is either a parabolic 

vertex p or an accidental vertex q. Our choice of centre as given above implies that  in the 

former case the sides of N 0 that  meet at p are conjugated by a parabolic element of the 

group whereas in the second case, q is the intersection of a side of N o and a (closed) free 

side of N 0. This means that  q is the common end-point of two images of free sides of N 0 

and that  some neighbourhood of q is covered by the closure of the union of two images of 

N 0. These properties are preserved under conjugation; thus by considering (if necessary) 

a conjugate group we may assume that  co or one of its images lies in the open set N 0. 

After relabelling (i~ necessary) we may assume that  ~ 6 N 0. I t  is more convenient in this 

proof to consider the action of G on the extended complex plane rather than on the upper 

half-plane; thus we modify our notation and from now on denote by N o the union of the 

normal polygon described above as No, its reflection in the real axis and its free sides on RL 
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Thus  N o is a f u n d a m e n t a l  region for the  ac t ion  of G on the  ex tended  plane;  i t  is f ini te  sided, 

symmet r i c  wi th  respect  to  the  real  axis; i t  conta ins  a ne ighbourhood of co and  i ts  ver t ices  

have  the  proper t ies  l i s ted  above.  The  free sides of N o are those of the  N o as or ig inal ly  defined. 

I n  th is  proof  we shall  use A',  .A and  ~A to denote  the  closure, the  ref lect ion in  the  real  

axis and  the  b o u n d a r y  respec t ive ly  of a set A and  we shall  use ] E  I to  denote  the  l inear  

measure  of a measurab le  subse t  E of the  real  line. W e  shall  also make  an  a t t e m p t  to  avo id  

as much  as possible of the  geometr ica l  a rgumen t  t h a t  is so common in th is  subject .  W i t h  

th is  in mind  we f irst  cons t ruc t  a funct ion  z t h a t  is def ined on the  ex tended  plane,  t h a t  

satisfies a Min imum Pr inc ip le  bo th  there  and  on the  real  line and  t h a t  ana ly t i ca l ly  descr ibes  

the  tesse la t ion  of the  p lane  b y  N o and  i ts  images  under  G. 

F i r s t ,  we say  t h a t  two e lements  U and  V in G are ad j acen t  if and  only if 

u(N~) n v(No) ~ ~). 

Next ,  we p u t  G O = {I} ( I  is the  i d e n t i t y  e lement  in G) and  assuming t h a t  Go, G 1 . . . . .  G~ 

have  been def ined we define Gn+l as the  set of those  V in G sat is fying 

(a) VCG O , G  1 . . . . .  G~ and  

(b) V is ad j acen t  to  some U in Gn. 

F r o m  (a) we see t h a t  the  G~ are m u t u a l l y  d is jo in t  and  so we can define a func t ion  ~* on 
o0 ~o G U n=0 Gn b y  z*(V) = n if and  on ly  if V E Gn. Our  immed ia t e  t a sk  is to  show t h a t  G = U n=0 n. 

I f  U and  V are  ad jacen t  and  if z*(U) is def ined and  equal  to  n, say, t hen  (b) holds.  I f  (a) 

holds,  t hen  b y  defini t ion,  VEGn+I and  so z * ( V ) = n + l  whereas  if (a) fails to  hold,  t hen  

~*(V) is a l r eady  def ined and  is no t  g rea te r  t h a n  n. Thus if U and  V are  ad jacen t ,  7e*(U) 

and  ~*(V) are e i ther  bo th  defhled or bo th  undefined.  I f  V is now a n y  e lement  of G, the  hyper -  

bolic line joining co to  V(oo) crosses, in turn ,  the  ad j acen t  regions 

No = 1(No), Vl(No), V2(No) . . . . .  V~(No) (V =: V~) 

and  as z*( I )  is defined,  so is ~*(V~). Thus  G = U n=O Gn and  ~* is defined on G. I f  U is ad j acen t  

to  V, t hen  V is to  U and  the  above  a rgumen t  shows t h a t  in  this  ease 

[~*(u)-~*(v)] < l. (4.1) 

W e  also note  t h a t  if P conjugates  the  sides of N o ending a t  a pa rabo l ic  ve r t ex  on ~N0, 

then  pn E G 1 for all non-zero integers  n. A s imilar  s t a t emen t  holds for parabol ic  ver t ices  on 

the  boundar ies  of the  images  of N o . 

W e  are  now in a pos i t ion  to  define the  func t ion  7e men t ioned  above.  I f  z E V(No) for 

some V in G, we define ~(z) to  be z*(V). This  defines ~ on a dense subset  of the  complex  

p lane  and  we complete  the  def ini t ion b y  the  r equ i rement  t h a t  
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re(z) = lim inf re(w) (4.2) 
/v-->z 

the lower limit being taken over w in U w e  V(No). 

The following remarks and lemmas describe some of the basic properties of the funct ion 

re. First,  re only assumes the values + c~, 0, 1, 2, .... Next ,  a l though (4.2) was only intro- 

duced to  define re on a nowhere dense set of points it is, in fact, valid for all z. 

LEMMA 4.2. re(z) < + ~ if and only i / z  is an ordinary point o /G or the fixed point of 

a parabolic element in G. 

L E ~ M A  4.3 (The Minimum Principle I). Let y be a closed Jordan curve in the finite 

complex plane and let D be the interior of y. Then 

min re(z) >~ min re(z). (4.3) 
zeD Ze ~' 

Further, if V(No) c D and w E V(No), then 

~*(V) = re(w) > rain re(z). (4.4) 
ZE~' 

Lv, M~A 4.4 (The Minimum Principle l I ) .  Let a and b be points in V(N~) N R 1 with 

a<b. I / x E ( a ,  b) then 
re(x) >~ rain {re(a), re(b)} (4.5) 

with equality holding if and only if x e V(N~). 

LE~IMA 4.5. Suppose that V EG and zE V(N~). Then r e * ( V ) - I  <~re(z) <~re*(V). 

L E ~ M A  4.6. For n>~l the set A~={z:  re(z)>~n} is open. Further, r e = n - 1  on ~ A ~ - L .  

We remark  immediate ly  t h a t  the  upper  bound  in Lemma 4.5 follows immediately  from 

(4.2) and we shall need this before proving Lemma 4.5. Also, with reference to  L e m m a  4.6, 

it is false t h a t  re = n  - 1 on ~A~. This is easily seen as Lemma 4.2 implies t h a t  any  parabolic 

vertex p is a point  of accumulat ion of points at  which re= oo; thus  re(p)< + oo and pE3A n 

for all n. I t  is true, however, t ha t  re = n - 1 on the boundary  of each component  of A~ and 

this will be proved in the proof of Lemma 4.8. 

Proof o] Lemma 4.2. I f  z is an ordinary point  of G, then  z E V(N~) for some V in G. 

The same holds if z is fixed by  a parabolic element in G [13, p. 149] and so in bo th  cases 

re(z) <re*(V) < + oo. 

Now suppose t h a t  re(z) < + oo. The result is obvious if re(z) =0 ,  thus  we assume tha t  
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re(z) ~> 1. The defini t ion of z implies t ha t  there exist sequences z~ and  V~ with Zn E V~(No) , 

Zn->Z as  n-->-c<) a n d  

~r(z) = re(zn) = ~*(Vn). (4.6) 

We first rule out  the possibil i ty t ha t  there are inf ini te ly  m a n y  dis t inct  V~ in  the sequence. 

I f  so, we may  consider a subsequence and  relabel; equivalent ly  we assume t h a t  V~ =4: Vm 

if n ~=m. As ~*(Vn) >~ 1, each V~ is ad jacent  to some U~ with ~r*(U~) =z*(V~) - 1 and  so there 

exists a sequence w~ satisfying 

w~e v~(2vg) n v~(;v~). 

As the V~ are dis t inct  and  as co ENo, the  euclidean diameter  of V~(No) tends  to zero as 

n-+ co and  so w~-+z as n-+ c~. This implies the existence of a sequence w~ with w~E Un(No) 

a n d  ' Wn~Z as n---> ~ .  Thus 

7~(z) ~< lim re(w') = z*(Vn) - 1 

which contradicts  (4.6). Thus  there exists a V in  G with Vn= V for inf ini te ly m a n y  n. 

For  these n we have z~ E V(No) and  zn-+z as n-+ ~ .  Thus  z E V(N~) and  z is an  ordinary  point  

or a fixed point  of some parabolic element  in  G. 

Proo /o /Lemma 4.3. We first establish (4.4). Suppose t ha t  w E V(No) and  V(No) c D 

and, for convenience, pu t  7~*(V) = n  and  V =  V~. I t  follows tha t  V~ is adjacent  to some 

V~_I with ~ * ( V ~ - I ) = n - 1 .  This process can be cont inued and  so we construct  a sequence 

of elements 
I =  Vo, V~ .... .  V~= V 

in  G with ~r*(Vr) = r and  Vr adjacent  to Vr+ 1 (r = 0 . . . . .  n -  1). This implies tha t  there exist 

points  w 0 . . . .  , w,_ 1 such tha t  

w~eV~(;vg)n v~+l(;v~) ( r=0  ..... n - l )  

and so K =  [ 0  V~(No)] U {~o . . . . .  w~_l) 
r = 0  

is arcwise connected. Fur ther ,  we have re ~< n - 1  on 

n 1 

K 1 -  [ O v~(N0)] u (w0 . . . . .  w~_~} 
r = 0  

as 7~(wr) ~<r. Now construct  a simple arc ~ lying in K and  joining w (inside y) to co (out- 

side y). I t  follows tha t  z meets 7 a t  a point  Zl, say, and  by  our ini t ial  assumpt ion  z I EK 1. Thus  

re* (V) = n > ~(zi) >~ min  ~(z) 
z ~ ,  

and  this is (4.4). 
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To prove (4.3) define 

and note tha t  if z E D, then 

D* = O n U V(No) 
V~G 

z(z) = lira inf ~r(w). (4.7) 
w-->z, w 6 D *  

Let  wED*, then wE V(No) for some V. If  V(No)C D then by  (4.4), 

~(w) = :r*( V) > rain Jr(z). 
z ~ ,  

The alternative hypothesis, namely V(No)~Z D, implies tha t  V(No)R V = O  and so 

:r(w) = :r* (V) ~> min ~r(z). 
Ze~' 

In  any case, then, this last inequality holds and we see tha t  ~r >~ minz~r :r(z) on D* and hence, 

by  (4.7), on D. This establishes (4.3) and completes the proof of Lemma 4.3. 

Proo/ o/ Lemma 4.4. This follows easily from the Minimum Principle I. We 

join a to b by a Jordan arc 71 which lies entirely in V(N0) f) {Ira (z) >0} except for the 

end-points a and b. Then Yl U ~)~ is a closed Jordan curve y lying entirely in V(N~). I f  

x 6 (a, b) then x lies inside y and so by  (4.3), 

~(x) ~> min~(z). 
ZE~ 

As ~<~r*(V) on V(N~) with equality on V(No) we see tha t  

rain ~(z) = rain {~(a), ~(b)} (4.8) 
Zey 

and so (4.5) follows. Suppose now tha t  equality holds in (4.5). We can find 

sequences zk and Vk such tha t  zkEVk(No), VkCG, ~(%)=r and zk~x as k - + ~ .  I f  

Vk(No) c D, then (4.4) (with V = Vk and w =zk) and (4.5) (with equality holding) contradict 

7r(zk) =~z(x). Thus Vk(N0) ~= D and so, as Vk(No) meets D, we see tha t  Vk(No) meets 7. This 

implies tha t  Vk(N0) meets V(No) and so Vk= V for all/c. Thus zkE V(No) and so xE V(N~) 

as required. 

Proo/o/Lemma 4.5. To establish the lower bound we consider two cases. 

Case 1. Suppose tha t  z ~L. Thea  there exists a finite maximal subset V1 ..... Vs of G 

with, say, V = V1 and a neighbourhood N of z such tha t  

v (No), tJ (4.9) 
r ~ l  r = l  

This implies tha t  each Vr is adjacent to VI( = V) and so by  (4.1) and (4.2), 
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7t*(Vr) ~>~*(V)-I (1 <~r<~s) 

and ~(z) = min {~*(Vl) . . . . .  7~*(Vs) }. 

The second inequal i ty  in this case is a trivial consequence of these last two results. 

Case 2. Suppose tha t  z EL. The upper  bound for z(z) established above together  with 

L e m m a  4.2 shows t h a t  z is the fixed point  of some parabolic element P in G. As z EOV(N0), 

there exists a horocycle H (an open disc lying in the upper  halLplane and having z on its 

boundary)  with 
+ o 0  

r ~ - o o  

Next,  choose a point  x 1 in a free side of V(No) and note t ha t  the  circle y having the segment 

with end-points x 1 and z as diameter  lies entirely in V(No) O {z}. For  each integer r, write 

~r =pr(y)  and let D r be the interior of Yr- ~For sufficiently large r, say  r = k, yr and y_r lie 

on different sides of z (which lies on R 1) and the set 

Dk U D-k U ~,'e U y_,~ U [ U P 'V (N; ) ]  
Irl<k 

covers a neighbourhood N of z. Now let T(N0) intersect N.  Then either T = PrV for some 

r satisfying ]r] ~</c or T(No) is contained in either De or D k. I f  T(No) ~Dk, we deduce 

from (4.4) t ha t  

~*(T) >~ 1 + min ~(w) = 1 + min {~(z), ~*(PeV)} f> 1 + rain {~(z), ~*(V) - 1} 
w e ~  k 

= min {1 + ~(z), ~* (V)} 

the last inequali ty holding as for each r, V and pr  V are adjacent  (at z). A similar 

inequal i ty  holds if T(N0) c D_ k and the same reason shows tha t  if T = p r  V for some r 

satisfying [ r[ ~ k, then  
~* (T) >~ ~* (V) - 1. 

Thus in all cases ~*(T) >~ min {1 +~(z), z * ( V ) - 1 }  

and so 

z(z) = lim inf 7~(w) >~ min {1 + ~(z), ~* (V) - 1} = z* (V) - 1 
w.->z, WEE 

as required. 

(E = U T(No) n N) 
TEG 

Proo/o/Lemma 4.6. Let  zEAl, then there exists a neighbourhood N of z such tha t  

z~>n on UvEGV(No)NN. I t  follows from (4.2) t ha t  7e~>n on N and so A~ is open. 
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Now suppose t h a t  z is an  ord inary  point  on 8An. Then  there  exists a max ima l  finite 

subset  V1, ..., Vs of G satisfying (4.9) and  b y  (4.1) and  (4.2), 

~r(z) = r a i n  {~r*(Vr): r = l  . . . . .  s} >max {zr*(Vr): r = 1 . . . .  , s } - I  ~ > n - 1  

as z~(An)' .  As z~An,  7r(z)~<n-1 and so : ~ = n - 1  on 8 A ~ - L .  

Our proof  of Theorem 2 depends upon  a detailed examina t ion  of the  topological and 

metr ical  propert ies  of the  sets An. Clearly the  sequence of sets A~ is monotonic  wi th  n, thus  

we can label the  components  of An as A(i 1 . . . . .  in) in such a way  so t h a t  

A(i 1 . . . .  , i~)~ A(il, ..., in, i~+1). 

For  the  sake of b rev i ty  we introduce the  following notat ion.  We  denote b y  I~ (n>~l) the  

set of n-tuples i = ( i l  . . . . .  i~) for which A(i 1 . . . . .  i~) is defined and  rewri te  A(i 1 . . . .  , in) as 

A(i); we also write I for [J ~0I~ .  :Next, we denote b y  Z(i) the  set  of l - tuples  j = (~) for which 

A(i 1 . . . . .  i~, j) is defined and write A(i, j) for A(il, ..., i~, j) where jEZ(i).  

I n  order to  proceed with  the  examina t ion  of the  sets A~ we m a k e  the  following defini- 

tions. We write 
A~(i) = {z EA(i): ~r(z)= n} 

and note  t h a t  A(i) is the  disjoint union of the  sets 

A~(i), LI A(i, j) (4.10) 
j eZ( i )  

Next ,  we write ffn=AnA R 1, a( i )=A( i )N R 1 and a,~(i)=An(i)N R 1. 

Finally,  we denote b y  G(i) the  set  of V in G with the propert ies  (i) V(No)C A(i) and  

(if) ~r*(V)=n where iEIn. I f  UEG, if 

U(N0) [~ A(i) 4 ~D 

and if ~r*(U)=n, then  UCG(i). 

The  outl ine of the  remainder  of the  proof of Theorem 2 is as follows. We  see f rom (4.10) 

t h a t  a(i) consists of the  disjoint union of the  sets 

a,~(i), IJ a(i, j). (4.11) 
j e Z(i) 

W e  first p rove  three l emmas  which describe G(i) and  the  topological propert ies  of the  a(i). 

After  this, we need two more  l emmas  which give informat ion  on the  metr ical  proper t ies  

of the  sets a(i). Then  (4.11), these last  two l emmas  and L e m m a  4.1 yield the required result .  

L EMMA 4.7. (i) The a(i) (i E In) are disjoint open intervals and hence are the components 

O] (Tn, 
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(ii) An(i) is the closure relative to A(i) o/ (Jwa(i)V(No). 

(iii) Each component o] an(i) is either (a) a parabolic vertex on DV(No) ]or some V in 

G(i) or (b) the closure relative to a(i) o] a finite union o/intervals Vr(Tr) where Vr E G(i) and the 

zr are/ree sides in N o. 

LEZ~M~t 4.8. Each interval a(i, j) abuts (and so lies between) intervals V(~) and U(vl) 

where U and V are in G(i) and where each o/v  and T1 is a/ree side in N o or a parabolic vertex 

on ~N o. 

(i) I],  /or some choices o/ U and V, we have U = V then this choice is unique and 

A(i, j) = V(A(r)) ]or some r in 11. 

(ii) I / , /or  all choices o] U and V, we have U=h V, then U and V are unique and A(i, j) = 

V(Z) where ~ is a component o/the complement o/N~ O (V-1U) (N'o). Further, this latter set 

contains at least one ordinary point. 

The transformations U and V in Lemma 4.8 are not  necessarily unique. However,  

(i) and (ii) do show tha t  if there  is more than  one possible pair (U, V), then  among all such 

possible pairs, there  is a unique pair with U =  V. Lemma 4.8 also implies tha t  A(i, j) 

is bounded by  one (if U = V) or two (if U 4 = V) regions U(No) and V(No) and tha t  these 

regions are unique if chosen according to (i) and (ii). Typical  situations in cases (i) 

and (ii) are i l lustrated in figures 1 and 2 below. 

~ V(~) 

~0,J) 
Fig. 1 

V(No) 

V( 

a a ( i , j )  b 

Fig. 2 
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I n  the course of the proof of L e m m a  4.8 we shall apply the t ransormat ion V - i  to  the 

si tuation described in figures 1 and 2. This leads to the situations illustrated in figures 

3 and 4 respectively. I n  particular, these figures illustrate the A(r) and Z occurring in (i) 

and (ii) of Lemma 4.8. 

v ~(a) 

2vo= v-~(V(No)) 

Fig. 3 

V-~(b) 

No = V ~(V(~'o)) 

V ~(w*)~ V ~(~) 

Y-~(a) V ~(b) 

Fig. 4 

L ~ r ~ i  4.9. There exist8 a positive integer K (depending only on G) such that/or each 

i in I, G(i) in the disjoint union 

G(i) = G~ t3 ... tJ G~(i) (4.12) 

where G~ has at most K elements and where Gr(i) (1 ~r<~K) is a subset of a set o / the/orm 

{TP~ Vr: n an integer} where T, Pr, Vr are all in G, Pr is parabolic and where Pi  ..... PK, 

Vi ..... V~: depend only on G. 

Proo/of  Lemma 4.7. We note t ha t  a n ~  [.]ieLa(i), thus we need only show tha t  the 

a(i) are connected for they  are obviously disjoint relatively open subsets of R i. Suppose now 

tha t  a and b are two points in a(i) with a <b.  Then as A(i) is open and connected we can join 

a to b b y  a curve ~ in A(i) in such a way  tha t  ~ consists of only finitely m a n y  straight  line 

segments. As V(No) is symmetr ic  with respect to the real axis for all V in G we have 

~(z) =~(~) and so /k~ and the A(i) are also symmetr ic  with respect to  the  real axis. I f  we 

now let p be the reflection of y in the real axis we see tha t  every x in (a, b) either lies on 7 

or lies inside a closed Jo rdan  curve consisting of an arc of y and an arc of ~. I n  the first 
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case xEA(i); in the second case the Minimum Principle I implies t ha t  ~(x)>~n and so 

x E An. I t  follows tha t  [a, b] c A n and so [a, b] c A(i). Thus [a, b] c a(i), a(i) is connected and 

the proof of (i) is complete. 

The proof of (ii) is easy. First, ~ = n  (iEIn) on E ( i ) =  [Jv~v(i)V(No) and so if z lies in 

the closure of E(i) relative to  A(i), then both  ~(z)~<n and z E A(i). As z E A(i), ~(z)>~n and 

so z ( z ) = n ,  tha t  is z~A~(i). 

Conversely, suppose tha t  z E An(i ). I f  Z does not  lie in the closure of E(i) relative to A(i) 

then there exists a neighbourhood 2V of z contained in A ( i ) - E ( i ) .  If wE~gN V(No) for 

some V, then  ~(w)>~n and z*(V)4:n and so ~ (w)~>n+l .  This implies tha t  7r(z)~>n+l 

cont ra ry  to our assumption t h a t  zEAl(i), thus (ii) is proved. 

We now prove (iii). Le t  a be a component  of an(i); we again consider two cases. 

Case 1. Suppose tha t  a N L 4 0 ,  By  Lemma 4.2, a contains the fixed point  p of some 

parabolic element in G. As G is a non-elementary group, there exist limit points of G which 

are not  fixed points of elements of G and which are arbitrari ly close to and on both  sides o fp .  

L e m m a  4.2 implies t h a t  ~ = + co at  these points and so a = {p} which is of the required form. 

Case 2. Suppose now t h a t  a contains only ordinary points of G and let a have end- 

points g and fl where co<ft. We first show t h a t  a < f l .  I f  xEa then  x lies in some free side 

V(v) of V(2~0) or is the common end-point  of two abut t ing  free sides V(v) and U(~I), say. 

I n  the  first case ~*(V)=Te(x) =n and so VEG(i) while in the second case, the set V(N~) U 

U(N~) contains a neighbourhood of x and so 

n = ~(x) = min {~*(U), ~*(V)}. 

I t  follows tha t  V(~) c a in the first case while in the second case either V(~) c a or U(~I) c a. 

I n  a ny  event, co<ft. The same reasoning as in Case 1 shows tha t  [a, fl] consists entirely 

of ordinary  points and, being compact ,  therefore meets only a finite number  of free sides. 

I f  a free side meets a, then it is contained in a. Hence a contains a finite number  of free 

sides and meets no other  free side. I t  is now clear t ha t  a is the  closure relative to a(i) of 

the union of these free sides and the proof of Lemma 4.7 is complete. 

Proo/o/Lemma 4.8. L e m m a  4.7 (i) implies t ha t  a(i, j) is an open interval, say  (a, b) 

where a<b and where a and b are not  in An+i. Thus ~ (a )~n  and 7~(b)~<n. We first show 

t h a t  ~ ( a ) = n  and ~ (b )=n .  Lemma 4.6 shows tha t  ~ ( a ) = n  if a is an ordinary point  of G, 

thus  we assume (by L e m m a  4.2) t ha t  a is a parabolic vertex of G. The si tuation at  such 

points  is described in the proof of Lemma 4.5 (Case 2) and we use the nota t ion used there. 

For  suitably large [r I, there exist points in prv(N0)U P-rV(No) lying arbitrari ly close to  
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and  on e i ther  side of a. It therefore  follows that some of these po in ts  lie in  a(i,  ]) and so for 

some r, say  r ~k, st*(PkV) 7> n + 1. As a E 8PkV(No), L e m m a  4.5 implies  t h a t  

and  so we see t h a t  s t ( a )=n .  Similar ly ,  we have  s t (b)=n .  

Nex t ,  L e m m a  4.7 (iii) impl ies  t h a t  the re  exis t  U and  V in G(i) and  Ta and  T~ ei ther  a 

free side in N 0 or a parabol ic  ve r t ex  on 8N 0 wi th  a E V(Ta) and  b E U(T~). W e  now show t h a t  

DR(i, j) c ~V(No) D 8 V(No). 

The a rgumen t  used to  prove  L e m m a  4.7 (i) toge the r  wi th  (4.4) shows t h a t  if g and  fi (~ <fl) 

lie on the  real  axis and  are  also in  the  closure of A(i, j), t hen  st >~ n + 1 on (~, fl). This  impl ies  

t h a t  a ~< zr and  fl ~ b and  so 

8A(i, j) N R 1 = {a, b} c 8U(No) O 8V(No). (4.13) 

Now let  wESA(i,  j) and  suppose t h a t  I m  (w):~0. L e m m a  4.6 implies  t h a t  s t ( w ) = n  

and  so there  exists  a T in G(i) wi th  wEST(No). Next ,  le t  x0 be  any  po in t  in a free side of 

T(No). Then,  b y  the  hyperbol ic  convex i ty  of the  in tersec t ion  of the  upper  hal f -p lane  and  

T(No), the  circular  arc joining w to ~ and  pass ing th rough  x o lies en t i re ly  in T(No) except  

for i ts  end-poin ts  w and  5 .  Next ,  jo in  w to ~ b y  a curve in A(i, j) t h a t  meets  the  real  axis 

a t  exac t ly  one point ,  say  Yo. Thus  a < Yo < b and,  as st = n on a ne ighbourhood  of x 0 (T E G(i) 

and  so st*(T) = n) we see t h a t  e i ther  x 0 < a or x 0 > b. W e  first  assume t h a t  x 0 < a. Then  as the  

in te rva l  (x0, Y0) lies inside the  closed curve 7 cons t ruc ted  above  and  passing th rough  x0, 

w and  ~ ,  we see t h a t  the  po in t  a lies inside y. Thus  V(No) meets  the  in ter ior  of 7. B y  con- 

s t ruc t ion  
7 ~ Z(No) U {w, ~} (J A(i, j) 

and  so e i ther  V(No) meets  T(N0) or V(No) lies inside y. The  l a t t e r  asser t ion  is false as in 

th is  case we can deduce  f rom the  Min imum Pr inc ip le  I ,  (4.4), t h a t  

n =7~*(V) > 1 + m i n  st(z) = 1 +st*(T) = 1 + n  

which is false; t hus  V(N0) meets  T(No) and  V ~ T. I f  x 0 > b a s imilar  a rgumen t  shows t h a t  

U = T and  we have  p roved  tha t ,  re la t ive  to  the  union of the  upper  and  lower half-planes,  

~• j) c a v(2r o ~ u(N0).  (4.14) 

Using (4.13) we see tha t ,  as asser ted  above,  th is  is va l id  r e l a t ive  to  the  ex tended  complex  

plane.  

1 7 -  712907 Ac t s  mathematica 127, Irnpx'ira6 lo 11 Octobre 1971 
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Now note tha t  as A(i, j) is connected, it lies in one component  of the complement  of 

V(N~) U U(N~). Using (4.14) a simple topological a rgument  shows tha t  A(i, j) is in fact  

this component  and also (as ~A(i, j) meets both  ~V(No) and ~U(PV0) and is connected) t ha t  

there exists a w* (see figs. 2 and 4) satisfying 

w* ~ ~ V(No) n ~U(No). (4.15) 

We m a y  thus write A(i, j ) =  V(E) where E is a component  of the complement  of 

N~ U (V-1U)(N~) and where 2Y~ and V-1U(N~) have a point  in common, namely  V-l(w*). 

If, for some choices of U and V, U = V, then ~ is a component  of the complement  of 

N~ and hence E = A(r) for some r in I x (this is the definition of I1). Suppose also t h a t  U 1 and 

V x are two other  choices of U and V with U 1 = V1. Then A(i, j) = VI(A(s)) for some s in 11 

and so 
A(r) = V-1VxA(s). 

This implies t ha t  V 1 = V. A similar a rgument  shows tha t  U is unique and this completes 

the proof of (i). 

Now suppose t h a t  for all choices of U and V, U 4 V. The point  w* occurring in (4.15) 

cannot  be a or b (otherwise we could choose U = V), thus by  (4.13), I m  (w*) 40 and so 

w* is an ordinary point. Thus to complete the proof of (ii) we need only show tha t  U and V 

are unique. 

Suppose tha t  aE V(N'o)A VI(N~ ) and 7~*(V)=~*(V1)=n. Choose points x o and x 1 in 

free sides of V(No) and VI(No) respectively and suppose tha t  V 4 V1. Thus x 0 ~:x 1 and we 

m a y  suppose wi thout  loss of generali ty t ha t  x 0 < x  1. We note  also tha t  x 0 and x 1 lie outside 

(a, b). I f  x 0 > b the Minimum Principle I I  applied to the interval (a, x0) shows tha t  z ~> n + 1 
t on (a, x0) except at  points in V(No). We thus see tha t  b E V(N~) and for some choice of U, 

U=V. This possibility has been excluded, thus xo<a and similarly, xl<a. This gives 

xo<xx<a and the Minimum Principle I I  applied to (x0, a) shows tha t  z ( x l ) ~ > n + l  or 

x 1 E V(N~). The inequali ty is false, thus V = V x. A similar a rgument  shows tha t  U is unique 

and the proof of L e m m a  4.8 is complete. 

Proo/o/Lemma 4.9. Referring to and temporar i ly  using the nota t ion used in L e m m a  

4.8 (ii), we see t h a t  whichever a(i, j) is chosen, the possible choices of V-1U are finite as 

N~ N (V-IU)(N~) contains some ordinary point. Thus the possible choices of the sets E as 

described in L e m m a  4.8 (ii) are also finite. We now say tha t  a set is a E-set  if and only if i t  

is of the form A(r) for some r in 11 (see fig. 3) or of the form E as described in Lemma 4.8 (ii) 

(see fig. 4). The point  here is t ha t  the A(i) can only arise as images of E-sets. Indeed,  

L e m m a  4.8 completely characterizes the A(i) for i in In, n~>2 and we see tha t  in this case 
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A(i) = T(Zo) for some T in G and  some Z-set, say Zo. If  ieI1, A(i) is itself a Z-set  and we 

put  T = I .  I t  now follows tha t  for each i in I, there exists a Z-set  Zo and a T in G with 

A(i)  = T ( Z 0 ) .  

Next,  as we have seen above, there are only finitely m a n y  Z-sets and these each have a 

relatively simple s tructure (see figures 3 and 4). The boundary  of each Z-set  consists of fini- 

tely m a n y  sides and vertices of images of N o . I t  follows t h a t  there are only finitely m a n y  

sides of images of N o which lie on the boundary  of some Z-set; hence only finitely m a n y  

images Q(/g0) , say at  most  K1, which meet  one of these sides in an ordinary point. Next ,  

there are only finitely m a n y  parabolic vertices, say Ks, t ha t  lie on the boundary  of some 

Z-set. I t  is more convenient  to assume tha t  K I = K  ~ and this can be arranged as follows. 

I f  K s >~ K 1 we m a y  replace K 1 by  K2 in the  above a rgument  wi thout  destroying its validity;  

we then write K=K~. If K I > K  2 we put  K = K  1 and adjoin (K1-K~) other  parabolic 

vertices to our above set of parabolic vertices to give a set {Pl .. . .  , PK} of parabolic vertices 

which now includes all those parabolic vertices lying on the boundary  of some E-set. 

Thus there exists an integer K and a set {Pl .. . .  ,PK} of parabolie vertices of G (both depend- 

ing only on G) such t h a t  

(a) there are at  most  K elements Q in G such tha t  the intersection of Q(N'o) and the  

boundary  of some Z-set  is a non-empty  set of ordinary points of G and 

(b) if p is a parabolic vertex on the boundary  of some E-set, then ~o =Pr  for some r 

in {1, ..., K}.  

Now let iEIn where n~>l. I f  VEG(i), then a*(V) = n  and V is adjacent  to some U with 

a*(U)  = n - 1 .  I t  follows from L e m m a  4.5 tha t  a = n - 1  at  some point  of aV(No) and so 

OV(No) N 0A(i):~O. l~eealling tha t  A( i )=  T(E0) , we see tha t  

~T-1V(No) n a(Zo) + O. 

We denote by  G~ the set of V in G(i) for which T-1V is some element Q as described in 

(a) above. Thus G~ contains at  most  K elements. I f  T-1V(N'o) meets ~Z 0 at some limit 

point, this point  mus t  be one of the parabolic vertices iol . . . . .  PK and we denote by  Gr(i) 

the  set of V in G(i) for which 

Pr E T -1 V (_N'o) ~ O Z o. 

I f  under  this classification some V appears in more  than  one set G~(i) we merely regard 

V as being in t ha t  set for whieh r is min imum and not  in the others; thus G(i) has the de- 

composition (4.12) and it remains to establish the description of G~(i), l~r<~K as 

given in Lemma 4.9. 
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For each p~ we choose V, such tha t  p~ is a parabolic vertex on ~ Vr(No). Next, we choose 

P~ to be a parabolic element in G that  generates the stabilizer of pr. Our earlier choice 

concerning the centre of N 0 implies tha t  the only images of N 0 which have p~ on their 

boundary are the images P~Vr(No) for integral m. I t  follows tha t  if VEGr(i), then (as 

above) Pr E T -1 V(No) and so T -1V E {P~ Vr}. Thus 

G~(i) c {TP~ V,: integral m} 

where Pr is a parabolic element in G and where Vr E G. This completes the proof of Lemma 

4.9. 

Before proceeding to the metrical properties of the a(i) we need to introduce our last 

piece of notation. First, we recall from (4.11) and Lemma 4.7 (iii) tha t  a(i) is the 

disjoint union of the following sets 

(a) a(i, j), j EZ(i), 

(b) V(~) where V EG(i) and ~ is a free side in N O 

and 

(c) E =  U ~V(N0)nR 1. 
V e G(i) 

In  fact, E consists only of end-points of the intervals described in (b) and parabolic 

vertices on ~V(N0) , VEG(i); thus E is countable. 

Now let ~v be the smallest interval containing (i.e. the convex hull of) V(N~) fl R 1. 

The Minimum Principle I I  implies tha t  2v C a(i) and also that  the 2v (V E G(i)) are non- 

overlapping. Note tha t  (J w a(l)2v certainly includes all sets V(T) as described in (b) above. 

I t  also includes some sets a(i, j) as described in (a); namely those tha t  are described in 

Lemma 4.8 (i), for in this case, a(i, j) c ~  v. Apar t  from a subset of E, then, a(i) - [J wa(l) ~v 

consists of the union of those a(i, j) described in (a) above which are also described by  

Lemma 4.8 (ii). In  this case we assume tha t  2v lies to the left of a(i, j), 2v to the right of 

~(i, j) and adjoin a(i, j) to 2v. The intervals av (V E G(i)) are the intervals 2v with a(i, j )ad-  

joined where applicable. More precisely, if the right hand end-point of 2v, say flv, is the 

left-hand end-point of some a(i, j), then av=2v U a(i, j); otherwise ~v=av. I t  follows tha t  

a(i)= O av 
V e G(D 

and tha t  the av are non-overlapping. Thus 

la(i)l= Y I vI. (4.16) 
V ~ G(i) 

Next,  every interval as described in (a) or (b) above is a subset of exactly one av, V 6 G(i), 
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and the  number  of intervals  of the  t ype  (a) and (b) contained in any  one av is bounded  above,  

the  bound being independent  of V. Another  impor t an t  p rope r ty  of the  av is expressed in 

the following lemma.  

L~MMA 4.10. There exists a positive (~ depending only on G such that i / z6  V-l(~v), then 

[ z - V - l ( ~ ) [  > ~  > 0 .  (4.17) 

Proof. The definit ion of av shows t h a t  V-l(av) consists of a union of free sides of N 0 

and  some sets of the  fo rm ~'0 f] R1 where 2 0 is a Z-se t  as defined in the  proof of L e m m a  

4.9. As co 6N0 ' there  exists a posit ive 6 depending only on G such t h a t  (4.17) holds 

whenever  z lies in a free side in N 0. Thus  we need only establish the  existence of such a 

for sets of the  fo rm 2 0 N R 1. 

Le t  a(i, j) be one of the intervals  in av, V6G(i).  Then  we m a y  write ~(i, j ) = ( ~ ,  fl) 

and use the  no ta t ion  of L e m m a  4.8 where V(~) occurs on the  left  of ~(i, j) and  U(~I) on 

the  r ight  of a(i, j). 

I f  the  hypotheses  of L e m m a  4.8 (if) hold, t h a t  is if U =~ V for all choices of U and V, 

then  a free side of V(N0) mus t  lie to the  left of ~ (this is p roved  in the  proof of L e m m a  4.8 

(if)) and  similarly, a free side of U(-No) mus t  lie to the  r ight  of ft. Thus,  in the obvious sense, 

is separa ted  f rom a(i, j) b y  free sides of U(-N0) and  V(-N0). Thus  V - 1 ~  is separa ted  f rom 

V-l(~(i, j)) b y  free sides of No and V-1U(No). As V-1U(-No) abuts  _N O at  some ordinary  

point,  we see t h a t  there  exists a posit ive 51 depending only on G and such t h a t  a free side 

of V-~U(No) has length a t  least 61. Thus  (4.17) is established in this case. 

There  remains  the  case when for some choice of U and V, U = V. I n  this case there  

m a y  exist free sides in V(-N0) lying bo th  to the  left and  r ight  of a(i, j). I f  so the  a rgumen t  

given in the  preceding case is valid. I f  not,  we m a y  assume t h a t  all free sides of V(-N0) 

lie to the  left of a(i, j) and  certainly there  is a t  least  one free side of V(-No). I t  follows t h a t  

is a parabolic  ve r t ex  on 0V(-N0) and so there  exists an image W(-N0) abu t t ing  V(-N0) 

on a side through fl and  such t h a t  a free side of W(-No) lies to the  r ight  of/~. We now con- 

sider the  two possibilities (a) W=~I and (b) W=I .  I n  (a), ~ is separa ted  f rom a(i, j) b y  

a free side of V(-N0) and  a free side of W(-N0) and these two images of -No abou t  along a 

side. This is precisely the  s i tuat ion we have  a l ready considered, name ly  when U ~= V and 

so we need only consider (b). I n  this ease V(-No) abuts  -N0 along a side ending a t  a parabol ic  

ve r t ex  and so V is one of a finite number  of parabol ic  generators  of G. As ~ r V - I ~  r 

V- lay  and a ~ sat isfying (4.17) exists in this case too as we are only considering a finite 

n u m b e r  of possible V. Thus  L e m m a  4.10 is established. 

We now select a compac t  sub- interval  ~* of R 1 N -No such t h a t  l ~* [ > 0. This in terval  

will remain  unal tered th roughou t  the  remainder  of the  paper .  Our nex t  l e m m a  m a y  be 



254 A.F. m~ARDON 

explained intuitively as follows. We have seen that  each a(i) is the disjoint union of the 

sets of types (a), (b) and (c) (these are the sets used in defining the av). There may be 

infinitely many sets of types (a) and (b) in a(i); however the general form of these sets is 

determined by G(i) and this is adequately described by Lemma 4.9. If no parabolic elements 

were present, G(i) would be finite and we could easily complete the proof using a lemma 

similar to Lemma 3.4. As we are allowing the existence of parabolic elements, we see that  

G(i) may be infinite. In this case we shall use Lemma 4.1 (a result similar to Lemma 3.4 

but  applicable to infinite sequences). This requires the sets of types (a) and (b) to satisfy 

some regularity condition; this is ensured by Lemma 4.9. The next lemma is simply a veri- 

fication of the required regularity condition. For technical reasons we prefer to discuss 

images of 7" rather than images of free sides of Ar 0. This is done in (i); in (ii) we discuss the 

regularity of the a(i, j). 

L•st•A 4.11. (i) There exists a sequence A n (n = 1, 2 . . . .  ) o/positive numbers depending 

only on G and such that 

c~ t (a) ~ A n < § oo i /  t > �89 and 
n = l  

(b) /or all i in  I, there exists an enumeration {V~} o/G(i)  such that I V~(z*)] < A  n [a(i)[. 

(ii) There exists a sequence B n ( n = l ,  2 . . . .  ) o /posi t ive  numbers depending only on G 

and such that 

oo 

(c) ~ B t n < + O o  i / t > � 8 9  
n=l  

(d) /or all i in  I, there exists an enumeration {a(n)} o/{a(i ,  j): j EZ(i)} such that I(~(n) l <~ 

Bnla(i)[. 

Temporarily assuming the validity of this lemma we can now complete the proof of 

Theorem 2. First, we write 

az+ b 
V(z) - cz § d '  a d -  bc = 1 (4.18) 

and note tha t  if V ~ I ,  then 

d x  
(4.19) 

where m is positive and depends only on G. Next, Lemma 4.10 implies that  

/ 1(/::/;)r (4.20) 



INEQUALITIES FOR CERTAIN I~UCHSIAN GROUPS 255 

The inequalities (4.19) and (4.20) imply that  

2 
I(~l < (~m) I v(~*)l (4.21) 

and so ~ I(~(i, J)l < I~1 - I v(~*)l ~ lag I (1 - �89 ~) .  
a(i, j) c ~ v 

The fact that  each a(i, j) is a subset of some (r v (VEG(i)) together with (4.16) implies tha t  

j eZ(i) VeG(i) 
(4.22) 

where m 1 depends only on G and satisfies 0 < m l < l .  Lemma 4.1 (with A~ and a~ replaced 

by B~ and [g(n)[. l a(i)[-~ respectively) and Lemma 4.11 show that  if t satisfies 5/6 ~<t ~< 1, 

then 

[[~(i'j)l]t_< [l~(i, J)l] + M ( l _ t )  

where M depends only on G. An application of (4.22) yields 

I~(i, j)I t < I~(i)I t {ml + M(1 - t)} < 0 I~(i)I t 
jez(i) 

(4.28) 

where t is now chosen in the interval (5/6, 1) so as to satisfy 

0 < 0  = m ~ + M ( 1 - t ) < l  

(this is possible as O < m l < l  and M>0 ) .  From now on the symbol t is reserved for this 

fixed value that  depends only on G. We now deduce from (4.23) tha t  

I,~(k)l ~= ~ ~ I~( i , i ) l '<0~l~( i ) l  ~ 
k e l n + l  le ln  jeZ(i) ieIn 

and so Z la(i)l t=  ~ ~ la(i)lt< ( 1 - 0 )  -1 ~ la(i)lt< + ~ (4.24) 
i e I  n = l  ie ln  leI1 

as 11 is a finite set, the A(i), iEI 1 simply being the components of the complement of ivy. 

Next, Lemma 4.1 and Lemma 4.11 (i) yield the inequality 

[Iv(~*)lit< /IU~*)I] 

(where M 1 depends only on G) which in turn yields 

Z Iv(r*)I t < la(i)I t {1 + M1} (4.25) 
VcG(i) 

as t > 0 and as (4.16) implies tha t  
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I Z = I (i) l. 
VC G(I) Ve G(t) 

I f  we now combine (4.18), (4.19), (4.24) and  (4.25) and  note  t h a t  

{I} U [ U G(i)]=G 
i e I  

we deduce t h a t  < + 
VeGoV::#I 

which is well known to  be equivalent  to the  conclusion (1.3) of Theorem 2. I t  therefore 

only remains  to prove  L e m m a  4.11. 

Proo] o / L e m m a  4.11. The  proof  of (if) follows easily f rom (i) and  so we t empora r i ly  

assume t h a t  (i) holds. Le t  r be an in terval  as described in (d) and suppose t h a t  ~(n) 

ark where VkEG(i). Then  (4.21) and (b) imply  t h a t  

(2/ Sm) I ~< (2/cSm)Ak[(~(i)l. 

We thus define Bn = (2/dm)Ak and so (d) holds. Each  n determines a unique k and the num-  

ber  of a(n) sat isfying a ( n ) ~ v  for any  given V is a t  mos t  K s where K s is the  n u m b e r  

of components  of V(N~) Cl R 1 (or equivalent ly,  of Zr~ n Rt). This implies t h a t  

B~ < Ks(2lOm) Z A~ 
n =I n = l  

and so (c) follows f rom (a). We have  now shown tha t  (if) follows f rom (i). 

The proof  of (i) uses the  decomposi t ion of G(i} as described in L e m m a  4.9, (4.12). 

First ,  we m a y  clearly define A~ = 1 for those V in G~ Next ,  it is clearly sufficient to estab- 

lish (i) in the  ease when { V~} is an enumera t ion  of some Gr(i) ra ther  t han  of G( i )and  this is 

s impler  because L e m m a  4.9 gives an explicit character izat ion of the  Gr(i). Finally, it is 

sufficient to find such a sequence A n where n assumes all integral  values. 

We now recall the  following facts  f rom L e m m a  4.9 and  its proof. I f  i EI~ and n = 1, 

then  T = I .  I f  however  n>~2, then  we write A( i )=A( j ,  k), kCZ(j)  (more explicitly, 

i = ( i l ,  ..., i~), j = ( i  s . . . . .  i~_~), k = i ~ )  and note  t h a t  T is the  V appear ing in L e m m a  4.8 (i) 

and  (if) if, in the  s t a t ement  of this lemma,  we replace i and j b y  j and k respect ively and  if 

we assume in (if) t h a t  V(w) appears  on the  left of ~(i, j). I f  n ~> 2 then, we have  ~*(T) = n - 1, 

TEG(j )  and a(j, k ) ( = a ( i ) )  meets  T(N~) a t  the  left  hand  end-point  of a(j, k). As T is the  V 

appear ing  in L e m m a  4.8 we have  the  vi tal  relations 

a(i) c a r  (4.26) 
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and A(i) = T(E0) 

where Z 0 is some Z-set. The general element V in G~(i) satisfies 

V(~*) c ~(i) 
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(4.27) 

(4.28) 

and by  Lemma 4.9 is of the form V-~ TP~ V~. Writing r*(n, r) =P~ V~ (r*) we see from (4.26), 

(4.27) and (4.28) tha t  
~*(n, r) c T-l(ar)  (4.29) 

and also tha t  

IV(~*)I 
[a(i) l 

IT(z* (n, r)) l 
IT(Z0 n R1) I (4.30) 

=mlPr~G(~*)I 

where m depends only on G. This follows as (4.29) allows us to use Lcmma 4.10 in estimating 

the numerator  in (4.31) while the denominator in (4.31) is bounded below by  a quanti ty 

depending only on G. This estimate has been made under the assumption tha t  n ~>2. 

I f  n = l ,  T = I  and (4.30) reduces to (4.31), thus (4.31) holds for n>~l. The interval V~(r*) 

is one of a finite number of compact intervals in R 1 none of which meet the orbit of ~ and 

P~ is one of a finite number of parabolic elements in G. We prove 

LEM~A 4.12. There exists a positive number M (depending only on G) such that 

[P~ V~(r*)[ 4 M n  -2. (4.32) 

With this available we put  A~ =Mn -2 for each integer n for which TP~ Vr is in Gr(i). 

This proves Lemma 4.11 (i) for Gr(i) and hence in general. The last stage, then, of our proof 

of Theorem 2 is the following proof. 

Proo] o] Lemma 4.12. The set 

-P = Vl(~*) u ... u G(~*) 

is a compact set not meeting the orbit of ~ and not containing any Pr. Thus for each r 

and each n 
IF7 vr(~*)l < IP;(F)I < + ~ .  (4.33) 

Next, put  @ = i n f  ( l z - p r l :  zEF,  r = l  ... . .  K}. 
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As 

for some 1% we have d p~(z) l=] ( z_pr )nkr+  

and  so for all sufficiently large n, 

A. F. BEABDON 

Z -- Pr 

Pg (z) -/9~ = (z - p~) k~n + 1 

I~1 2IFI (ne[4[)-~, IP= < IPp < < 

Clearly this and  (4.33) imply  (4.32) and  the proof of Theorem 2 is now complete. 
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