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§ 1. Introduction and Summary

The boundary theory of Markov chains, as viewed here, is the study of essential
discontinuities (viz., those which are not jumps) of the sample functions. The under-
lying assumptions are such that these discontinuities form a set of measure zero on
the time axis and that for any given time #, the sample function will almost certainly
have only jumps within an open interval containing ¢, reaching the boundary at both
ends if at all. Thus it is a question of “how the sample curves manage to go to
infinity and to come back from there” (see the preface to [1]). In Paul Lévy’s ter-
minology [9], it is a study of “fictitious states”. Depending on whether the transition
is to or from such a state, it is called a point on the “exit” or “entrance” boundary
by Feller ([6], [7]). These ideal boundaries can be formally defined in terms of the
R. 8. Martin boundary theory (see [4], [6], and [8]), and the question becomes that
of a suitable compactification of a discrete set, the denumerable state space of the
Markov chain.

In this paper we are mainly concerned with the probabilistico-analytical aspect
of the theory rather than the algebraico-topological one, if such a rough distinction
may be made. Although the boundary can be defined in the general case and in
more than one way, so far only the atomic part consisting of a denumerable number
of boundary points has been penetrated in any sense, and substantially so only if
their number is finite. It is this part which engages our attention here.

The content of this paper is most directly related to Feller’s pioneering work [7].
Indeed, part of the present work arose from an effort to clarify and consolidate his

results in probabilistic terms. While Feller regards his problem as one of constructing

(*) This research is supported in part by the Office of Scientific Research of the United States
Air Force.
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Markovian transition matrices out of simpler elements, here the viewpoint is that of
analyzing such given matrices and their associated processes. It is perhaps a logical
truism to say that a complete construction is tantamount to a complete analysis, but
there is a difference in emphasis. We take the liberty to include, particularly in §6,
a number of results whose Laplace transformed versions are already in Feller’s paper.

Though Feller used the language of operator theory, he has in essence created
his own methods based on the resolvent equation. Reuter, in a series of papers ([12],
[13] and [14]), presented the semi-group treatment of the subject and contributed to
it in several respects. Neveu [11] gave a synthesis in & more general context com-
prising the theory of taboo states as well as boundaries. The present work has pro-
fited from the works of both authors as well as some private discussions with them
and with R. S. Phillips and David Williams.

We have found it possible to derive the basic results from the first principles
of probability theory together with the kind of direct methods used in [1] and [3].
Laplace transforms are employed only at a later stage. It should be mentioned that
while certain analytical formulas have their “obvious” interpretations, their actual
identification with probabilistic statements are not always a simple matter (see e.g.
Reuter [14]). In our approach the basic quantities and their relations are obtained
from considerations of the stochastic processes involved. A brief summary of the
various sections will now be given.

In §2 we give as much background material as seems feasible, though some
further knowledge of the subject such as contained in §§II. 19-20 of [1] would be
necessary for a thorough understanding of the paper.

In §3 the Martin boundary theory is reviewed. Since we can use only its atomic
part its role is a rather formal one.

In §4 the basic theorems are derived from considerations of certain martingales,
and Blackwell’s theorem is invoked rather than the earlier and equivalent lattice
approach of Feller [6]. The crucial link is the simple but new Theorem 4.3, which
as it were connects the two sides of the boundary. The rest is an application of the
strong Markov property in the form given in §§ II. 8-9 of [1]. Theorem 4.6 and the
open questions mentioned in its connection should serve as a test stone for any
general theory of compactification of the state space of a Markov chain.

In §5, uncomplicated probability arguments are in evidence and the fairly general
Theorem 5.5 is arrived at speedily. It gives a complete description of the sample
functions when there is no accumulation of boundary points in finite time and the

situation may be described as being of the renewal type. Analytically, this result
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already contains the first and easier case of Feller’s construction. The idea of this
approach was explained in [3] in the one-exit case and it is also one of the tools in
Neveu [11] who found it independently.

In §6 we use the counterpart of Feller’s idea of ‘“‘canonical mapping” which
amounts to an integration over time in order to convert probabilities into potentials
(for nonrecurrent states). Interesting, even fruitful interpretations of the results may
be obtained in this light but will not be dwelt upon here. The main result is Theo-
rem 6.3 which yields the basic relation between the transition mechanism of a given
Markov chain and its “jumping” components. This must correspond to what Feller
calls a lateral condition. Theorem 6.8 gives criteria for the validity of the second
(forward) system of Kolmogorov differential equations which, in contrast to the first
(backward) system, is not assumed throughout.

In §7 we treat the dual chain to obtain the representation given in Theorem 7.4.
This result, treated as a major consequence of our development here, is the point of
departure in Feller’s more algebraic theory. It must be pointed out that the dual
chain is not the reversed chain (as studied in [2] in another connection) and whatever
symmetry it yields is more analytic than probabilistic. However, this symmetry can
be further exploited as in Neveu [11], and our lack of insistence on it may have
caused some losses.

In §8 we employ the full force of Laplace transforms as completely monotonic
functions. The results may be considered as furnishing some analytical insight or
hindsight on the situation. In particular, Theorem 8.3 gives a criterion for complete
construction under the same conditions as in Feller [7]. From this the more explicit
formulas of Feller are derived with some amendment, but a full analysis of the second
case (Theorem 8.5) remains to be done.

In §9 the one-exit case is treated in full and the results agree with those pre-
viously obtained by Reuter [13]. The connection with certain processes with independent
stationary increments, discovered by Lévy [9] and analyzed by Neveu [10], is briefly
mentioned.

In §10 we give an extension of the theorem of Austin~Ornstein on the positivity
of the. elements of a transition matrix. While the result has only peripheral contact

with the present work, it is included here for its own interest.

§ 2. Terminology and Noetation

We begin with a list of symbols and conventions frequently used in this paper

without further explanation. They are appreciably the same as in [1] or [3], two
3 — 632932 Acta mathematica. 110. Imprimé le 14 octobre 1963.
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major exceptions being the omission of w wherever possible, and the use of f(*) for 3.
Any contrary usage will be explicitly mentioned or clearly indicated by the context.

N is the set of nonnegative integers. The latters m, » and » denote elements of N.

T=[0, o); T°= (0, o). The letters s, t, « and v denote elements of T°.

R is the set of rational numbers in T.

I is a denumerable set of indices. The letters i, j and k denote elements of I.
The letters 6, 0', 6” and 0 denote distinct objects not in 1.

In this section a statement or formula involving an unspecified element of T° or I
is meant to hold for every such element. A sequence like {f;} is indexed by I; a
matrix like (py) is indexed by IXI; a sum like >, is extended over I. After this sec-
tion, I is to be replaced by I, (see below) in these conventions until further notice
in §6. Actually only on rare occasions does the inclusion or exclusion of § require a
careful check.

A function is real and finite valued. A function defined on T® and having a
right-hand limit at zero is thereby extended, together with its continuity if there
is, to T.

0 if i+7, 0 if t<O,
0y = e &(t) = .
1 if 2=j. 1 if t>0.

0 if t<0

ea(t)={l—e”‘” it 1m0 OSI<)

A (standard) substochastic transition matriz is a matrix (py), (¢,7) €IxXI, of func-

tions on T satisfying the following conditions:

() =0, (2.1)

]Zpu (8) P (t) = Puc (s +1), 2.2)
lti?; Py(t) = 8y, (2.3)
2py(t)<1. (2.4)

It is called stockastic iff equality holds in (2.4) for every ¢ and ¢, and strictly sub-

stochastic otherwise. In the latter case we define

Pio(t) =1~ %Pﬁ(t), Poi () =0,  Peg(t) =1 (2.5)

(*) In honor of Feller.
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and call the new matrix enlarged by the index 0 the stochastic completion of (py).
The stochastic completion of a stochastic transition matrix is defined to be itself.
Given the substochastic []=(p;), we define I, to be IU {6} or I according as [] is
strictly substochastic or stochastic, and define [, to be its stochastic completion.

It is known that each p;; has a right-hand derivative at zero, to be denoted as
follows:

p5(0) =gy —gu=¢ (2.6)
These numbers satisfy the following relations:
“_°°<qii<0, 0<q1~j< oo, (27)

3 45<0. (2.8)

The state 7 is called stable or instantaneous according as ¢;< oo or ¢;=co; and it is
absorbing iff ¢,=0. The matrix (g;) will be called the initial derivative matriz of []
and it is said to be conservative iff equality holds in (2.8) for every ¢.

Associated with any matrix @ =(q;) subject to the conditions (2.7) and (2.8) are

two systems of Kolmogorov differential equations:
2 (1) = Ek: Qe 25 (1), Ly
21 () = % 2 (1) Qs - (IL;)

The minimal solution to both systems, first constructed by Feller, will be denoted by
® = (f;). It is a substochastic transition matrix whose initial derivative matrix is the
given Q. It is minimal in this sense: if any substochastic transition matrix (p;) has
the initial derivative matrix ¢, then
11 () < pi; (¢) (2.9)
for every 4, j and ¢
A (temporally) homogeneous Markov chain, or Markov chain with stationary transi-
tion probabilities, associated with I and [], is a stochastic process {z,},¢€T or t€T",

on the probability triple (L, F, P), having the following properties:

(i) For each ¢ in T or T° respectively, ,=x(f) is a discrete random variable,
and the set of all possible values of all z; is I,

@) If t,<...<t,, and 4,...,4, are elements of Iy, then
P{x(tn+1) =tny1 | z(t,) =14, 1<y< n}

= P{x(tn+1) =tni1 | z(t,) = in} = Pintnrr (bns1 — 1)
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A version of the process will be chosen to have the further properties:

(tii) For every w in Q,

z(t, )= lim z(r, w)
r{t.7eR

for every t; in particular, the process is right separable with R.

(iv) As a function of (£, w), z(-,+) is measurable with respect to BxF where B

is the usual Borel field on T; namely, the process is Borel measurable.

From now on the process {z,} specified as in the above will be referred to as
the given Markov chain and abbreviated as z. It is called open iff the parameter set
is T°. The set I, is called its (minimal) state space, each element of it being a state,
and the matrix [, is called its transition 'matrix. The distribution of z,, to be always
concentrated on I rather than I, is called its initial distribution and denoted by
y={y.}, where

y:=P{z(0) = i}.

When 9,=1, the resulting P will be written as P,. Mathematical expectation with
respect to P is denoted by E, and conditional probabilities and expectations are de-
noted by P(-|-) and E(:]-) in the usual way.

A set like {w:z(t, )=4} is also written more briefly as {x(t)=4}. The indicator

function for the set A is defined as follows:

0 if wé¢A,

1) =1x (@)= {1 it weA.

A vproperty involving w which is true for almost every w is sometimes stated
without the qualification “almost every”. This can be achieved by suitably restricting
the space () at the outset. The Borel field & is assumed to be complete with respect
to P and any of its subfields is supposed to be augmented, namely it contains all
null sets. The smallest augmented Borel field with respect to which every z,, 0 < s<{,
is measurable is denoted by ;.

A number of basic assumptions regarding [ or x will be gradually imposed as we
proceed in the paper. They are not repeated in every theorem but any theorem given after
certain assumptions have been announced is asserted to be valid under these assumptions
(though they may be valid without some of them), unless exceptions are specified.

We now make the following assumption which is to hold throughout this paper.
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AsstmPTiON A. For every 1€1,
(A) — oo <gy<O, JZQ:‘}=0-

The first part of (A) says that every state (except 0 if present) is stable and not
absorbing. The second part of (A) is analytically equivalent to the validity of the
first system of equations (f,;) for every i and j. Together they imply the following
properties of the process ([1; § I1.19]).

(Almost) every sample function executes an infinite sequence of jumps at the

times 0 <7y <7,<.... Let 7,=0, and

Lo=2(t,) (nEN); (2.10)
then z{t)=X, for tE€[tn, Tni1),
and Pty — T <t|2(To), .., 2(Ta)} = gy, (B)- (2.11)
Let ry= 1700 0y (2.12)

qi

and Ip={j:3;7;7;>0}. It is clear that under (A) the matrix P=(r;) is stochastic.
The stochastic process X ={%, n€N) is a discrete parameter Markov chain with y as
its initial distribution, I, as its state space, and P restricted to I,xI, as its one-step
transition matrix. It is called the jump chain associated with x. Let
7= lim 7,; (2..13)
>0

then 7 is a random variable which may be infinite with positive probability. It is
called the first infinity of x.

z(t, w) for tE€[0, 7(w)),

(2.14)
o for t€[t(w),oo).

Define further &t w) = {

Then the stochastic process #={Z(t),t€T} is a homogeneous Markov chain with y as
its initial distribution, I, as its state space, and the stochastic completion of (fﬁ) by

#' as its transition matrix. It is called the minimal chain associated with z. Finally, let

then we have Lt)=P{vr<t}. (2.16)



26 KAI LAI CHUNG

Let us remark that if @, and ®, are the nitial derivative matrix and minimal
solution associated with I]s, they are defined on the index set Iy but not necessarily
the stochastic completion of @ and ®. Under Assumption A, it is easy to see that
we have

9i6=0, g6i=0, goo=1;

2.17
fie=0, f6=0, feo=1, Lp=0. ( )

It will be noticed that most formulas involving 6 are either trivial or easily derived
from those involving only indices in I. The extra index § is introduced in order to
employ the established formal language of probability theory which requires a total

probability of one, even when we begin with a substochastic matrix.

§ 3. The Boundary

Given the matrix P=(r;) defined in (2.12), we now choose the initial distribu-
tion y such that 9(i) >0 for every ¢€I, so that the jump chain X has I as its state
space. Until Theorem 3.2 such terminology as “almost closed”, “invariant”’ and ‘re-
current’”’ refers to X. According to a theorem by Blackwell (see [1; § 1.17]), the set
I can be decomposed as follows:

I=U 49 (3.1)

where the index a ranges over a nonvoid, finite or denumerable set and where each
A® is an almost closed set, at most one of which is completely nonatomic while every

other one (if any) is atomic. Furthermore if we write

L(A4% =lim sup {x, € 4°} =1lim inf {1, € 4°}, (3.2)
where “=" denotes equality modulo a null set, then we have
SP{L(A%}=1. 3.3)

Without loss of generality we may suppose that the sets L(4°%) are disjoint. The
mapping A — L(A) is a lattice isomorphism between the Borel field of equivalence classes
of almost closed sets and that of equivalence classes of nonnull invariant sets. We
recall that two almost closed sets are equivalent iff they differ by a transient set,
and two invariant sets are equivalent iff they differ by a null set.

We define for each a:

‘r"={ t on IL(4%, (3.4)

oo on Q\L(A4%;
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and A={r< oo}, A*={r*< o} (8.5)

It follows that 7°(w)< oo for at most one value of @ on Q, and for exactly one value

of @ on A. Note that
A=A N L(4%), (3.6)

and that A® may be a null set; in such a case certain definitions and propositions
below are vacuously true.

We now introduce the boundary for X. In the state space I let the set of non-
recurrent states be J' and let the distinct classes of recurrent states be I where j§
ranges over a possibly void, finite or denumerable set of indices J’. Let J=J UJ";
thus J is obtained from I by leaving the nonrecurrent states alone and identifying
the states in each recurrent class as a new state. The theory of Martin boundary
(I5], [8]; see also [4]) as applied to X has the following consequences.

There exists a compact metric space J* in which J is dense and each element
of J is an isolated point. In other words, J* is a compact metrization of J, in which

the relative topology of J is its natural discrete topology. The set
B=J"\JuJ” (3.7)

is called the exit boundary, J*\J the nonrecurrent part and J'’ the recurrent part. For
almost every w, the sequence of random variables {¥,, n €N} behaves in one of the

following two alternative ways:

(i) either X,(w) converges in the metric of J* to a point in J'; this happens if
and only if for some j in J and some m in N, we have X,(w)€I; for all
n=zm;

(ii} or X,(w) converges in the metric of J* to a point in J*\J; this happens if
and only if X,(w)€J’ for all » in N.

In both cases the limit, which is a random variable taking values in the boundary
set B, will be denoted by X (w). Let & be the topological Borel field of the metric

space §*; the boundary measure p is defined as follows:
w(C)=P{X.€C} (CE€E). (3.8)

Clearly we have u(J')=0. For a singleton {8} =B we write u(b) for u({d}). A point
b in B such that u(b)>0 is called an atomic boundary point. Every existing recurrent
class forms such a point. The set of atomic boundary points is called the (completely)
atomic part of the boundary, the remaining part the (completely) nonatomic part. Either
part may be void.
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TEEOREM 3.1. There is a one-to-one-to-one correspondence between an atomic in-
variant set A, an atomic almost closed set A, and an atomic boundary point b such that

A=IL(A4)={X=b}. (3.9)

This being so, the respective monatomic parts are in similar correspondence.

Proof. The first correspondence in (3.9) is Blackwell’s theorem cited above, and
the second one is a simple consequence of a result due to Hunt [8], according to
which the Borel field of all invariant sets coincides with the smallest Borel field with
respect to which X, is measurable. The proof is terminated.

 To proceed to the corresponding boundary for z, the time element will now be
introduced. We know [1; Theorem I1I.19.1] that

21
{-(< oo}={ > =< oo},
n=0 x,
making it manifest that the set {r< oo} is invariant and so by Hunt’s result just
quoted, there exists a subset B, of B, belonging to €, such that

{r< oo} ={X.€EBy}. (3.10)

Clearly B, is a subset of the nonrecurrent part of the boundary; B, is called the
passable part, and B\B, the impassable part of the boundary. It is important to re-
mark that while B depends only on (r;;), B, depends on {g;} as well, namely it depends
on (gy). v

For each s in T, let 7,9(w)=s and Xso(w)=2,(w). Let the successive times of
jump of z(-, w) after s be {75 (), n €N} and let

Xs,n(w) =2(1s.n(w), ) (nEN). (3.11)

The process {Xs », nEN} is called the jump chain starting at time s; it has properties
similar to % which is just the special case where s=0. Let

Ts,00 = lim Ts,ns Xs,o0— lim Xs,n» (312)
n—>00 n—>o0

the latter limit being again in the topology of J*. We shall say that after the given

time s, the boundary is first reached at time 7;. and at the point X; .. Given a

subinterval S of T, the boundary is reached in S at b iff there is an s in § such

that 7, €8 and Xs; ., —=b. Note that the state space of {¥; .}, as well as the corre-
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sponding boundary measure u,(C)=P{¥; . €C}, may vary with s. Since for each
given s, almost every sample function is constant in an open interval containing s,
it is sufficient to consider all jump chains starting at rational times. More precisely,
for almost all w, all r o (w) and X o (w) are well defined simultaneously for all r
in R; and for each fixed s, we have for almost every @ (the exceptional null set
depending on s):

T, 00(0) = I T 0 (), s, o0 (@) = i 2, (@) (3.13)

However, it is false that for almost every w, there is a first time that the boundary
is reached after every (generic, not fixed) ¢. Indeed this may be false for ¢ equal to
the first infinity 7(w), and here lies muech of the difficulty of the theory.

The boundary concepts given in this section are maximal ones relative to a given
matrix P or @. A smaller boundary can be defined relative, in addition, to a given
initial distribution . By choosing an everywhere positive y to begin with we have
in effect covered all possible choices of p, and so in particular included the boundary
of {{sn} for every s.

We conclude this section by a description of the set of states from which the
nonrecurrent and passable part of boundary can not be reached. A sample path be-
ginning at such a state will either reach the recurrent part of the bbundary in finite
time or remain indefinitely in some almost closed set, approaching the impassable
part of the boundary as times goes to infinity. Let

Z={iel:L,=0}. (3.14)

In the following, the notions ‘“stochastically closed” and “recurrence” will be pre-

fixed by J] or @ according to the transition matrix they refer to.
THEOREM 3.2. The set Z is the set of ¢ such that
P{r=o0}=1. (3.15)
It 4s T]-stochastically closed and contains all ®-recurrent states.
Proof. The first assertion follows at once from (2.16). Next, if ¢ € Z, then by (2.9),
1=;fv(t)<;pu(t)< H (3.16)
hence f,;=p;;. It follows from the definition (2.15) that

Li(8+t)_Li(3)=]ZfH(s) Ly(¢); (3.17)
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hence if ¢{€Z, and f;(s)=p;(s)>0 for some s, then L,=0, proving that Z is []-
stochastically closed. Furthermore we deduce from (3.17) that for every m and s:

1 >n§0[Li((n + 1)) — L;(ns)] >éof“ (ns) L;(s). (3.18)
If ¢ is ®-recurrent, then ijof" (ns) =oo. (3.19)

It follows from (3.18) and (3.19) that L,(s)=0. This being true for any s, we con-
clude that 1€Z.

An alternative proof of the last part of the theorem is as follows. By a funda-
mental result on stable states ([1; Theorem 5.7]), the number of disjoint i-intervals
for xz(t, w) is finite in any finite subinterval of T for almost every w. Consequently,
the total number of disjoint ¢-intervals for the minimal chain is finite whenever
T(w)< co. On the other hand, if ¢ is ®-recurrent (and not absorbing), this number
must be infinite and so (3.15) must hold, hence 1€ Z.

Remark. 1t is possible that ¢ is [[-recurrent and yet ¢ Z. We need only take
an infinite number of independent copies of an ascending escalator, hitched onto one
another (see [1; § I1.20]). Every state is ®-nonrecurrent and [[-recurrent in the re-

sulting chain, and Z is void.

CoroLLARY TO THEOREM 3.2. Z=I if and only if the passable part of the
boundary is void, or [[=®.

§ 4. Fundamental Theorems
Recalling (3.4) we put Lit)=P{r*<t}; 4.1)

then L} (t) is the probability, starting from ¢, that the first infinity is reached no
later than at time f, and that the jump chain finishes by remaining in the almost
closed set A*. We have clearly

L=3 L (4.2)

and the analogue of (3.17) holds:

Li(s+t)—Li(s)= ;fu (8) Li' (&), (") (4.3)

() By our convention i+6 and j+0, but we can in virtue of (2.17) extend this and similar
formulas to cover the index 6.
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this time from its probabilistic meaning. By a general analytical lemma ([3; Lemma 2]),

the equation (4.3) implies that each L{ has a continuous derivative !{’ in T satisfying
B(s+1) =JZfif ()1 (#). (4.4)

Furthermore, the Kolmogorov equation (1) for fir (see (2.15)) reduces to

HOES ; g L7 (t). (4.5)
Since Lj(0)=0 it follows that
I*(0)=0. (4.6)

TEROREM 4.1. We have for every t: 0 <t< oo, with probability one:
lim Ly (t)=1(A%. (4.7)
Proof. We have ([1; § I1.19])

E{T —Tn I Xn} = mz—n q;:" (4.8)

where the series converges on A and diverges on Q\A. By Lévy’s zero-or-one law,
we have on A%
lim P{r=1*|%,}=1,

and consequently lim E{t*— 7,|X,} =0.
N=>0

Since 1—L§ () =P{z° — v, >t | 2.} <t B{7"— 7| 20}, (4.9)

it follows that the first member in (4.9) converges to zero as n—>co. On the other

hand, by the same law we have on Q\A%
lim P{-r“= °°|Z,,}= 1.

Hence it follows from the first relation in (4.9) that its first member converges to
one as n-—>oo. Thus (4.7) is proved for Q<i< co. This trivially implies (4.7) for
t=oco on A® which in turn implies the same on Q\A® by (4.2). Theorem 4.1 is
proved.

COROLLARY. For each a such that P{A*} >0, there exists a sequence of states {i,}
such that for every b:

lim Li,(-)=68%¢(-).

n—o>oo



32 KAI LAI CHUNG

In particular if I (2)=f e MdL!(¢),
0
then lim I, (1) = .

Let C€G, then {X. €C} is an invariant set for ¥, hence if we set U;=P;{¥,, €C},

we have

U5=;ruU,» or ;qUU,=O. (4.10)

Define the function U;(-) on T as follows:
U,t)=U;~ ;f,,(t) U;, (4.11)
then we have U:t)=P{X. €C; T<t}. (4.12)

It follows from (4.11) or (4.12) that
Ui(s+8)—Ui(s)= ]qu(s) U (t); (4.13)

hence by the lemma cited after (4.3), each U,(-) has a continuous derivative u;(-)

satisfying
wils+0)=3 fyls) wy(e) (s>0, £>0). (4.14)

If C is a subset of B\By, then U;(+)=0 for every ¢ by (4.12), and conversely. Other-
wise, u;(t)>0 for some ¢ and ¢>0 (see the Appendix for a stronger result). If C is
a passable atomic boundary point corresponding to A4°% then U(-) reduces to Li(:).

A set of nonnegative functions {u(-)} with 4,(0)=0 for every ¢ and satisfying

(4.14) will be called an exit solution for ®. If the w;’s are nonnegative and satisfy

(4.14), and we set
(6 = wi(8) — 2. fy(8) u,(0),

then {@ )} is an exit solution for ®.

We now make our second basic assumption:

AssumPTIiON B. The passable part of the boundary is nonvoid and completely
atomzc.

We shall denote these atomic boundary points by {oc% a €A}, where A is a non-

void, finite or denumerable index set. We have thus

{r<oo}=U{tt<oo}= U {r < o0; Foo= .
acA acA
THEOREM 4.2. Under Assumption B, every exit solution satisfying

fwu, @) dt<1 (4.15)
0
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is given by u; (t) = ZA el (), (4.16)

where 0<c® <1 for every a in A. Furthermore the representation (4.16) is unique.

Proof. Let {u;(+)} satisfy (4.14) and (4.15). Since the Kolmogorov equation (I;)

for @ is equivalent to

ful(s)= gﬂ, foe_Qi(s_v)Qikfki(v)dv+6i]‘7 (4.17)

we have, upon substitution into (4.14):

Ui(s+8) —wi(t) = 2

S
| e Vg (v + £ do.
ki J g

It is easy to see that we can let | O termwise under the integral; and integrating

the resulting equation over (0, o), we obtain

f u; (s)ds= Z,Qi_l%kf u (v)do.
0 k=i

0

Hence if we set U,= [Fui(s)ds, {U} is a solution of (4.10) with 0<U;<1. By a
theorem due to Blackwell ([1; § I1.17]), to such a solution there corresponds an in-

variant function ¢ with 0<¢@<1 such that U,=E;(p). Now decompose ¢ as follows:
p=2c¢"1(A")+¢° (0<c’<]1),

where A*=I1(A% in (3.2), and the sum is over the disjoint atomic invariant sets,
¢° being the remainder which vanishes on the atomic invariant sets. We have, cor-

respondingly,
Ui=Zc"Py(A%) + Ei(¢°),

and using (4.11), the discussion after (4.14), and Assumption B:

Ut)= > Li{t)= t > c*l{(s)ds.
acA 0acA
Upon differentiation we obtain (4.16) a.c. Since 2,I{*(t) =1;(t), the series converges uni-
formly in every compact interval of T by Dini’s Theorem. It follows that both mem-
bers of (4.16) are continuous and so the equation holds for every ¢.
Suppose u;(+) has another representation of the form (4.16) with ¢* replaced by
d% it follows that
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2 c*Li@)y= 2 d°L{ ).

ae acA

Applying the Corollary to Theorem 4.1, we have ¢*=d° Thus the representation is
unique and Theorem 4.2 is proved.

By the same argument, we see that the set of exit solutions {If(-)},a€A, is a
linearly independent set. The conclusion of Theorem 4.2 may be expressed by saying
that this set is the extreme base of the space of exit solutions.

From now on an unspecified super-index a or b denotes an element of A and
an unspecified sum over it extends over A.

For terminology relevant to optionality see [1;§II. 8-9]. In particular, if v is
optional. {§, and {, denote respectively the pre-r and post-r fields.

Lemma. Each ° is an optional random variable.

Proof. For each n€N, t, is optional, as can be seen by induction on 7. Next,
let 7, n=[mz,+1]/m for every positive integer m. Then 7, , is rationally valued and
optional, and 7, ,<t for all sufficiently large m on the set {r<t}. These facts imply
that #(z, ,) is measurable with respect to the pre-r field §, for large m. Since al-
most every sample function is constant in a right-hand neighborhood of every t,, by

the basic property of a stable state, we have

lim 2(7,, m) = 2(75)

with probability one by the specification (iii) in § 2 of . Hence every z(t,) is mea-
surable with respect to g,. Now

{ro<t}= (1 ﬁ {1, <t; x(z,) € A%} €F:.

The lemma is proved.

Under Assumption B, if p is positive everywhere as in § 3, then P(A*) >0 for
every ¢ in A. For an arbitrary p, some P(A®) may be zero. In what follows, we shall
tacitly suppose that P(A%) >0 in a discussion involving A%

The post-z* process x*={zf{,t €T} on A® is defined as follows:

xf = 2% (t) = x(z" +¢). (4.18)

By the strong Markov property as discussed in [1; § IT. 9], 2* is an open, homogeneous
Markov chain on the probability triple (A% F° P?), where F*=F N A% P*(-)=P(-|A?),
with a certain subset I* of I, as its state space and with the restriction of [, to I*xI*

as its transition matrix. Properties corresponding to (iii) and (iv) in § 2 also hold.



ON THE BOUNDARY THEORY FOR MARKOV CHAINS 35

The process z* can be extended to the parameter set T on A® if and only if 27(0) =
z(7*) €I, almost everywhere on A°.
The next few theorems and their corollaries form the probabilistic basis of the

present investigation.

TEEOREM 4.3. For eack a in A, each j in I, and each t >0, there exists a number
EF(8) such that

Tim P{A% (1) = | %} = 1A (1) (4.19)

Proof. For each »n and ¢, we have

°+i= lim {‘r,,+ [m(r“+t—1,,)+1]}.

m-»co m

It follows from an argument similar to that in the lemma above that x(z*+1¢) is
measurable with respect to the post-r, field 85,” and hence with respect to ﬂn%,'n_
This fact and the fact that ¥ is Markovian imply that the limit in (4.19) exists by
the martingale convergence theorem, and being the limit it is ipso facto an invariant
function for . On Q\A® it is zero by Lévy’s zero-or-one law. In general it is constant
on each atomic invariant set A*=L(A%. This constant is the &7 (t) in (4.19). Theorem

4.3 is proved.
COROLLARY. We have P{a®(8) =j| A%} = & t),

so that {&}(t)} ts the absolute distribution of the post-v* process at time t.

It follows that > e =1, (4.20)
iel®
2 & &)pi () =& (s +1). (4.21)

iel®

In particular by a general analytical lemma ([3; Lemma 1]), each & is continuous in T.
Define F; =V, 3, . Note that in general §§; is a proper subfield of {,, but 7 is
measurable with respect to ;.

THEOREM 4.4. For each a in A, if M€F; and M’ €., then
P{MM'| A%} =P{M| A*}P{M'| A%}. (4.22)

Proof. Let n€N and M€, . If n<m, then §, <, trivially and F,<F, by



36 KAI LAI CHUNG

the argument at the beginning of the preceding proof. Hence M€, and {«®(t)=j}€F; .
Applying the strong Markov property to v, we have [l; Theorem IL. 9.3]:

P{M; A% 2°(t) = | L} = P{M | X} P{A% 2°(8) = | Xm}-

Integrating over () and letting m-—>oco, we have
P{M; A% 2*(t) =j} = f lim P{M | X} P{A% 2*(t) = j| X} dP. (4.23)
Q M—=>00

Now if § denotes the invariant field for X, then A€ and by the Markovian pro-

perty of X and a simple martingale convergence theorem:

Yim PM | 2} = P{M | i, Zimsa, -} = PAM| s

consequently f lim P{M|%,} dP = P{M; A%}. (4.24)
A

Using (4.19) and (4.24) in (4.23), we obtain
P{M; o (1) =] A% = B{M| A%} &7 (1),

Applying the strong Markov property to t*-f, we obtain furthermore that if 0 <i=
t,<---<t;, then

P{M; 2°(t,) =4, 1 <v<I| A%}
1-1
=P{M| A"} &/, (t1)v1=—[lP/,;,,+1 (tys1— 1)
=P{M| A%} P{a®(t,) = j,, L<w<I| A%}

This being true for arbitrary ¢,’s and j,’s we conclude that (4.22) holds for every
MeF,, and M'€JF;; since n is arbitrary it holds also for every M€V, =3F;.
Theorem 4.4 is proved.

THEOREM 4.5. For almost every w tn A% t,{w)~>t implies
Jim py ot (n (@) = &) (4.25)
for every r in R and § in I

Proof. We first prove (4.25) with »r=0 and all {,(w) equal to a fixed ¢, and with

the exceptional null set possibly varying with . Given & >0, there exist I' and m such
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that T'< A® and P(A°\I') <&, and such that if w €I’ and »>m, we have
™ w)— 1 (w)<e. (4.26)
The basic property of the stable state § for the post-r, process implies that on I':
P{A% 2% (t) = | 2a} > Pla(ra +8) =5 | Xa}e " =y s (t)e "
Letting n— oo, then ¢—0, we obtain from Theorem 4.3:
&> mp, )
almost everywhere on A® Similarly we have if ¢<¢,
P{A% &t — &) =j| Xn}e P < Pla(t, + 1) =7 | Xn} =2y, , ).

Passing to limits as before, we obtain

£ < lim p, ()
N->00

almost everywhere on A®. Thus (4.25) is true in this case. Applying this a doubly

denumerable number of times, we infer that for almost every w in A% and for a

fixed sequence {r,} converging to zero,
nllrg px,,,,(w).i(rm) =& (rm) (4.27)

for every r,j and m. For any w for which (4.27) holds, and for which furthermore
Xr o (w) €Iy for every r and », we now show that the stronger (4.25) also holds, as
follows. Let X, ,{(w)=1t,, t.(w)=1t,. For any >0, there exists m such that {>r,; hence
t, > ry, for all sufficiently large n. We have by Fatou’s lemma and (4.21):

liin Pi i (tn) = Z h_rn Di i (rm)pi} (tn - 7‘,”)

= ;Ef (rm)pis (E—Tm) = &7 (2). (4.28)
Consequently by (4.20)

12 > limp ;(t.)> 3 & () =1.
jelg n5o0 jely

Hence equality holds in (4.28), and this remains true if {i,} is replaced by a sub-

sequence. Therefore the lim in (4.28) may be replaced by lim and Theorem 4.5 is

proved.

4 — 632932 Acta mathematica. 110. Imprimé le 14 octobre 1963.
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As a consequence of Theorem 4.5, we shall prove a property of sample functions
regarding the time set on which the boundary is reached. The corresponding property
[1; Theorem II. 6.1], first proved by Doob for an ordinary (vs. a fictitious) state, is
a major result in the theory of Markov chains. Two passable atomic boundary points
0% and oo® a=%b, are said to be indistinguishable iff the corresponding post-t* and
post-t® processes have the same finite-dimensional distributions; otherwise they are
distinguishable. If co® and oo

Define

are indistinguishable, they can be “merged” as follows.

{ooan}={ooa} U {oob}; Aan=Aa U Ab;

an _ |70 on A% ab |22 () on A%
t {1:”, on A?, = 2°(t), on A?Y;

LY (y=Li 1)+ LY (¢), V() =¢£%(t)=£"(t);

and treat the union of the two atomic boundary points as if they were one.

For each w, let the set of ¢t for which there is an s<# such that 7, (w)=1¢ and
Xs.o0 (@)= be denoted by S_,(w). This is the time set on which the sample func-
tion #(:, w) reaches the boundary at the point oo®. The union of 8§ ,(w) over a in
A may be denoted by S_ (w) and is the time set on which (-, ) reaches the bound-
ary (under Assumptions A and B). Note that t€S_(w) does not imply z(t, w) = oo,

according to the specification (iii) in § 2.

THEOREM 4.6. If % and oob are distinguishable, then for almost every w, no ¢
is a left-hand [or right-hand)(*) limit point of both S_.(w) and S_,(w).

Proof. Let Q, with P(Q,)=1 be so chosen that (i) every stable state is taken
in an open set; (ii) for every j,s and ¢ where s<{¢ the martingale

Pzt s(E—7)

as r{s or r1s r€ER, has a unique limit; (iii) Theorem 4.5 holds for every a. The
second stipulation is possible by the regularity properties of the sample functions of
a martingale (see [1; p. 153]). We now show that if for some w, in €, and an s in
T9, both S_,(wy) and S_,(w,) intersect (s, s+3) for arbitrarily small §, then &(-)=
&(+). A similar proof holds for (s—4, s).

By hypothesis, for every & there exists an r in R such that

(1) t is a left-hand or right-hand limit point of § according as (¢, t+8) N S+0 or (¢—3, ¢ N
S =0 for every &> 0.
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Tr0 €(8,8+0) and 2Xr o = 0%

Hence by (i) and (iii) above, there exists a sequence s, €R, s, 1 7, such that if £ >s+94,
}im Pas, i (8= 8n) = &7t — Tr,c0)-

Since & is arbitrary and & is continuous, this implies that there exists a sequence
r,€R, r, | ssuch that if ¢>s,

m prcry.s (6 ra) = £ (6 5).

A similar relation holds for another sequence r, €R, 75 | s, and &) instead of &7. There-
fore by (ii) above,

E(t—s)=&(—s).
This being true for every ¢>s, we have & (:)=£7(-), proving the theorem.

Remark. A point of jump ¢ is a right-hand limit point of some S;(w) and a
left-hand limit point of a distinct S;(w). Without assuming that the states are stable,
¢ and j may be instantaneous if the unilateral limits are replaced by lower limits.
From this we surmise that the unilaterality stipulation in the theorem is necessary,
though we are not giving a specific counterexample, nor one to show that the dis-
tinguishability is also necessary.

§ 5. The First Approach
The starting point of the analysis of probabilities of transition to and from the

boundary is the following result.

TrEOREM 5.1. Under Assumptions A and B, we have

B =1 (®) +;f:z:' (5)&5 (¢ = 5)ds. 6.1)

Proof. We have
Pz, =j} =P {r>t; xt=7'}+§P,{'r“<t; =17} (6.2)
The first term on the right side is, according to (2.14), P,{% =7} ={,;(t). Next, the
conditional independence asserted in Theorem 4.4 implies, by [1; Theorem II. 9.4], that

i

t
P{r’<tm=4}= fof? (t—s)dL(s) = J‘olia (s) & (t—s)ds.

Substituting into (5.2) we obtain (5.1). Theorem 5.1 is proved.
For any subinterval (s,?) of T° we define
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0%(s, t) = {w: 2*(+, w) does not reach the boundary in (s, #)}
={w:2°(+, ) has only jumps in (s, ?)}. (5.3)

It is immaterial whether the interval (s,f) is open or closed, provided that a null

set can be ignored. Now we define for each ¢:
8¢ (w) =87 (t, w) =inf {s: 0< s<t; w €0°%(s, 1)} (5.4)

It is easy to see that §; is a random variable with a continuous distribution, which
will be given shortly. We call §*(f, w) the last exit from the boundary before time t for
the sample function 2°(-, w). By definition §°(f, w) either belongs to or is a right-hand
limit point of the set

Sa@)= U 8_a(®),
acA

but it may be the left-hand endpoint of a stable interval. Even if A is fihite, 8 (t, w)
may be a right-hand limit point of a certain S_,(w) (see Theorem 4.5), and not
belong to S (w).

It follows from the Corollary to Theorem 4.3 that if 0<s<{, then

P{67<s; xé‘=7'}=121n£f‘(s)fu(t~s) (Ger); (5.5)
Pe{oi<s}= D& - Lit—s)]=1— 2 & (s) Lt — ). (5.6)
iel* iel®

In dealing with 2?, the appropriate state space is I* (which may or may not include
6) as noted above, but we shall frequently omit it when no confusion can arise. We

now define

&) =P{8; =0; x{ =3} (5.7)
o® (1) =P*{6{ > 0}. (5.8)

TaEOREM 5.2. We have
Ge= lsig} ;f? ()t —s8)= lsif'ﬂ ;5? ()1 (8); (5.9)
0% (t) = lim SE )Lt —8)= lim ;5? (s)Ls (t); (5.10)
e“(t)+JZC}’(t)=l; (5.11)

;C? () fy (1) = CF (s + 2). (5.12)
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Proof. The first equations in (5.9) and (5.10) follow upon letting s | 0 in (5.5)
and (5.6); indeed in either case there is monotone convergence. The second equations
follow from the stochastic continuity of df and xf. Analytically, the second equation

in (5.9), e.g., can be proved by the inequalities, valid for 0 <s<?, O<s<d:
fis(t—8) f(8) < fiy () < fis (8 + 8= 8) [f5(6 — 8)] 77,

and the continuity of £{ to be noted below. Summing {5.7) over j and adding (5.8)
we obtain (5.11). Finally, (5.12) is obvious from the meaning of {}(t) as the proba-
bility that 2®(t, w)=7 and w€0%(0,¢). An analytic proof using (5.9) is also immediate
if we observe that

zz & (8) fu(t—8) < ;‘f? (8)puy(t—8) = &7 (D),
so that the series ; {S &) fi(t— )} (5.13)

in j is uniformly convergent in s€(0, t).

THEOREM 5.3. For every a and b in A, there exists a nonnegative nondecreasing
function L*®*<1 and a sequence s, O such that

L (t)= lim ;5;‘ (8n) LY (t — 8,) = Him > &7 (s,) LY () (5.14)

n—oo i

for every £ >0. The function L* is absoluiely continuous in T but may have a jump at zero;

its almost everywhere derivative I°® satisfies, for almost every t, the equation

@) =26 (E—s) (0<s<i). (5.15)

Proof. The set of functions Z; &7 (s) I{ (t—s) of ¢ in (m~?, o) indexed by s€ (0, m™ ")
consists of bounded, nondecreasing functions. Hence by Helly’s theorem a sequence
{s,} exists for which the first relation in (5.14) holds for ¢ €(m™*, oo). Letting m—>oco
and using the diagonal argument we obtain the first relation in (5.14) as asserted.

Now we have by (4.3), if s<i#, <1,
; E Lty — )~ Li(t,—5) = }g {g EE () fy(ty— )} Lj (b — ). (5.16)

Letting s 0 along the sequence {s,} and using (5.9), (5.14) and the remark involv-
ing (56.13), we obtain

LY @,) - L*@¢) = ;c% ) L (8, —¢y).
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Consequently L® is continuous in T? and the second relation in (5.14) follows from
the first as in Theorem 5.2. Furthermore it  follows that
ta—t,

) -LW)= | ) B (u) du. (6.17)
If 0<r<s, we have by (5.12) and (4.4):
;C? &)y (u)=.§{z EH) fuls — 1)} (w) (5.18)
=30 S hye—n B W)

=‘Z§§‘(r)l?(u+s—r).

Hence we can define a function I** by (5.15) and substituting into (5.17) we obtain

¢

L (t,)— L (t,) = f e (8)ds (0<t,<i,< o). (6.19)

t

CoROLLARY, The left member of (5.16) converges as s | 0 to the left member of (6.17).

Proof. This follows since each sequence {s,} converging to zero contains a sub-
sequence along which the left member of (5.16) converges to the unique limit

given in (5.19).

Remark. The corollary says that the measures in ¢ corresponding to 2; &f (s) L{ (£ — s)
converge on T? as s { 0. We do not know if they converge on T. More precisely, de-
fine L*?(0)=0 and let the jump of L® at zero be denoted by L®(0+); does

lim lim 3 & (s)L? (t—s)

£40 840 4

exist and equal to L®(0+ )?

THEOREM 5.4. Under Assumptions A and B, we have
t
=4 wm+ bZA fo & (t—s)dL™ (s) (5.20)
if and only if 0*()=SI%(-). (5.21)
b
Proof. Substituting (5.1) into (4.21), we have

4
§s+t)= ¢Z &) fut)+ DEZA f , & (t—u)dy [; & (s) L (w)]. (5.22)
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Since A is denumerable, there exists by the diagonal argument a sequenee {s,}{ O
such that (5.14) holds for every a and b. Since each &} is continuous, this implieé the
convergence of each integral in (5.22) to its corresponding limit. Hence by (5.9) and
Fatou’s lemma, (5.20) holds with “="" replaced by “>’. Summing over j in I%

we have

1> ,Z Lr) + bezAL"” ().

Comparing this with (5.11) we see that (5.21) is a necessary and sufficient condition
for the equality to hold in (5.20).

CoRoOLLARY. A sufficient condition for the validity of (5.20) is that for each a, there

is only a finite number of b such that L® (oo) >0; this is the case if A is a finite set.

Let the Laplace transforms be defined as follows, 0 <A< oo:

£ )= f” ey, £ ()= f:e-“c;‘(ndt,

. . (5.23)
L y= f e ML () =L (0+)+ f e M1 (t) dt.
0 0
The equation (5.20) becomes, omitting the index 4:
EW=C0)+ IS0 EW; (5.24)
or in matrix form on the super-index:
[~ AMER) =), (5.25)

where I is the identity matrix,
A@)=(L?(2)), (a,b)EAxA,

and é‘ (A) and 5 (A) are regarded as column vectors with the components indexed by A.

Following an established terminology [1; § I. 3], we write a ~sb iff L®(c0)>0,
otherwise @ ~+ b; and we write a ~~b iff ¢ ~b and b ~*a. Note that an equivalent
definition is obtained if we use L%(1) for any A< co instead of L®(co)=L*(0). The
index a is essential iff there exists b such that @« ~b and for each such b we have
also b ~ a; otherwise it is inessential. The relation ~+ among essential indices is an
equivalence relation by means of which they are partitioned into essential classes
0y, C,, ... The set of inessential indices will be denoted by C,.
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THEOREM 5.5 Suppose that A is a finite sel. One of the following alternatives must
occur:
(i) There exists an essential class C of indices such that
> L®0+)=1 (a€0). (5.26)
beC
In this case if a€C and bEC, then o and oo® are indistinguishable. C may be a
singleton.
(ii) The matriz I — A(A) is invertible and

En=t-AG M= S AN WER). 5:27)

Proof. Suppose there exists an essential class C' such that the restriction of A(4)
to it is stochastic, namely, we have
SL®A)=1 (a€0). (5.28)
beC
This can happen only if L®(1)=L®(0+) and (5.26) holds. It follows from this, (5.10)
and (5.14) that
0 ()= lim 3 (s,) 3 L ()= 3 L**(0+)=1;
n—oo i beA beA

consequently ¢*(0+)=1lim,00°(t)=1 and so [{(t)=0 for every j and ¢ by (5.11).
Thus (5.24) reduces to

Fa)=3I0+)8@) (@e0). (5.29)

eC

Since C is a finite set, being a subset of A, a well-known result in discrete para-
meter Markov chains asserts that the only solution é(}.) of such a system of equa-
tions is a constant. A simple algebraic proof is also available. Thus for each 4, 2=
g (A) for every a and b in C and we conclude that &7 (f)=§&] (t) identically in j and
t for a and b in C, by the uniqueness of Laplace transforms.(!)

On the other hand, if there does not exist any essential class C with the pro-
perty (5.28), then it is a consequence of the recurrence properties of discrete para-
meter Markov chains that the series 23_.9A"(A) converges for 0 <A< oo and yields
the inverse of I— A(1). Applying it to (5.25) we obtain (5.27), completing the proof
of Theorem 5.5.

() This result should be compared with Theorem 4.6.
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If indistinguishable boundary points have been merged, then the alternative (i)
reduces to

L#o+)=1
for a certain merged boundary point. This means t* is a left-hand limit point of
Sews(w) almost everywhere on A% and the fictitious state co® behaves as an instan-
taneous state. Analytically, the equation (5.24) reduces to the trivial identity {-:"(}.)=
E).
Under the alternative (ii), the sample functions can be described as follows. For

almost every w, z(-, w) reaches the passable part of the boundary in a sequence
of times

(0) <t} <7(2)< - (Y),

where 7{0)=7 is the first infinity in our previous notation and if z(n)= oo then
Tn+1)=1(n+2)="-=co. We define

yn)= lim z(@) if 1(n)< oo,
ttz(n)
y(n)=9" if t(n)=oco;

where the limit is taken in the metric topology of J* so that y(n)€B,. If we write
pology Y ]

113

simply “a” for “co®’, the process {y(n), n €N} is a discrete parameter homogeneous

Markov chain with Ay as its state space, and the stochastic completion (by 6”) of

(L™ (0)), (@, b)€EA xA, as its one-step transition matrix. Furthermore we have
P{r(n+1)—2(n) <& y(n+1)=b|y(n)=a} = L)
If we define z(t—1(0))=y(n) for T(R)<t<T(R+1),
the process {z(f),t€T} is a so-called semi-Markovian process. Finally if we set
vt)=n for zT(R)<EI<T(R+1),
then for any ¢ and A €F, 0w,
Pla(t) =] As y(v(t)) = a} = {F (¢ — 2(v(8)).

Perhaps it is better to describe the above situation in somewhat less precise but
more intelligible terms as follows. The sample function of the Markov chain x is

() 7(n) is not the previous 7,.
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composed of a sequence of “waves” going from a passable atomic boundary point to
another (not necessarily distinct one). The transition of these boundary points follows
that of an imbedded Markov chain with (L*®(cc)) as one-step transition matrix. The
length of each wave joining oo to oo® has the distribution L*(-), independently of
any occurrence outside this wave. Within each wave the sample function has only
jumps, and consequently the transition of z there is by means of ®=(},). If a wave
begins at oo% then at ¢ units of time later z is in the state j with probability (7 (t).
A sample function may have a finite number of waves before reaching a point on
the recurrent part of the boundary and remaining there ever after; or it may have
a final wave extending to infinity while approaching the impassable part of the bound-
ary; or it may have an infinite sequence of waves going to infinity. Under the hy-

pothesis of Theorem 5.5, in the case (ii), these waves cannot accumulate in the finite.

§ 6. The Second Approach

Let I' be the set of ][-nonrecurrent states in I; note that 0, if present, is
recurrent.

For each @ in A and § in T, we set

97 = fo & (t)de. (6.1)

THEOREM 6.1. The set of § for which g >0 is the state space 1* of the post-t*
process. If jEXL, then gi < oo or g7 = oo according as jEI or §¢T.

Proof. The first assertion follows from the fact that I* is the set of § for which
&7 (t)>0 for some § and ¢, and the continuity of £;. To prove the second assertion, we
observe that if €I, then [§ p;(t)dt< oo. We have by (5.1)

t
py(t) = L &7 (t—s)dLi (s);

consequently f pis () dt = L (o0) g7

0
There exists an ¢ in I such that L{(oc)>0; hence gf < co. An alternative proof of
this is as follows. If S;=8,(w)={t: z(t, »)=4} and pu is the Lebesgue measure on T,

then we have
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97 =E{ulS; N (7%, )} <E{u[S;]} < o

by [1; Theorem II. 10.4].
On the other hand, if j¢I' then [§ pj;(t)di=cc. We have by (4.21), for any s

and #:
&' (s +8) =& (s) py (8).

It follows that for any wu:

u

g;-’>f0 57<s+t)dt>s;'<s)f Pyttt

0
There exists s such that &7 (s)>0; hence we obtain gf = co by letting u->co.

AssumprioN C. I=T'; namely there is no [ [-recurrent state except 0 if present.

It is not true that Assumption C can be made without loss of generality, even
if we are only interested in the nonrecurrent part of the boundary. This is because a
II-recurrent state need not be ®-recurrent; see Theorem 3.2 and the Remark after it.
In particular the Doob type of construction (see [1; Theorem II. 19.4]) leads to II-
recurrent, states if I;(c0)=1 for every i.

From now on in this section an unspecified index 4, j or & is an element of I’,

and an unspecified sum over it is extended to I'.
For j€T, we set H}‘(t)=g}‘—§i:g?f,-,(t). (6.2)
This is the “dual” of (4.11).
TEEOREM 6.2. We have if jEI*
Hi>o0, H?t, H}0)=0; (6.3)
Hi(s+1t)— H7 (#) =zi H{ (s) f,(2). (6.4)
Hj has a continuous positive derivative nf in T satisfying

ni(s+t)= Z 74 (8) f15(8)- (6.5)
Proof. We have

;gi‘fﬁ(t) 221:_['0 &1 (s) fiy(8) ds < 12 f: &l (s)pyy(t) ds

o0 t
=f £ s+ 1) ds=gf—f £(s) ds <gf.
‘ 0 0
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By the Appendix the second inequality above is strict, hence Hj >0. Next we have
Ei: H(s) fu(t)= Z {g¢ - % Gic Fri (8)} fis (8) = 2: gi fu(t) — %: giefui(s+)=Hi(s+¢) - H} (¢);

hence Hj' 1. The continuous differentiability of H} together with (6.5) follows from
the equation (6.4) by a general lemma already cited under (4.3) in its dual form.
Finally, %/ >0 by the Appendix.

For every ¢ and b in A, we set
o) =2g (@) (6.6)

It will follow from the proof below that the series in (6.6) converges for every ¢ >0,
and is a nonincreasing function of &.
The next theorem is fundamental; it takes the place of Theorem 5.4 in the new

approach.

THEOREM 6.3. Under Assumptions A, B, and C, we have

t t t
f nf(S)d8=f g(s)ds+ 2 f o™ (5)& (t—s) ds. (6.7)
0 beA Jo

0

Proof. Let us rewrite (5.22) as
¢
E(s+t)=2 & () fy(t) + gf [2E U @) & (¢ —w) du. (6.8)
i o ¢

For each b, there exist j and ¢, such that £ () >0, and this implies & (£) >0 for all
t>t, by (4.21) (for a stronger result see the Appendix). It follows from this that the
series in square brackets in (6.8) converges for each fixed s and almost every u.

Furthermore we can integrate to obtain
-] t
o> [Tgornas-Settn+3 [ g e-w (©9)
0 ¢ 0

where ¢°° is defined by (6.6) and the series there converges for almost every ¢ If
it converges for ¢ and t<wu, then by (4.4),

29? B (u)= ; [; gt fy(u =] ()< ;y}’ i ().

Hence the series in (6.6) converges for every ¢t>0. Finally, since
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o0 t
[Tgerna-sano-o-[ g0 a-Sano
0 0 t
t
-1 0- [ g
0

t t
=f nf(s)ds—f £ (s)ds
0 0

by Theorem 6.2, (6.9) is equivalent to (6.7).

CorOLLARY 1. Hj (o) =g}, viz.

fw &} (s)ds= fmn;‘ (s)ds.
0 0

Proof. We have by (6.7) and (6.2)
Hi ()= [ & 6)ds —af > Hr 0

Corollary 1 follows upon letting ¢—>co.
COROLLARY 2. ¢® is summable over every finite interval.

Proof. This follows from (6.7) and the fact, already used in the proof of the
theorem, that for each b there exist § and ¢, such that & (f)>0 for t>1, and conse-

quently & is bounded away from zero in (¢, 1,) for every t, >4, since it is continuous.
THEOREM 6.4. For almost every t, the series
UHOLIG) (6.10)

converges for 0 < s <t and defines a function 0% (£) which does not depend on s. We have
G“b(t)=f 6% (s)ds = Zi* (£) L (o0); (6.11)
¢ i

in particular, o®® is continuous in T°.

Proof. If the series in (6.10) converges, then the sum does not depend on s for s
in (0, ) by exactly the same calculation as given in (5.18). Now by (6.6) and Corollary 1

to Theorem 6.3, we have

a“b(t)=2fw ne(s) I (t)ds =fw0“°(s+t) ds (6.12)
iJo 0
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for almost every ¢, using Fubini’s theorem on product measures; similarly
o""’(t)=f Zni’(t)l?(s)ds=zi17?(t)L?(oo). (6.13)
0 i

Since both the extreme members of (6.12) are nonincreasing and the one on the right
is continuous, (6.12) must hold for every ¢t>0. Now the first member of (6.13) is
nonincreasing and continuous, while the last one is easily seen to be nonincreasing,
hence (6.13) must hold for every ¢{. Theorem 6.4 is proved.

To proceed further we need an essential strengthening of Assumption B, already

imposed in Theorem 5.5.

AssumpTiON B'. A i3 a finite set.

Let us put A= o (t); (6.14)
beA
N ()= Z ¢ (8). (6.15)

THEOREM 6.5. Under Assumption B’ the function 7y t8 finite, nonincreasing and

continuous in T°, and summable in every finite interval. We have
N5 (8) =~ Ny (o0) =" (t); (6.16)

ﬂ:(W)=Zn?(t) [1—Ly(e2)]. (6.17)
Proof. Summing (6.7) over § and using Corollary 2 to Theorem 6.3, we have
¢
ZH;‘(t)<t+2f a*?(8) ds < oo, (6.18)
i b JoO

since b ranges over a finite set. It follows that the series in (6.15) converges for

almost every ¢. If 7;(f)< oo then we have by (6.5), for every ¢'=0:
e (@)= Zof {2 fo () + La(#)} =ma €+ ) + Zpi (8) Lu (). (6.19)

Hence 7, (t+t)< oo and we conclude that 7§ is finite and nonincreasing in T°. Its
continuity there also follows from (6.19), since each L, is continuous in T. The summa-

bility of #; follows from (6.18). Finally, rewriting (4.3) as

1-Li(s+t)= ]2 fu(s) [1 — Ly(t)]

and letting t—>oo we see that
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1—Li(°°)=72fi1(8) [ = L;(e)]. (6.20)
On the other hand, summing (6.13) over b we have
U“(t)‘—‘znf‘(t)Li(W)- (6.21)
It follows from (6.20) and (6.21) that
ﬂ:(t)—d"(t)=72177(t) (1~ Ly(ee)]
=3 208 () fyt =) (L~ Ly(>0)]
=3nf () (1= Le(e2)] =73 (8) = o o). (6.22)
Thus 2 ()~ o°(f) is & constant which must be 7%(c0) since o®(co)=0.

COROLLARY. #4(o0)<1.

Proof. Divide (6.18) by ¢ and let t— co.
The next two theorems are valid under Assumptions A, B and C (without B’).
Remember that =0 below.

TaEoREM 6.7. % is absolutely continuous and
m; ()=~ 297 fiy (0), (6.23)
where the series converges absolutely for t>=0; in particular

' (0)= ~ 2 97 gu. (6.24)
We have for almost every t:

d
W O)=279¢ ) gy (6.25)
. i
Proof. We have

0<

Hit(t) _ Zigia [0y ‘tfu ®)]

or

o fi®) . o 1—f4(0)
izl gi t <9 t )

Letting ¢ | 0 we have by Fatou’s lemma

29t < g} g (6.26)
ij
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Next, we have, using the second system of equations (II) in § 2 for ®:
Zi g¢ I‘fs'j < 21: g {fs®)q; + kgj frre (8) gus}
< {; g fu ()} g+ kgj {Zigiaftk(t)} i
SGot 2 gkqu <2079 (6.27)
by (6.26). It follows that
H =300y 0= -3 [ fode=— [ Satnwds @29

by (6.27) and bounded convergence. Upon differentiation we obtain (6.23). Starting
with (6.23), substituting from (II) again,. and relying on (6.27) for the interchange of

summations, we obtain

n)= St {gm(t) )= — g {Z 98 fire (8)} i = —g{gﬁ— H% ()} qui
~=3[ e ©29)

Letting ¢ | 0 we obtain (6.24) by Corollary 1 to Theorem 6.3. Furthermore, the series
in (6.25) converges absolutely, having only one negative term, for almost every # and
the summation and integration in the last member of (6.29) can be interchanged,

proving the absolute continuity of ;7 together with (6.25).

THEOREM 6.8. & is absolutely continuous in T; we have
L EO+E 0538 @) (6:30
for almost every t and every s in (0,t), where
vy (£) = pis (1) + pis (1) ¢35 (1) (6.31)
250>3800 6:32)

for almost every t. For each a in A and j in 1% the following three propositions are

equivalent:
(i) (I1;) holds for every i in I%;
(ii) Equality holds in (6.32) for almost every t;
(i) & (0)=n (0)=0.

(1) See [1; § II.16] for a discussion of vj;.
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Proof. Using [1; (II.16.2)] we write for each t>0 and 0<s</{,
-8

3

mi(u)ew-s-“)du]. (6.33)

t
i 0

&) =3 & )py(t—9)= 3 &) [51].e-q,<t—s> N f

Since Y &f(s)=1 by (4.20), this shows that &' is absolutely continuous in T° hence

in T by its continuity at zero. Multiplying (6.33) through by %’ and using Fubini’s
theorem on differentiation, we obtain (6.30) for almost every ¢. Substituting the in-
equality

vy —~8)> kZ Purc(t ~ 8) Qs (6.34)

7

into (6.30) and using (4.21) we obtain (6.32).
If (i) is true, then equality holds in (6.34) by the definition of v;; and the preceding
substitution leads to equality in (6.32). Thus (i) implies (ii). Conversely if (ii) is true,

then for almost every ¢ and 0<s<l{,
d
LT OTEOG= > &) qu= 2, [2 & () it — )l iy = 2 &7 (5) 2 pult —8) qiy-  (6.35)
k7 k+j i i k+j

Comparing (6.30) with (6.35), we see that equality must hold in (6.34) whenever
&l(s)>0. For each 7 in I* this is the case for every sufficiently large s. It follows
that equality holds for every 4 in I* and every ¢—s, that is, (II;) holds for every ¢
in I?. Thus (i) implies (i) and we have proved the equivalence of (i) and (ii).

It follows from (6.32) that for each u>0:

& (u) - & (0)—Eif0 & (t) gy dt=f0 [dit &' () -125? (t)qif] dt=>0. (6.36)

Since lim, . & (#)=0 as a consequence of Theorem 6.1, we have upon letting u — oo

and using (6.24):
—&(0)+7/(0)= — & (0)—291“ 95 =0. (6.37)

If (iii) is true, then there is equality in (6.36) and hence also in (6.32). Thus (iii)
implies (ii). Conversely if (ii) is true, the same argument shows that there is equality
in (6.37). To prove that £7(0)=0, let us suppose the contrary. There exist 7 and ¢
such that L{(f) >0, hence we have, as a consequence of the Corollary to Theorem 4.3
and Theorem 4.4:

¢
P, {t°<t; ,=j forall s in (19 t)}>f &4 (0)e 92 d L (s) > 0.
0

This means that there is positive probability that z,=¢, x;=j and that the last dis-
5— 632932 Acta mathematica. 110. Imprimé le 15 octobre 1963.



54 KAI LAI CHUNG

continuity of the sample function before time ¢ is a “pseudo-jump” from co® and not
a jump. By [1; Theorem I1.14.4](!) this cannot happen under (i). Since (i) and (ii)
have been shown to be equivalent, we conclude that (ii) implies (iii) and Theorem 6.8

is completely proved.

Remark. If (6.7) holds, then dividing through by ¢ and letting ¢ | 0 we obtain
77 (0) = &7 (0) in general, and 7/ (0)= &7 (0) if 0*°(0)< oo for every a and b.

§ 7. The Dual Chain

In this section we study the notion of a dual chain. Combining it and the re-
sults of §6 we shall derive a representation of {£;} when the method of § 5 fails,
and discuss the case left open there, namely the alternative (i) in Theorem 5.5. This
is the case where the boundary behavior, even under the most stringent set of as-
sumptions made here, is still not fully understood. It should be stressed that the dual
chain studied here is more an analytical device than a genuinely probabilistic one.
The latter would be that of a reversed chain as has been introduced in simpler cases
(see [2]) and would involve an investigation of the sample function as the direction
of time is reversed. This has not yet been done in a satisfactory manner and the
results below serve only as a sort of vague reflection of the true state of matters.

For a few moments Assumptions A, B, and C (without B’) will suffice. For each
a in A we set

i) = 2220, (1)
gi
The matrix (§j), (j, ¢) EI*xI% will be called the a-dual to (p;). Where this dual matrix

is concerned the index set will be I* without specific mention.

THEOREM 7.1. For each a in A, (pfi) isa strictly substochastic transition matrix. Its

initial dertvative matriz (§7;) and the corresponding minimal solution (ff}) are given as follows:

=91 (7.2)
7
a i
o =20, (7.3)
7

(*) I take this opportunity to acknowledge that the argument in the first foew lines of p. 223
in [1] is inadequate for an instantaneous state k, as pointed out to me by S. Orey. This has been
corrected both by him and by myself but the revision is too long to be included here. For the pur-
pose here, where all states are stable, the proof given in [1] is correct.
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The matriz (§;i) is stochastic if and only if 5 (0)=0 for every j in I°. We have

=1-3 i) H;; ), (7.4)

the function L? has a continuous derivative I¥ satisfying
;[93’ L1 (s)=g7 [ ¢+ 9). (7.5)

Proof. It is easy to see that (§7) satisfies the semi-group property corresponding
to (2.2). Next we have by definition

2 Pt = Zf & (8)pu(t f & (s)ds<1. (7.6)

In fact if j€I° then &' (-)>0 by the Appendix, so that there is strict inequality in
(7.8) for every t>0. This and trivial inspection show that ($j) is a strictly sub-
stochastic standard transition matrix and (7.2) follows at once from (7.1). It is easy
to verify that (ff;) as defined by (7.3) is the minimal solution to the two systems of
Kolmogorov differential equations (I) and (II) in § 2 when (g;;) there is replaced by

(§3). Moreover we have

(0
S o= qz qif=—’7’gﬁ,)<0 (1.7)
7

i

by (6.24). The equation (7.4) follows at once from (7.3) and (6.2). Hence by Theo-
rem 6.2, we have

IFy="3 (7.8)

and (7.5) follows from (6.5). Theorem 7.1 is proved.

A homogeneous Markow chain #*={#°(t), t€ T} having I* as its state space and
the stochastic completion of (i) as its transition matrix is called an a-dual to z. If
77 (0)=0 for every j in I°, then it satisfies an assumption corresponding to Assump-
tion A for z and so we may proceed to apply the preceding theory to it. However,
to encompass as large a state space as possible we must take af suitable mixture of

the indices a as follows.

Let I=U P

acA

I is the state space of the post-r process under Assumptions A and B; it is clear
that it is a []-stochastically closed subset of 1. Let
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L*=3y L,

where y is the initial distribution of z, and set

hi= 2 L*(o0)g;. (7.9)
acA

We now introduce the following assumption which is essentially the dual of As-

sumption A,
AssuMPTION A. The second system of Kolmogorov differential equations holds.

THEOREM 7.2. (Under Assumptions A, B, C and A.) We have h;< oo for every
jin 1, and h;>0 if and only if j€L. Furthermore,

izhfpu(t)< ky, (7.10)
thqi;’=0. (711)

Proof. The first assertion follows from (5.1) upon integration over T:
by = fo iZ)’i [Py () — fi (D)) dt < o0

since f§° D;vipi(f)di< oo for a nonrecurrent state j. By the definition of A, for each
a in A there exists an ¢ such that 9, >0 and L' (o0) >0, hence L*(c0)>0. By Theo-
rem 6.1, g/ >0 if and only if j€I*. These remarks prove that kA, >0 if and only if

7'€i. Next, we have
Ei:hipij(t):;La(oo);giapij(t)g;La(oo)g;z =hy.
Finally, we have by (6.24) and Theorem 6.8, under Assumption A:
ith Qiz:;La(W)gg? 9 =0,

the interchange of the repeated summation being justified since >, |h;qy|<2h;g;< oo
by (6.26). Theorem 7.2 is proved.

We now set Pu(t)= (7.12)

="~ =60, (7.13)
i
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Fo= A —0w) g _ (1 —8i) gy
i 4 hiq;

hifi(f)
e

7

(7.14)

f]‘i ()=

(7.15)

The matrix [[=(§,), (j, ) €IxI, will be called the dual transition mairiz to (py);
similarly for Q, P and ®. A homogeneous Markov chain #={#(t), ¢ €T} having Ias
its state space and ﬁg as its transition matrix will be called the dual chain to x.

By virtue of (7.11), the matrices é and P are stochastic and so the dual chain satisfies

the assumption corresponding to Assumption A and we can define its jump chain
x= {Zn}, its Martin boundary ﬁ and the passable part B. The assumption corresponding
“to Assumption B, which we now make, is as follows.
AssuMPTIONS B, B'. The passable part of the dual boundary is completely atomic.
These atoms will be denoted by {%, g€ I&} Assumption B becomes Assumption B’

iff A is a finite set. Under Assumption B’ we may and shall replace the definition

(7.9) by the simpler one:

It is clear that Theorem 7.2 remains valid after this replacement.

THEOREM 7.3. Under Assumptions A and B:

¢ ~ -~
Py (1) =fu(t)+ 2, , ki' (s)yi (¢ — ) ds, (7.16)
acA
where > pi () K (£) = kE (s + 1), (7.17)
S yF () fs(t) = 9 (s 1) (7.18)

Proof. Theorem 5.1 applied to the dual transition matrix yields:

[ -
P)=Ffu®)+ > . Ij (s) & (¢ —s) ds, (7.19)
aeA
where SE O E@E)=F¢+s), (7.20)

i

2E O Pl =& t+9), (7.21)
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these formulas being the duals of (4.4) and (4.21) respectively. Puiting
BB () =9 (), (7.22)
BE () =k (), (7.23)

and substituting from (7.12) and (7.15) we obtain (7.17) and (7.18). Theorem 7.3 is
proved.

Clearly the coexistence of the two formulas (5.1) and (7.16) has interesting implica-
tions. However, due to evident technical difficulties more stringent assumptions than
those needed for both formulas will be invoked in the next theorem. We must also
introduce a new definition.

A passable atomic boundary point co® is called nonrepeatable iff for every i€l
we have Lf (o0)=0; otherwise it is called repeatable. Let the subset of A corresponding
to nonrepeatable boundary points be A,. Such a boundary point oo® is reached exactly
once on A% and is never reached again after the first infinity. It is inessential ac-
cording to the definition in § 5, indeed L**=0 for every b in A. It is trivial to con-
struct a nonrepeatable boundary point: we need only start the Markov chain with an
ascending escalator and hitch on an open Markov chain, say a descending escalator,

with a disjoint state space.

THEOREM 7.4. Under Assumptions A, B, A, B’ and C, there eqcist nondecreasing,
bounded functions M= (a,a) €A XA, such that for every a im A, jin Il and ¢t in T

we have

giy= 2 ow; (t —8) dM*% (s). (7.24)

aeA

Proof. Comparing (5.1) and (7.16) we have

Z f B(s)& (t—s)ds= 3 k, 8)1/), (t—s)ds, (7.25)
beA VO
where both A and A are finite sets. According to the Corollary to Theorem 4.1, for
each a there exists a sequence {i,} such that for every b in A,
t
lim | B (s)& (¢t —s)ds=08"&(1). (7.26)
n~> 00 [1}
If a¢A,, namely if oco? is repeatable, then we may choose {i,} so that i,,ei for every
n and (7.25) holds with ¢=4,. Now if we integrate this equation over T and take only
the term corresponding to the index @ on the right side, we have by (7.22) and (7.23):
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j kﬁ(s)dsf wf(s)ds=f ki (s)dshy Li(c0) < 5 L (0)gd <hy. (7.27)
1] 0 0 beA

Choosing § such that I:f‘(w)>0, and putting K} (t)=ﬁk§.‘ (s)ds, we see that

Kf(oo)<La(l )<oo. (7.28)
1§ o0

Thus the family of nondecreasing functions {K,‘;, t €I} has a uniformly bounded total
variation and so is weakly compact. It follows that there is a subsequence {i,}
(depending on a) of {i,} (depending on a) for which Kff,,( -) converges weakly to a
limit M“:‘( +) which is nondecreasing and bounded with M= (0)=0. Applying this result

to (7.25), noting the continuity of 1p,‘-‘~ and using (7.26), we obtain (7.24) for every
ad¢ A,

It remains to prove (7.24) for a € A,. Since L**(cc)=0 for a €A and b € A, we
may rewrite (5.20) as follows, omitting the index j:

t
go=rn+ 2 f & (t—s)dL®(s). (7.29)
beA\A, J O
Substituting from the proved part of (7.24), we have
t - -
ewm=rm+ 2 01.0"(t~S)dN""(«‘f) (7.30)
acA
where Na= 3 (Lo%Mb), (7.31)
be A\A,

and » denotes a convolution. Next, the equation (5.12) becomes, after substituting

from (7.15) and noting that {f(-)=0 if i ¢ 1,

Shi O L] =kt ) ¢ +s) (GED).

iel

Using the definition given in § 4, the set {h'Zf(-)} is an exit solution for @ for
each a, since {7 (0)=0 by (7.29) and Theorem 6.8; moreover by (5.20),

fh,-‘lg‘?(t)dt<h,-‘1f EWdt<l.
0 0

Hence according to Theorem 4.2 applied to the dual chain, and using (7.22):

)= 3 gl ) (1.32)

aeA
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where 0< ¢®<1. Substituting into (7.30), we see that (7.24) holds with

M= N% + .
Theorem 7.4 is proved.

A set of nonnegative functions {u,(-)} with %;(0)=0 for every i and satisfying the

system of functional equations

;ui(s)fu(t) =uy(s+1¢)

(7.33)

will be called an entrance solution for ®. Under Assumption A, the sets {{f(-)} and

{ni ()} defined in Theorems 5.2 and 6.2 are entrance solutions for ®. We have seen in

the above how an entrance solution for @ corresponds to an exit solution for ®. The

set {1/)7’, de&} forms an extreme base for the space of entrance solutions restricted

to I In particular, we can express { and 7 in terms of .

COROLLARY To THEOREM 7.4. We have for every a and j€L;

LF () = S M (0+) f (),

7 (£) = 3 M (00) s (8).

Proof. (7.34) follows from the following calculation:

{f (= lim 22, ¥ (s — u) fy(t — 8) M (w)

=3 lim fo w2 (t —u) dM® (u) = ZM“‘;(0+)1/)§-‘(t).

s} 0

To prove (7.35), we first integrate (7.24) to obtain

g;-‘=ZM“"<oo)f0 i (s) ds.

a

Consequently Sgtft)=2 M (o0) f 1/);? (s+1t)ds,
i a 0

and Hj ()

I

~ t -
ZMﬂa(oo)fO v ()ds,

a

from which (7.35) follows upon differentiation.

(7.34)

(7.35)
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On the basis of Theorem 7.4, we can express the probabilities in (5.5) and (5.6)
in a suggestive way as follows:

Pe{of<s)= Z L Ipz (t— u)dM“‘-‘(u),

P {5f < s; x?=7‘}=zf yf (¢ —u) dM (u)
G Jo

=R

V) i ) db ().
@ YOy (t—u)

—s (¥

Thus the last non-jump discontinuity before time # in the post-t® process enjoys pro-
perties similar to that of the last exit time from an ordinary state before time f,
discussed in [2]. Starting from this it is possible to discuss the reversed chain ri-
gorously as a probabilistic object. but we shall not pursue the matter further here.

We can also use Theorem 7.4 to obtain criteria for either alternative in Theorem

5.5. Write pZ(+)=yf(-) as in (6.15).
- ,

TaeorEM 7.5. Under Assumptions A and B', if 5y (0) < co (or equivalently ¢°(0) < oo)
then 0*(0)=0. Case (ii) of Theorem 5.5 obtains if in each essential class of indices, there
exists at least one index a for which ny (0)< co. Under the additional Assumptions Aand B
this is the case if 2 (0)< oo for every a. On the other hand, if wi (0)= oo for every a, then
case (i) of Theorem 5.5 oblains.

Proof. It follows from (5.10) that

o%(t)=Ilim u—lfu Z EF(S) L (t—s) ds.
0 i

u}0
By (6.7), we have [y & (s)ds< [¥x{(s)ds, hence by (6.19):
0% () <iifrg u_lﬁ [7% (s) — % ()] ds =75 (0) — 75 (¢)
since 74 (s) is nondecreasing as s | 0. Hence if #;(0)< oo, then
¢*(0) =1lim % (f) <Lim [1g(0) — 74 (£)] = 0.
40 40
Since A is finite, (5.21) holds and

TI®(0+)=0. (7.36)
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If @ is essential this excludes the possibility of (5.26) for the essential class to which
@ belongs. If this is so for each such class, Theorem 5.5 asserts that case (ii) there
occurs. Finally, if wi(0)<00 for every a, then #,(0)< oo by (7.35) and we have
case (ii) by the above.

Now suppose the other extreme: y)i (0) = oo for every a. As before we have

Syl () Lult—8) =y ()~ w3 ),
and consequently by (7.24):
SE@Lit-9=3 L [yl (e — )~y — )] A ).
It follows that ) M0+ ) [pi(s) —pi ()] < 1.

As 5|0 this implies M“Z(O+)=0 for every a and so by (7.34), {/(t)=0 for every
j and ¢. Hence by (5.11), o®(¢) =1 for every ¢ and so0 ¢*(0)=1. This means >, L**(0+)=1
by (5.21) and we have case (i) of Theorem 5.3.

§ 8. The Construction Theorem

There is a basic connection between Theorems 6.3 and 7.4 which leads to a solu-
tion of the construction problem. In this section we make full use of the method of
Laplace transforms.

Taking Laplace transforms in (6.7) and using matrix notation, we have
)=+ AZA]E@), (8.1)

where 3(1) is the matrix (6% (4)), (@,b)€AxA. We are under Assumptions B’ and B’
s0 that both A and A are finite sets. We have by (7.35),

(A = Mp(h), (8.2)

where M =(M‘“;(00)), (a,d)EAXA, is a constant matrix. For a few moments let
05® and o%° denote the quantities 6% and ¢ in (6.10) and (6.11) when %° is replaced
by v° Since both {n?(-)} and {ypf(-)} are entrance solutions, the properties of §*
and ¢® deriving from the fact that 7° is an entrance solution hold also for 62 and ¢2°.
Finally, let

u®®(2) = 168" (1) (8.3)

and U(A) be the matrix (u‘.‘“(l)), (@, a)EAXA.
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d -
LemMa. For each d and a, — u*(A) is a completely monotonic function of A.

ai

Proof. We have by (6.12) and a simple calculation:

i aa _ * -ty aa
dlu A) L e (1—-A) o’ (t)dt

0 0

= f e~ (1 — Aty dt f 02%(s) ds = f e % 563%(s) ds. (8.4)
¢
. 1 s
Since we have (‘f“(s);'gj Sl (w) I (s —u)du
0t

by Theorem 6.4 applied to v, the last member of (8.4) is equal to 2; 1}){;(1) [(A). Since
I*A)<1, and 3, 1/),‘;(2)< oo by Theorem 6.5 applied to v, Zizﬁf(l) 2(2) converges and
is completely monotonic in A since each term is. The lemma is proved.

In terms of y, the equation (8.1) can be written as
Mp(A)=[I+MU@Q)]EQ). (8.5)

It is our object to study the solvability of (8.5) for £(A). The folloving theorem is a
general result about completely monotonic functions. Let us call a matrix of func-

tions completely monotonic iff each element of the matrix is so.

TarorEM 8.1. Let M be an AxA matriz with elements which are nonmmegative
constants, M(A) likewise with elements which are nonnegative functions of 1; U(1) an
AXA mairiz with elements whose derivatives are completely monotonic functions of 2.

Suppose that for each A we have
M=[I+MU@RA] M@A), (8.6)

where I is the AxA identity matriz. Then both I+ MU(A) and I+ U(A) M are invertible;
we have

M=MAN[I+UAM]; (8.7)
and the matriz M(2) is completely monotonic.

Proof. To show that I+ MU(A) is invertible, suppose there exists a vector v
such that
oI+ MU(A)]=0. (8.8)
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Then by (8.6), M =0 and consequently by (8.8), v=0. To show that I+ U(A) M is

invertible, suppose there exists a vector w such that
H+UAyM]w=0. (8.9)
Then H+MUQ Mw=M[I+UQA) Mjw=0.
Since I+ MU(A) is invertible as just shown, we have Mw=0 and consequently w =10
by (8.9).(1)
Since [I+JI‘IU(1)]M=M[I+ U2y M],
it follows that MI+UMNM]I ' ={I+ MU' M=M@QA)
by (8.6), and so (8.7) is true. Finally, for 6 >0 consider
U+MUQA+8)){MA+8)—MA)} I+ U(l) M}
= I+MUGA+)I{I+MUA+)* M —M[I+UQA) M1 '} + UA) M]
=MI+UMNMI-{I+MUQA+O)]M=MUA-UA+]M.
Dividing through by 6 and letting § | 0, we obtain
+-MUMNM ANI+URM=-MU )M
Equivalently, by (8.6) and (8.7), we have
—-M A=MA U A) MA). (8.10)
For the sake of induction let us now suppose that
(=1)"M™A)=0 (0<m<n). (8.11)

This is true for m =0 by hypothesis. Differentiating (8.10) n times by Leibniz’s rule,

we have

( _ 1)n+1M(n+l)(Z) — z n'

—,———_———M(i) y) U(n+1~f—k) J) M(k) i
o<itken J RN (n—F—k)! (4) (4) 4)

n! _ .
_— (—- 1Y M? —_1)ri-k
0<ith<n f!k!(n—j—k)!( ) (A (—1)

™M

x UOTR (— 1y M*(4) = 0,

(!) I am indebted to N. G. de Bruijn for the preceding proof.
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by the induction hypothesis and the hypothesis about U(A). Therefore (8.11) is true
also for m=n+1 and the induction is complete, proving that M(A) is completely

monotonic.
THEOREM 8.2. There exists an AXA matriz M (A) such that
§A=MA)pA) () (0<i< o), (8.12)
tf and only if there exists a constant matriz M such that
7(A)=Mp(d) (0<A< o), (8.13)

and such that [+ MU(A) vs invertible. In this case M(A) is completely monotonic and
M= M(0).

Proof. Suppose (8.12) holds, namely

() =3 m () pf (A). (8.14)

By (7.22) and the Corollary to Theorem 4.1, for each GEA there exists a sequence
{i,} in I such that
lim A7 198 () =06 (BeA). (8.15)

n—>00

It follows from this and (8.14) that

m®(3) = lim h;1&2 (1) >0,

so that the matrix M(4) is automatically nonnegative for every 1. Next, there exists

a constant matrix M and a sequence {4,} converging to zero such that lim M(4,)=M;

each element m® of M is finite since by (8.14): o
m < §~( )_ ~gfa < oo
§0) hLi(eo)
It follows that g& =Zm"‘~’ : v (s) ds;
and consequently as in the proof of (7.35) that
7 0 = Syl ). (8.16)

(*) The M(-) here is the Laplace transform of the M(-) in Theorem 7.4. We have omitted the
cumbersome ~ where confusion is unlikely.
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Taking Laplace transforms we obtain (8.13). Furthermore, substituting from (8.12)
into (8.5), we have
Mp) =1+ MUR)] M(2) ().

Since the set {y*(1),d€A} is linearly independent for each A, a fact which is ob-
vious from (8.15), it follows that

M=[I+MUQM)] MA).

Theorem 8.1 is therefore applicable to yield the conclusions that I+ MU(A) is in-
vertible and that M(4) is completely monotonic.
Conversely, suppose that (8.13) holds; then M >0 by (8.15). If I+ MU(A) is
invertible, then
E) =T+ MU Mip(h),

and so if we set MAH=[I+MUM'M, (8.17)

we obtain (8.12) and M(4) is completely monotonic as before. Theorem 8.2 is proved.

CororLLARY 1. lim;,, M(A) exists.

Proof. This follows from the uniqueness of the representation in (8.16).
We have formulated Theorem 8.2 in such a way as to stress the logical equiva-
lence of two analytical propositions. Actually we know (8.12) is true under our assump-

tions by Theorem 7.4, hence the new fact that emerges is as follows.

COROLLARY 2. The matriz I+ A2(A) in (8.1), or equivalently the matriz I+ MU(A)
tn (8.5), is invertible.

Let us recount the main steps of analysis up to this point. We are given a sub-
stochastic transition matrix ] on the index set IxI to begin with. The initial de-
rivative matrix @ and the minimal solution ® are then defined. Assumptions A, A,
B’ and C are made. We then define I, & and é Now Assumption B is made, and
y is defined. The following decomposition (or representation) formula ensues by virtue
of Theorems 5.1 and 7.4:

T = &) +12) M) pA), (8.18)
where fl(l)=(f)i,-(l)), (i)(l)=(fi,(l)), (¢,7) €IxI, and where M(A) is written for the M(A)

in (8.12) in conformity with the rest of our notation. U(A) is defined through ! and y;
finally let us write (u,v>= >, if u={u;} and v={v;}; 1={1}; and set
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M=M©0) (=M(o)),

B=lm AL D> (=py (=)

then we have:
I+MU(A) and I+ U(A) M are both invertible for every A; (8.19)
{Mp, 1><1. (8.20)

The last inequality is equivalent to the Corollary to Theorem 6.6.

The full converse of the above will now be proved. We are given ¢ on IxI to
begin with satisfying Assumption A, from which ® is defined. Let {I*, a €A} be a finite
set of exit solutions and {wa,deﬂ} a finite set of entrance solution for ¢ ; and define
U(A) as in (8.3). Let M be an AxA matrix with nonnegative constant elements
satisfying (8.19) and (8.20). Now define 1’\[(1) by (8.18).

THEOREM 8.3. ﬁ(}t) s the Laplace transform of a substochastic transition matrix
with Q as its initial derivative matrix; and every such ﬁ(}t) can be constructed in this

way under Assumptions A, B', A, B and C.

Proof. We have already proved the second part of the theorem.

The calculations for the first part will be briefly indicated, omitting the ~ on

the Laplace transforms. We shall first verify the resolvent equation for []:

MG -1 = G- wIIMT (o< <e). (8.21)
We being by writing down similar equations for @, ! and y:
D) — O(A) = (A~ ) O(A) D(u), (8.22)
) — UA) = (A — pr) D) ), (8.23)
W) —p(A) = (A — ) p(A) D), (8.24)

the last two being the double Laplace transforms of (4.4) and (7.18). Next, we define
6°(£) (1) as in (6.10) to be >4 w?(s) Fi—s), 9‘;“(1) to be its Laplace transform and
O() = (0*(1)), @ a)EAxA. Set also

0 (%, w) = Zf DB () = W* (D), (),

O, p)=(6"(4 w) (@ a)EAXA).

(1) This is the 63 a(t) used momentarily in the second paragraph of the section.
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It follows from a computation based on Theorem 6.4 with # replaced by v that
O(u) — O(4) = (A—u) O4, p).
Finally, by the relation corresponding to the first equation in (6.11), we have
U(u) - U(A) = O) — O(u). (8.25)
Hence it follows from (8.17) that
I+MUQ)] M) — M(p] [+ Uu) M]
=M+ Uy M]—[I+MUQ)] M =M{U(u) - UA] M
= MO~ O M =(u—2) MO@A, u) U
or equivalently (A—p) M) O@, u) M(u)=M(u)— M(4). (8.26)
Now we have, upon substitution from (8.18):
) THw) = OR) D) + UA) M(A) p(2) D(p) + DAY Kpa) M () (i)
+ 1) M(3) O, ) M(p) plpe).
Hence using (8.22), (8.23), (8.24), and (8.26), we have
A=w 1A [T(w)
= O(2) — O(p) + UA) M(2) [p(p) — p(A)] + [Up) = U] M (p) ()
+UA) [M () — M(D)] p(p)
= O(p) + Upe) M) p(p) — P(A) — UA) M(A) p(4)
=II(w -TIA).

Thus (8.21) is true. Next, we have by the relations corresponding to (6.16) with %

replaced by y:
Ap(A),1>=U@)1+ 6.

Hence it follows from (8.12), (8.17) and (8.20) that

CA&(2),1>=MA) [U(A) 1 + f]
=[I+MU@Q)] " [MU@A)+ MB)
SU+MUQDHMUMN+I1=1, (8.27)
and consequently for each 1€, if II; and ®; denote the ith rows of II and ®:
AITR), 1) = Ay (A), 1) + 2 1 (2) CAE°(A), 1)

<1-LA)+ 2 (A)=1.
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Thus [](A) is substochastic, and is stochastic if, and only if, M8=1. Theorem 8.3
is proved.

The condition (8.19) can be made more explicit in particular cases. The following
theorem is due to Feller [7; Theorem 14.1].

THEOREM 8.4. Suppose U(co)< co; then every ﬁ(l) can be constructed in the
following way. Oﬁoose an AxA matriz N with nonnegalive constant elements satisfying
the condition

N[U(e0)1+p]<1; (8.28)

set M(A)={I—N[U(e0)— UM} 'N, (8.29)

~

and define 1[(A) by (8.18).

Proof. We prove only the necessity of (8.28) and (8.29); their sufficiency can be

verified as in the preceding proof. Let us rewrite (8.7) as
MA)=[I-M@A) UQA)]M. (8.30)
Letting A—co and writing N for M(c), we have
N=[I-NU(e)] M. (8.31)

It follows from the condition (8.28) that NU(cc) is substochastic, and consequently
each row of N[U(eco)—U(A)] has a sum which is strictly less than one since the
vanishing of a row sum in NU (A) implies that of the corresponding row sum in
NU(e0). Hence the matrix

I—N[U(o0)—U(4)] (8.32)

is invertible. The preceding argument is taken from Feller [7]. Now we have by (8.31),
I—-N[U(0)-U{A)]=[I—NU(c)][L1+MUI)]. (8.33)

By Corollary 2 to Theorem 8.2, the second factor on the right side of (8.33), as well
as the product, is invertible. Hence the first factor is also invertible by elementary
matrix theory. We conclude by (8.17), (8.31) and (8.33) that
MA)=[I+MUMN]*M=[I+MURN]'[I-NU(0)]"'N
={I—N[U(s)—UM)]}'N. (8.34)

Next, we have from (8.31), M=[I-NU(=)]'N
6 — 632932 Acta mathematica. 110. Imprimé le 16 octobre 1963.
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and consequently (8.20) becomes
NE<[I—-NU(0)]1
which is (8.28).

Note that if we write properly M (A1) for the M(A) above and use M(f) as in
Theorem 7.4, we have M=M(O)=M(00) and N=M(00)=M(0+), and we infer that
the two sets {{°} and {5}, a€4, in (7.34) and (7.35) are linear combinations of
each other. Apart from this additional information, the proof of Theorem 8.4 is un-
necessarily complicated. Indeed (8.29) is a special case of our earlier Theorem 5.5,
as to be shown now. By Theorem 7.5, the hypothesis that U(co)< co implies that
case (ii) in Theorem 5.5 occurs. By (7.34), we have &(l)=N1}J(Z) where N is as before.
Using the notation in (5.27) and in the proof of Theorem 8.3, we have

A(2)=NO@A)=N[U(°) - U@A)]

the last equation being a consequence of (8.25). Substituting into (5.27), we obtain
(8.29) by comparison with (8.12). Theorem 8.4 is proved.

The case where the matrix U(co) contains infinite elements will now be sketched
following Feller. A diagonal element of the matrix I— M(A) U(A) is of the form

1 —lZZ‘i"(l)Ié‘(‘”)=1f e ¥ [1 -3 & (1) L (o0)] dt,
i 0 i
hence positive unless L (cc)=1 for each t€I% It is easy to see that this is impos-
sible under Assumption C. Hence we can write
I—M(2) U@R)=D() [I-8(4)], (8.35)

where D(1) is the diagonal part of the matrix on the left side of (8.35) and S(4)
has zero elements on the diagonal. Now define M(1) by

M@3)=[D@A)] " M2 =[-8 M, (8.36)
where the second equation follows from (8.30). Letting A,—~oc so that

lim M(4,)=M, limS2,)=35, (8.37)

we obtain M=[I-8)M. (8.38)

Thus M and S take the place of N and N U(oo) respectively in (8.31). Substituting
(8.6) into (8.38), we obtain

M=[I-8|[I+MUAN]MA)=[I—-8+MU@L)]MA). (8.39)
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Let us classify the indices in A according to the substochastic matrix S, in a
similar way as in §5. Just as there, the matrix I — S is invertible unless there exists
an essential class C' such that for every a in C, the ath row in § has sum equal to
one. Since S is zero on the diagonal, such a class ¢ must contain more than one
index. It follows from (8.38) that if M, M, denote the restrictions of M , M to CXIL
but S, (I —8)c those of §,1—-8 to UxC, we have

Mc=ﬂc+ScMc>§cMc. (840)

Now a general theorem about discrete paramater Markov chains states that an ex-
cessive (superregular) function bounded below on a recurrent class is a constant. (In
the case of a finite class as here, a simple algebraic proof is obtained by considering
the minimum value of the function.) Applying this to (8.40) we infer that equality
holds in (8.40) so that M;=0, and consequently we have by (8.39):

[I—8)c M (A)=0.
It follows from (8.12) that, if £;(1) denotes the restriction of £(1) to C':
(L —Slo&c(A) =1 - 8lc Mc(2) §(2) =0,
and so &) =8cE:(A).

Applying again the theorem just cited, we see that £(1) is constant on C. This being
true for every A, we conclude that £*(f)=¢&°(f) for every @ and b in C. Thus the
boundary points oo for @ in C are all indistinguishable from each other. If this
eventuality is excluded, then I—G§ is invertible, and so is I—8+MU(1). We have
therefore proved the following result.

TuEOREM 8.5. If all boundary points are distinguishable from each other, then
we have
MA=[I-8+MUGN M. (8.41)

This was proved by Feller under the superfluous assumption that every element
of U(A) be positive. (!) For the consequent construction theorem similar to Theorem
8.4 above, we refer to Feller [7].

(*) I am indebted to David Williams for a verification of Feller’s theorem by a purely algebraic
method, which leads to the disposition above.
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§ 9. The One Exit Case

We make Assumptions A, B and C and the further assumption that the set A
in Assumption B consists of one element only. The index a corresponding to this
element will be omitted, thus e.g., I;(t) =17 (¢).

In this case we have

o(t) =§9fl;(t)=§m(t) Li(°),

u(A)=A6(A)=4 J‘me_'” a(t) dt;
0

and (8.1) reduces to HA)=[1 +u(A)) &),

or £(A) =m(A)F(A), (9.1)
her: A)= L

where ™A=

It follows from Theorem 8.1 with M =1 that (1+u(A)) ! is a completely monotonic
function of 4. We have by (6.16),

1 +u(d)= 1_7)#(00)4‘277*(1)

£ _ Aﬁ* (}“)d _ Aﬁ* (A)
and = T ) " W+ 17 (oo)

It follows that ;& ()=1 or that (py), (i,j)€IxL, is stochastic if and only if

7y(o0)=1. In general

£ _1—77*(00)
Ao(h)= 1+u(d)
Hence we have £,(0)= 1—7,()

1 =7, () +2,(0)
§o(o0)=1—n,(o0).

It is possible to extend the equation (6.7) to & as follows. Since

¢
Ep(s+ 1) —&pls) =“ZI £(s) pio(t) = i%ft(s) J; li(u) Eo(t — u) du,

t

we have on [Ep(s+1t)—Ep(s)]ds= f o(u) &t — u) du.
0

0
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Since &, is absolutely continuous, the left member above is equal to

o0 s+t t 0 t
fo f §é(u)duds=f0u§é(u)du+tﬁ §é(u)du=t§e(oo)—fofg(u)du.

t

ot
It follows that tfe(oo)=J &o(s) ds+f o(s) & (t — s) ds.
0

0

Thus to extend (6.7) to & we should set 7,4(f)=E&p(cc).
The functions #;(+) in Theorem 6.2 can be decomposed into two parts. Letting
sy 0 in (6.5) we have

1Z"/i(o) fu(®) <m,(t).
It we set 7; () = n;(t) — iZn,- (0) f1;(8),

then {7;(+)} is an entrance solution for ® satisfying 7:(0) =0. Consequently, we have
by Theorem 6.7,

12 7:(f) g;,= 0.
These results check with Reuter [13]. It is to be noted that Reuter’s analytical as-

sumption implies our Assumption C, unless I consists of one []-recurrent class.
The function m(2) in (9.1) is of interest. Note that

u(A) = fml e~ dtfwe(s) ds= foo (1—e %) 6(s) ds, (9.2)
0 ¢ 0

and by (6.7) and Corollary 2 to Theorem 6.3:
1 1 8 1
f sB(s)ds=J‘ dsf > () l,‘(é)'—u)olfu:Jv > ni(w) Li(1 —w) du
0 0 0t 0

1 t
<f m(u)duét—*—f ag(s)ds < oo.
0

0

Hence the last member of (9.2) is the negative Laplace transform of an infinitely
divisible distribution on T. Precisely, there is a process {¥(v),v€T} with stationary

independent positive increments such that

E(e*"®) = exp [v f " =160 ds] : (9:3)
0
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It follows that m(d) = J e VD) gy — F(e YW, (9.4)
0

where p is a random variable with the distribution function e, and independent of
the process {¥(v)}.
In the particular case where [ 0(s)ds=0(0)< oo, we set

1 t
F(t)=;(0—) foo(s) ds. (9.5)

The following theorem is easily proved.

THEOREM 9.1. Let the random variable y be as described above and let the random

variable v have the geometric distribution given as follows:

o a0 \* 1
P{”“”}“(HG(O)) 1+o0) "N
Let {y,,n€N} be a sequence of independent random variables having the common distri-
bution function F in (9.5) and independent of v. Then Y{u) and 2%_iy, have the

same distribution.

The matrix generalization of this theorem is implicit in Theorem 8.4; see also
the discussion at the end of §5. For the case where the matrix (o“;"(O)) is infinite
on the diagonal and finite elsewhere see Neveu [10], [11]. The extent to which his
results generalize Theorem 9.1 is not clear. The representation (9.4) must be intimately
related to Paul Lévy’s “local time” (see [9]), but again the exact connection is not

clear.
10. Appendix

The following theorem, under the additional assumption of (2.4) with equality,
was first proved with probabilistic methods by D. G. Austin; a simplified version by
the present author is given as Theorem II.5.2 in [1]. A simpler analytic proof was
later obtained by D. Ornstein; it is given as Theorem I11.1.5 in [1]. The present proof,

without the assumption (2.4), is a modification of the latter.

TarorEM 10.1. Let (py), (2,7) EIX], be a maitrix of functions on T satisfying (2.1),
(2.2) and (2.3). Then each py(-) is either identically zero or never zero.

Proof. Suppose 1,>0 and p;,(f,)=0. Let N be a positive integer and fy=2Ns.
Define
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Cpn=1{k : py.(ms) =0},
Cp—Cmir=Dpir  (m>0).
Then Cy=I—{i}, C,,\«, and j€Csy. Let us put
u(m, n) =ke%m D (n8) Prs (4Ns — ns),
v(m, n) =ke%mpik (ns) pr; (4Ns — ns).
We have u(m,0)=0 (0<m); wu(m,4N)=p;;(4Ns) (0<m<2N).
By [3; Theorem 1], each p;; is continuous in T; hence by Dini’s theorem, the series

kZﬂPm () Drej (28 — 1) = py;(2t9) (10.1)

converges uniformly in #€[0, 2¢,]. Since the D,’s are disjoint (possibly void) and

s

O'u(m, n) < kzlpik(ns) Py (4Ns —ns),

it follows from the uniform convergence of the series in (10.1), that
2 w(m,n) converges uniformly in n, 0<n<4N. (10.2)
m=o0

We have by the definitions:

wm,n+1)—ovm+1,n+1)= > (le,,(ns) Pc(8)) Pr; (4Ns —ns —8). (10.3)

keCm+1 le

If k€Cn.1 and py(s)>0, then 1€C,; for otherwise py (ms+ s)= py(ms) py(s) >0 and
k would not belong to Cn.;. Hence in the double sum in (10.3) we need only sum

[ over C,, and consequently
wm,n+1)—om+1,n+1)< 2 pu(ns) 2, Pu(s) pu;(4Ns —ns —s)
leCnm kel
= 1}; Pu(ns) py (4Ns —ns) = u(m, n).
€lm

Summing over n we obtain

4N-1

P (4Ns)=u(m,4N)< 3 v(m+1,n+1).
n=0

This being true for 0<m < 2N, we infer that
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] 4N-128-1 2N
py2)<= > 3 wm+1l,n+1)<4 max Y wv(m,n).
N 2o mon 1<n<4N MmN +1

As N-—+oo, the last member above converges to zero by (10.2), and so p;(2f)=0.
Repeating this argument, we see that p,;(2"f)=0 for every positive integer n and
consequently p;,(¢)=0, since p,(f)>0 implies p;(t') >0 for t' >¢ trivially. The theorem
is proved.

CoROLLARY. Let {&(-),j€1} be nonnegative functions on TO satisfying either

Ej(t)=%§f(8)pu(t~8) (0<s<i),
or Si(t)=jEZIPu(t—8)5j(8) (0<s<),

for every t€TC. Then each &;(-) is either identically zero or mever zero in T°.

Proof. Theorem 10.1 being symmetrie in the pair of indices (7,7), we need only
prove the first form' of the Corollary. If for some ¢>0 we have &(t) >0, then for
any d: 0<d<t, there exist s: 0<s<d, and 2€I such that &(s)>0 and p;(f—s)>0.
Hence by the theorem, p;(6 —s) >0 and so &;(8) > &;(s) pi;(6 — s) > 0. Since § is arbitrary
&(-)>0 in T° proving the corollary.

It follows from the Corollary that each function such as k, I, & 7, {, v in the
text, which is a member of an exit or entrance solution for a standard transition
matrix ([] or ®), has the always-or-never-zero property. The result can be generalized

at once to a measurable transition matrix (see the last paragraph of p. 122 in [1]).
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