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Approximation in Sobolev spaces of 
nonlinear expressions involving the gradient 

P i o t r  H a j t a s z  a n d  J a n  Mal~(1 )  

A b s t r a c t .  We investigate a problem of approximation of a large class of nonlinear expres- 
sions f(x, u, Vu), including polyconvex functions. Here u: ~--+R m, 12CR n , is a mapping from the 
Sobolev space W 1,p. In particular, when p=n, we obtain the approximation by mappings which 
are continuous, differentiable a.e. and, if in addition n=rn, satisfy the Luzin condition. From the 
point of view of applications such mappings are almost as good as Lipschitz mappings. As far 
as we know, for the nonlinear problems that  we consider, no natural approximation results were 
known so far. The results about the approximation of f(x, u, Vu) are consequences of the main 
result of the paper, Theorem 1.3, on a very strong approximation of Sobolev functions by locally 
weakly monotone functions. 

1. I n t r o d u c t i o n  

W e  a re  i n t e r e s t e d  in a p p r o x i m a t i o n  of  m a p p i n g s  u: ~- - -~R m f r o m  t h e  S o b o l e v  

space  WI,P(f~) n by  a s e q u e n c e  {uk}k~__l of  " m o r e  r egu l a r "  m a p p i n g s  t a k i n g  ca re  of  

t h e  c o n v e r g e n c e  

~ f(x ,  uk, Vuk)dx-+ ~ f (x ,u ,  Vu)dx  

for a l a rge  class  o f  n o n l i n e a r  i n t e g r a n d s .  

H e r e  a n d  in w h a t  fol lows f~ C R n is an  o p e n  set  a n d  m is t h e  d i m e n s i o n  o f  t h e  

t a r g e t  space  for f u n c t i o n s  cons ide red .  S o m e  n o t a t i o n ,  t e r m i n o l o g y  a n d  c o n v e n t i o n s ,  

m o s t l y  s t a n d a r d ,  a re  e x p l a i n e d  a t  t h e  b e g i n n i n g  of  S e c t i o n  2 ( a l t h o u g h  t h e y  m a y  

be  used  be fo re  t h e n )  so as n o t  to  d i s t u r b  t h e  c o u r s e  of  t h e  i n t r o d u c t i o n  t o o  much .  
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Leipzig, 1998, and completed during their stay at the Mittag-Lefiter Institute, Djursholm, 1999. 
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A standard way to approximate a function is by mollifying with a convolution 
kernel. There is also another familiar method of approximation of uEWl'p(12), 
1 < p <  oc, by Lipschitz continuous (or even continuously differentiable) functions uk 
which yields both uk-~u in WI,p(12) and I{x:uk(x)~u(x)}l-+O. See e.g. [1], [5], 
[12], [23], [37], [43], [69] and also [24] and [39] for related approximations by Hblder 
continuous functions. 

When the two methods above fail, the approximation problem becomes difficult 
because of the lack of other powerful and elegant tools. 

This is the case of approximation in nonlinear .A n spaces of functions with 
gradient minors in L pj spaces. This problem will be described in Section 3, but  
now for illustration we start  with a very particular case. 

Let u: f~-+R n be a mapping in the Sobolev class WI'P(ft) n, 1 ~ p < o c .  Assume 
that  in addition det VuELq(f~) for some p/n<q<oc.  The LP-integrability of Vu 
implies only the LP/n-integrability of the Jacobian, so the L q integrability of the 
Jacobian is a strong additional condition. Now we ask: 

Does there exist a sequence of "more regular" mappings uk: f~-+R n such that 

(1) uk-+u in Wl 'P(~)  '~ and de tVu k - -+d e tV u  in Lq(~)? 

There are many other related problems of approximation of determinants and 
minors, see e.g. [31, [11], [161, [18], [19], [22], [281, [38], [51], [52] and [53]. However 
very few results are in the positive direction. This was our main motivation for 
considering problems like (1). 

It was not clarified here what we shall mean by "more regular" mappings. Ob- 
serve that  if q=p/n,  then we can get the desired approximation using the approxi- 
mation by convolution and the resulting sequence {uk }k~_-i is C ~ smooth, so this is 
not a very interesting case and in what follows we shall assume that  q>p/n.  Then 
trying to approximate u by convolution or any other related method we immediately 
lose information about the integrability of the Jacobian above the exponent p/n.  
The problems with the approximation are caused by the high nonlinearity of the 
determinant. 

We would be happy to have a sequence of smooth mappings, but, in general, 
when n - 1  ~ p < n  it is not even possible to have a sequence of continuous mappings 
with the Luzin property (defined below); see Proposition 3.3. The counterexample is 
based on the fact that  the radial projection mapping x~-+x/]x[: B - + S c R  n belongs 
to the Sobolev space WI'p(B) n for all p<n.  This forms a "topological" obstacle 
for the approximation. There are no such obvious obstacles when p=n,  so one 
may hope to have a nice approximation. And indeed we prove that  when p=n and 
1 _<q<oc there is a sequence {Uk}k~ as in (1) which consists of mappings which are 
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continuous, differentiable a.e. and have the Luzin property ((7), and Lemma 1.2). 
Although the case p=n  was the main motivation for our research the method applies 
also to the case p<n.  Also then the approximating mappings are more regular than 
generic mappings, but in a sense which is not so transparent and will be explained 
below. 

In the case p<n  there are alternative methods of approximation that  will be 
explained in our forthcoming paper [25]. These methods are based on completely 
different ideas and the class of situations where they apply is neither wider nor 
narrower in comparison with the methods presented here. 

Actually in the main theorem of the present paper, Theorem 1.3, we succeed in 
approximating a given function uE WI'P(12) by a sequence {uk}~=l of locally weakly 
monotone functions (defined below) such that  the approximating functions are "very 
close to u" - - so  close that  when the approximation is applied to each coordinate of 
the mapping uEWI,p(f~) m separately, surprisingly, nonlinear expressions involving 
the gradient (including the determinant) also converge. As we will see, locally 
weakly monotone functions are more regular than generic functions in WI'p(f~). If 
p ~ n ,  in fact, from the point of view of applications, their properties are almost as 
good as properties of Lipschitz mappings. To our knowledge, for such nonlinear 
problems that we consider, no natural approximation results were known at all. 

Definition. Let uGWI,P(f~). We say that  u obeys the weak maximum principle 
on 12 if the implication 

( u - l )  + E W~'P(f~) ~ u < l a.e. in f~ 

holds for each 1cR.  Similarly we define the weak minimum principle. We say that  
u is weakly monotone if u satisfies both the weak maximum and the weak minimum 
principles on all subdomains f/P~f~. 

If there is R > 0  such that  u is weakly monotone on all open subsets of ft of 
diameter less than or equal to R, then we say that  u is locally weakly monotone. 

We say that  a mapping u = (Ul . . . . .  Urn) E W l'p(f~)m is (locally) weakly monotone 
if each of the coordinate functions ui is (locally) weakly monotone. 

Weakly monotone functions were introduced by Manfredi [44] (ef. [15], [33] 
and [45]) as a generalization of monotone functions in the sense of Lebesgue [36], [50]. 

Locally weakly monotone functions obey some regularity properties that  we 
next describe. 

L e m m a  1.1. Let uEWa,P(f~) m, 12cR n, n - l < p < _ n  be locally weakly mono- 
tone. Then u is locally bounded, differentiable a.e. and there exists a set Z with 
7-ln-P(Z)=O, such that u is continuous at each point of f~\Z.  
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Recall tha t  a Borel mapping u: 12-+R n, f l c R  ", has the Luzin property if the 
image of any set of Lebesgue measure zero is of Lebesgue measure zero. 

L e m m a  1.2. Let uEWl,n(12) m, ~ c F t  n, be locally weakly monotone, then u 
is continuous and differentiable a.e. If  re=n, u also has the Luzin property. 

Remarks. 1. We refer to Section 4 for a more complete exposition of the theory 
of weakly monotone functions including proofs of the above two lemmas. 

2. Here and in what follows, by differentiability we mean differentiability in 
the classical sense. 

3. The Luzin property is very important  as it allows one to apply the change 
of variables formula, see e.g. [6], [15], [21], [42], [47] and [56]. 

4. The method of the proof works for uEWI'P(~) n, p>n, as well. Then, 
however, we do not gain anything interesting as every Sobolev mapping in WI'P(12) '~ 
is HSlder continuous, differentiable a.e. and has the Luzin property, see e.g. [6], [15] 
and [46]. 

5. In the case p<n, (local) weak monotonicity does not imply continuity. 
Indeed, the coordinate functions of the radial projection 

x 
u0:B )S,  Uo(X)=lx I, 

belong to the Sobolev space WI,p(B) for all p<n. They are weakly monotone with 
the discontinuity at the origin. For other examples see [44]. 

6. Lemma 1.1 does not extend to the case p < n -  1. Indeed, if ~E W 1'n-1 (Qn-1) 

is essentially discontinuous everywhere, then the function given by 

~(xl,  ..., x~ - l ,  zn) = V ( X l ,  ..., xn-1) 

is weakly monotone and essentially discontinuous everywhere in Qn. 
Now we can formulate our main theorem. 

T h e o r e m  1.3. Let uEWI,p(12), where ~cI:U ~ is open and l <p<oc. Then 
there is a sequence {Uk }k~_l of functions from WI'P(12) such that 

(a) each uk is locally weakly monotone; 
(b) Vuk=O a.e. in the set where uk#u; 
(c) ~k-~u in w l , p ( ~ )  as k - ~ .  

The essential novelty in the above approximation is the property (b). Observe 
that  in the set where Uk=U we have Vuk=~Tu a.e., and thus we could write (b) in 
the equivalent form 

Vuk = ~TuX{x:~k(z)=~(x)t. 
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Propert ies (b) and (c) do not necessarily imply that  [{X:Uk (x) #u(x) }l--+ 0. However, 
it follows from (b) and (c) that ,  passing eventually to a subsequence, 

(2) X{x:uk(x)r and Vu(x)~0} - ~  0 a.e. 

and 

(3) X(x:Vuk(x)r a.e. 

The conditions (b) and (c), and their consequences (2) and (3) are so strong tha t  
they imply unexpected convergence of nonlinear expressions involving the gradient 
in most of the interesting cases. 

As we have already mentioned, weakly monotone functions need not be con- 
tinuous, and indeed, as we will see in Section 3, in general, when n - l < p < n ,  it is 
not possible to find an approximation of u E W I'p(f~) by continuous functions that  

would satisfy the conditions (b) and (c) at the same t ime (Corollary 3.4). This is in 
contrast  with another method, mentioned above, which provides an approximation 
of u E W  1,p by Lipschitz, or even C 1, functions such tha t  I{x:uk(x)~=u(x)}l--+O and 
uk--+u in W 1,p, but, as we see now, the condition that  the gradient of Uk vanishes 
on the set where uk differs from u cannot be achieved. 

Recently Vodop~yanov [65] found some applications of Theorem 1.3 in the con- 
text  of the change of variables formula on Carnot  groups. 

The method of approximation in Theorem 1.3 seems to be based on new ideas 
which are of independent interest. Some other ideas may however be traced back to 
the old work of Lebesgue [36] on monotone functions. In order to construct locally 
weakly monotone functions we t runcate  the function u infinitely many times. After 
each truncation we obtain a bet ter  function, looking more like a monotone one. 
Since we make infinitely many truncations of a Sobolev function it requires quite 
delicate arguments to ensure that  the constructed sequence satisfies all the desired 
properties. 

We promised to s tate  our result as a result on approximation of a nonlinear 
expression involving the gradient. The way of convergence of Uk to U allows many  
variants of convergence results for nonlinear integrands which may be easily derived 
by the reader from the properties (b) and (c). A paradox of the result consists in 
observing that ,  although the theorem is scalar in nature, the whole strength appears  
when applied coordinate-wise to vector-valued functions. Below we mention one 
result in the setting of functionals involving gradient minors. Other  results will be 
mentioned in Section 3. 

l p  
For a Wlo ~ -function u we define the ith adjugate adji Vu as the collection of 

all i • i minors of Vu. 
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Observe that  for a mapping u: f~-+R m, f ~ c R  n, the minors adj i Vu are defined 
only for l < i < m i n { n , m } .  Obviously adjl V u = V u  and if m = n ,  then adjn V u =  
det Vu and adjn_ 1 Vu=ad j  Vu. 

The so called polyconvex integrals (see [2], [8], [9], [10], [17], [54] and [55]) arise 
in the context of nonlinear elasticity or in Skyrme's problem. Some typical poly- 
convex functionals lead naturally to a class of mappings u: f/--~R n with prescribed 
integrability of minors, i.e., adji VuE L p' (f/), where i= 1, 2, ..., n. 

We may immediately state the result to cover the case of Orlicz type integra- 
bility. 

T h e o r e m  1.4. Let uEWI,p(~'~) m, where f~CR n is open and l_<p<oc. Let 
g: ~2 x R m x R n m - ~ R  be given by 

g(x, ~, ~) = h(x, ~, ~)+al  (X)Ol(ladjl r162 ~1), 

where N =min{n,  m}, (I)i: [0, oo)--+ [0, oc), i= 1, 2,.. . ,  N ,  are nondecreasing, al, ... , 
a N  are nonnegative measurable functions on f~, and h: f~ • m x R n m - + R  is a non- 
negative function such that the nonlinear operator 

(4) u ~ - + h ( x , u ,  V u ) : W l , p ( ~ )  m ) Ll(l])  

is well defined and continuous. Assume that 

f 
(5) ]f~ g(x, u, Vu) dx < oc. 

Then for any Carathdodory function f :  f~ • R m • R am-+R such that 

(6) 

there exists a sequence { Uk } C~= l C W l'p ( ~ ) rn of locally weakly monotone mappings 
such that 

~ f (x, uk, Vuk  ) dx -+ ~ f (x, u, ~Yu) dx. 

Remarks. 1. We will actually prove that  the claim holds with a sequence 
U oo { k}k= 1 as in Theorem 1.3. We want to emphasize that the approximating sequence 
U oo { k}k=l is independent of the integrand f ( x ,  u, Vu). 

2. The proof and applications of the theorem to more particular problems will 
be presented in Section 3. 

3. A typical application is ~ i ( t ) = t  p' , see Theorem 3.2. 
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4. We may consider some ai =0  if we do not want to assume any integrability 
of the i th adjugate. 

5. For a general theory of operators of the type (4), called Nemytskil operators, 
see e.g. [14] and [34]. However for most of the applications it suffices to assume 
that  h has a much simpler structure, for example h may be an integrable function 
independent of (~, ~), or h may equal [~1 p or [([q, where q is an embedding exponent, 
or b(x)K[ q where b 1/q is a "multiplier" in the sense of Maz'ya and Shaposhnikova [48] 
etc. 

6. The most important  case of the theorem is when p=n, since in the case p<n 
there are alternative methods of approximation of similar problems, see [25]. 

Now observe that  the theorem applies to problem (1). Indeed, assume that  
u E W I ' p ( ~ - ~ )  n and that  det ~'u(x)ELq(~t). Then if we take 

f ( X ,  ~, ~) : I~ --U(X)I p -~-I~ -- VU(X)I  p + Idet ~ - d e t  Vu(x)I q, 

Theorem 1.4 easily implies that  there is a sequence of locally weakly monotone 
mappings {uk}k~=l CWI,P(12) n such that  

~ (IUk - - u l P  A r l V U k -  V u l P " [  - Idet VUk - d e t  Vul q) dx (7) O. 

In particular when p=n we obtain an approximation by mappings which are con- 
tinuous, differentiable a.e. and satisfy the Luzin condition (Lemma 1.2). This result 
is sharp as in the case n - 1  <_p<n such an approximation is not possible in general 
(Proposition 3.3). 

The paper is organized as follows. The next section contains some auxiliary 
results needed in the sequel. In Section 3 we prove how Theorem 1.4 follows from 
Theorem 1.3, then we show some applications of Theorem 1.4 to more particular 
situations and prove Proposition 3.3 and Corollary 3.4 demonstrating sharpness of 
the result on the Luzin property and of Theorem 1.3 respectively. In Section 4 we 
recall the definition of the class of weakly monotone functions. We slightly improve 
known results and add some new observations. This will prove Lemmas 1.1 and 1.2. 
Section 5 is devoted to the proof of the main result of our paper, Theorem 1.3. 

2. Notat ion  and auxiliary results 

The notation used in this paper is standard. The k-dimensional Hausdorff 
measure will be denoted by 74 k and the average value by 

U E : U d# -- I~(E) u d#. 
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The Lebesgue measure  of  a set E will be denoted by [El. The  characterist ic  funct ion 

of the  set E will be denoted by X E. The  L p norm of a function u will be denoted 

by [lull p. The oscillation of a measurable  funct ion over a measurable  set is defined 

a s  

osc u = ess sup u -  ess inf u. 
E E E 

Posit ive and the  negative par ts  of a function u are u + =max{u, 0}, u -  = -  min{u,  0}. 

By ~ we will always denote  an open subset of  R n, even if not  s ta ted  explicitly. The  

number  n will always denote  the dimension of  the  Eucl idean space in which we 

consider domains  of  the studied functions. 
By  B=B(x ,  r) we will denote  an n-dimensional  ball centered at x with ra- 

dius r. Spheres will be denoted by S(x, r)=OB(x, r). By a Cara th~odory  funct ion 
we mean  a funct ion f :  ~ x R m x  R n m - + R  such tha t  f ( . ,  ~,~) is measurable  on 

for all ( ~ , ~ ) E R  m x R  ~m and f (x ,  . , .  ) is cont inuous in R m x R  nm for almost  every 

x El2. By C we will denote  a general constant  whose value is not  impor tan t  and 

so the same symbol  C may  denote  different constants  even in the same line. If  we 

write C=C(n,p) we mean  tha t  the cons tant  C depends  on n and p only. 

The  gradient  V u  is unders tood  in the distr ibut ional  sense. Given l_<p<c~,  
we denote  by WI 'p (D)  the usual Sobolev space on D consisting of the functions u 

such tha t  bo th  uELP(12) and IVulELP(D). The  space is equipped with the  norm 

[[U[[1,p=[lU[[p~-II~Tu[[ p. By W~'P(12) we will denote  the closure of C~r in the 
norm [[ �9 [[1,p. By WI'p(12) m we denote  the  class of  mappings  u: 12---~R "~ such tha t  

the coordinate  functions belong to the funct ion space W I ' p ( ~ ) .  A similar convention 

is used also for o ther  function spaces. 
Now we collect some s t andard  results tha t  will be used in the sequel. We 

suggest t ha t  the reader skip reading this section and j u m p  to Section 3. Then  the 

reader can consult  Section 2 whenever  necessary. 

The  following lemma on differentiation of  absolutely continuous measures can 

be found e.g. in [43, Corol lary 1.19] or in [15, Proposi t ion  4.37]. It is a consequence 

of a s t andard  covering argument .  

L e m m a  2.1.  If  vEL~oc(~t), then 

7-l~-P({xEgt:l imsuprP~ ( Iv ldx>O})=O.  
r-+O J B(x , r )  

The  following result is due to Stepanov,  see [41], [60] and [61]. 

L e m m a  2.2.  A function u: D-+ R is diI~erentiable a.e. if and only if 

lu(y)-u(x)l lim sup < oc a.e. 
y-~x ]y-x] 
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The next results concern properties of functions from the Sobolev space 
Wl'P(~t). First we recall that  both WI,P(gt) and WJ'P(~t) have the lattice prop- 
erty, i.e. they are closed under taking pointwise max and min. For the following 
result, see e.g. [27, Lemma 1.25]. 

L e m m a  2.3. IfuEWI,P(~), vEWJ'P(~) and ]ui_<iv I a.e., then uEW01'P(~). 

Proof. Assume first that  0 < u < v .  Let ~kEC~(Ft )  be such that  ~ak--~v in 
WI'P(~). Then the functions min{~k,u} have compact support and it is easy 
to prove that  min{~k, u}-+min{v, u}=u, so uEWJ'P(~). Now we pass to the gen- 
eral case lul<iv]. It is easy to see that  v+,v-EWI'p(~). Hence Ivl=v++v-E 
WJ'P(~). Now the inequalities 0~u+_< I v] imply that  u +, u-EWJ'P(~t) .  Hence also 
u=u + - u -  eW~'p(a). [] 

C o r o l l a r y  2.4. Let u, vEWI,P(~) and EC~. If 0 < u < v  a.e. on E and vXEE 
W~'P(~), then uX~EW~'P(~). 

Proof. The claim follows from the previous lemma and the observation that  
UXE=min{u+,VXE}EWI'P(~). [] 

L e m m a  2.5. Assume that uEWI,P(~)  and t>0 .  Then uEW~'P(~) if and only 
if min{u, t}EW~'P(12). 

Proof. The implication from the left to the right follows from Lemma 2.3. 
Suppose now that min{u, t}EWI 'p(~) .  Since u----rain{u, t}-  EW~'P(~) it remains 
to prove that  u+EW~'P(12) and thus we can assume that  u__0. For each positive 
integer k, the function 

ktu 
u k -  kt+u 

is in WI,P(~) by the chain rule. Since uk <_k rain{u, t}, appealing to Lemma 2.3, we 
have that  ukEWI"P(~). A routine argument shows that  u belongs to W~'P(12) as 
the limit of the sequence {uk}~_l- [] 

We need also consider infima and suprema of infinite families of Sobolev func- 
tions. If/4 is a family of measurable functions on ~t, we define the lattice supremum 
V/4 as the supremum with respect to the ordering, neglecting sets of measure zero. 
Thus, V/4 is an a.e. majorant of each element o f /4  and an a.e. minorant of each 
a.e. majorant of/4. Similarly we introduce the lattice infimum A/4. 

It will be convenient for us to allow the lattice supremum to be +oc and the 
lattice infimum to he - c o  on sets of positive measure. 

I f /4  is a countable family, then V/4 can be obtained as the pointwise supre- 
mum of/4. However, i f /4  is uncountable, we must distinguish between the lattice 
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supremum V/4 and the pointwise supremum 

sup/4: x, >sup{u(x):uE/4}. 

The latter one heavily depends on the choice of representatives. 

The following accessibility property can be found e.g. in [49, Lemma 2.6.1]. For 
the sake of completeness we provide a short proof. 

L e m m a  2.6. Let/4 be a class of measurable functions defined in a measurable 
set E c R  u. Then V/4 exists and there is a countable subfamily VC/4 such that 

V/4 -- V ~; -- sup ]). 

Proof. First observe that  we may assume that  the family /4 is bounded in 
L ~ and consists of nonnegative functions, otherwise we replace/4 by a family of 
functions �89 where uE/4. We can aJso assume that  the functions are 
defined in a set of finite measure, otherwise we make a diffeomorphic change of 
variables which maps E onto a bounded set. Let 

S : s u p { / E m a X { U l , . . . , u k } d X : u l , . . . , U k E / 4  for some k}  <(x). 

Now there exists a sequence {uk}~=lC/4 such that  vk=max{ul , . . . ,uk}  satisfies 
V c~ limk-,cr fE Vk dx=s. Since { k}k=l is nondecreasing we have the a.e. convergence 

l imk-,~ vk =v. Obviously fE V dx=s. This easily implies that  v--V/4 and so we can 
take ] ; - -{ul ,u2, . . .} .  [] 

Now, we mention a folklore theorem on suprema of infinite families of Sobolev 
functions. 

L e m m a  2.7. Let /4CWI'P(~~) be bounded (in the Sobolev norm) and closed 
under finite maxima. Then V/4EWI'p(~) .  Moreover V/4 is a pointwise limit of an 
increasing sequence of functions from/4.  

Proof. Let u=V/4. Then, using tha t /4  is closed under finite maxima, we infer 
from Lemma 2.6 that  there is an (a.e.) increasing sequence {Uk}~=l of functions 
from /4 such that  Uk-+u a.e. The sequence {Uk}k~=l is bounded in W~'P(~), so 
that  by [27, Theorem 1.32], uEW01'P(f~) and in fact u is a weak limit of {Uk}k~=l in 

[]  

We shall need the following elementary Poincar~ lemma, see e.g. [12] or [69]. 
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L e m m a  2.8. If uG WI'p(B(x, r)), then fs(x,~) luI p dx~-CrP fB(,,~) IVuIP dx. 

The next lemma is a direct consequence of the Sobolev embedding theorem 
into the space of HSlder continuous functions. It is often called Gehring's oscillation 
lemma. For a proof see e.g. [43, Lemma 2.10]. 

L e m m a  2.9. If uEWl,P(S(xo,t)), p > n - 1 ,  then u is H61der continuous and 

ose u ~ C ( n , p ) t ( / s  IVuiPdT-ln-1) 1/p. 
S(~o,t) (xo,t) 

The following two lemmas are special cases of more general results. The proof 
of the first lemma can be found in [35, Section 8.3.3]. 

L e m m a  2.10. If ~ c R  n is a bounded domain with a smooth boundary, then 
there exists a bounded linear extension operator E: W l'n- l ( Ol~ ) --+ W l'n ( ~ ) with the 
additional properties that E u E C ~ ( ~ )  for any uEWI'n-I (o~)  and EuEC(~)  for 
any uEC(OI2)NW 1,~-1 (0~). 

The proof of the next lemma can be found in [13], [15, Theorem 5.6], [19] 
and [21]. 

L e r n m a  2.11. If uE W l'l ( B ) n is continuous and satisfies the Luzin property, 
then 

[u(S)l -~ ]B [det ~Tu I dx. 

The last lemma is proved in [54, Theorem 3.2]. 

L e m m a  2.12. If vEWI'P(~'~) n and ]adjVviELq(12), p > n - 1 ,  q>n/ (n -1 ) ,  
then d(vl dv 2 A...Adv n)-=dv I Adv2 A...Adv n in the sense of distributions, i.e. for eve- 
ry ~ e C ~ ( ~ )  the following identity is true 

- ~ vl d~zAdv2 A...Adv'~= ~ Cdvl Adv2 A...Adv n. 

3. Convergence of  nonlinear expressions 

In this section we prove the assertions mentioned in the introduction concerning 
convergence of expressions of the type 

~ f ( x ,  Vu) dx. u, 
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First we will show how to obtain Theorem 1.4 as a consequence of Theorem 1.3. 
Then we will provide some applications to more particular problems. The proofs in 
this section are not hard, because the deep step is done in Theorem 1.3. The proof 
of Theorem 1.3 is postponed to Section 5. 

?~ oo Proof of Theorem 1.4. Assume that  uEWI,p(f}) m satisfies (5). Let { k}k=l be 

an approximating sequence as in Theorem 1.3. More precisely {uk}k~__l is obtained 
by applying Theorem 1.3 to each coordinate of u separately. Let us write 

~k(x) = f(~, u~(z), vuk(~)), ~(~) = f(~, u(x), w(~)) ,  
Ck(x) =g(~, uk(z), Vuk(~)), ~(~) =g(~, u(x), w(~)) ,  
~k(x) = h(z, uk(~), Wk(X)), ~(Z) = h(x, ~(~), Vu(x)). 

First we notice tha t  if we denote the i th coordinate by a superscript, each Vu~ is 
either 0 or Uu i. This has the consequence that  each gradient minor of uk either 
vanish or is equal to the corresponding minor for u in a given point. Hence 

[adjj Vuk[ <_ [adjj Vu[, 

and since ~ j  is nondecreasing, also 

~y([adjj Vuk[) _< (Pj ([adjj Vu[). 

It  follows that  

(s) 
and thus 

Hence 

Ck -< r  

I~k-~l -< r162 < ~k+2r < 1~k-71+3r 

(9) ~ l~k--~l dx << ~ lTlk--711dx+ ~ min{l~k--qoh 3r dx. 

The first integral on the right tends to zero by the assumptions on h. The con- 
vergence of the second integral to zero follows from the Lebesgue dominated con- 

O O  vergence theorem as soon as we show that  from any subsequence of {~k}k=l we 
can extract  a subsequence that  converges to ~ a.e. This follows from the fact tha t  

uk-+u in W I'p and tha t  f is a Carath~odory function. [] 

Although Theorem 1.4 is very general, it does not cover all possible applica- 
tions of approximation from Theorem 1.3. We state here one typical consequence 
of Theorem 1.3 which is of a slightly different nature. I t  is based on a direct ap- 
plication of the fact that  for u E W I , p ( ~ )  n either Vuk(x)=Vu(x) and Uk(X)=U(X), 
or detVuk(x)=O. This allows one to have no growth condition for the integrand 
depending on (x, ~, ~) outside the set where det ~=0.  
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C o r o l l a r y  3.1. Let uEWI'P(f~) n and let f :  f~ x R  n •  be any function 
U oo such that f ( . , . ,O)=O and f (x ,u (x ) ,de t  Vu(x))ELq(f~), l < q < o o .  Let { k}k=l be 

an approximating sequence satisfying the properties (b) and (c) of Theorem 1.3 
coordinate-wise. Then we have 

f l f ( x , u ( x ) , d e t V u ( x ) ) - f ( x ,  uk(x) ,de tVuk(x) ) lqdx~O,  as k--+c~. 

Proof. The integrand equals If(x, u(x), det Vu(x))l q multiplied by a charac- 
teristic function of the set {X:Uk(X)~U(X) and ~7u(x)5~0}. Hence the convergence 
follows from (2) and the Lebesgue dominated convergence theorem. [] 

Now we state the most typical application in terms of nonlinear function spaces 
introduced by Ball [2], see also [17]. 

Definition. Let P--(Pl,-. .  ,PN) be a multi-index, where l < p l < c ~ ,  O<_pj<oo, 
j = 2 , 3 , . . . , N ,  and N=min{m,n} .  We denote by Ap(f~) the class of mappings 
uEWl'm(f t )  m such that  ladjj ITulELP3 for all j E { 1 , . . . , N }  with p j~0 .  This, in 
particular, means that  we pose no assumptions about the integrability of the j t h  
adjugate when pj =0. We will say that  uk approximates u in A n or that  uk--+u in A n, 
if uk--+u in W I , p l ( ~ ' ~ )  m and ]axijj •Uk--m:tjj Vu]--+O in LPJ (gt) for all jE{1 .... , g }  
with pj 50.  

As special cases we consider the John Ball class Ap,q with p=(p, O, ..., O, q, 0), 
see [2], [64] and [54], and spaces Bp,q with p=(p, O, ..., O, q), both for g = m = n  and 
l <p,q<oo. 

Thus the John Ball class Ap,q(f~) consists of all mappings in wl,p(f t )  n such that  
adjVuELq(f~), l<p,q<c~,  and the space Bp,q(f~) of the mappings u e W I ' P ( ~ - ~ )  n 

with det VuE Lq(f~), l <p, q< cxD. 

T h e o r e m  3.2. Let uE.Ap(f~) and let p be a multi-index with l < p l < c ~  and 
U oo 0 < p j < e o ,  j = 2 , . . . , N .  Let { k}k=l be an approximating sequence satisfying the 

properties (b) and (c) of Theorem 1.3 coordinate-wise. Then Uk--+u in .Ap(f~). 

Proof. We set 

N 
f (x ,  ~, ~) = IC-u(z)p ~ +~-~ ay ladjj ~-  adj~ Vu(x)l p~, 

j = l  

where 

aj = 
1, pj > 0, 

O, pj-~O. 
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If we let qj =max{pj, 1}, we have 

ladjj ~ - a d j j  Vu(x)] pj _< 2q~-1 (ladjj ~1 p~ + ]adjj Vu(x)l p~ ). 

We see that  the assumptions (5) and (6) of Theorem 1.4 are satisfied with 

N 

h(x, ~,~) = I~-u(x)l pl ~-~ aj2qJ-lladjj Vu(x)l pj and Cj(t) = 2qJ-ltP'. 
j = l  

Hence the convergence Uk--+u in Ap(f~) follows directly from Theorem 1.4. [] 

Let l < q < c c .  Recall that  by Theorem 1.3, Lemma 1.2 and Theorem 3.2, each 
mapping uEBn,q(~l) can be approximated in B,~,q by a sequence {Uk}k~=l of contin- 
uous mappings with the Luzin property. We are going to show that  n is a borderline 
exponent for such approximation. This shows the sharpness of our results. 

P r o p o s i t i o n  3.3. The radial projection mapping u: B(O, 1)-+S(0, 1) given by 
u(x)=x/]x I belongs to Bp,q(B) for all l < p < n  and l < q < c ~ .  If  n - l < p < n  and 
l < q < c ~ ,  then u cannot be approximated by continuous mappings uk E Bp,q( B ) with 
the Luzin property in the metric of Bp,q. In particular Uk cannot be Lipschitz 
continuous. 

Proof. We argue by contradiction. Let n - l < p < n ,  l_<q<c~ and suppose that  
a sequence {uk}~=l C Bp,q(B) of continuous mappings with the Luzin property con- 
verges to u in the metric of Bp,q. Then applying a version of the Fubini theorem 
valid for Sobolev spaces we conclude that  for almost all rE(0,  1) after taking a 
subsequence we have the convergence 

Ukls(O,r)-+Uls(O,r) in WI'P(S(O,r)), 

where the restrictions to spheres are understood in the sense of traces. Fix one such 
rE (0, 1). By Lemma 2.10 there exists a bounded linear extension operator 

E: WI'n-I(OB(O, r)UOB(O, 1)) ~ ~ Wl'n(B(O, 1) \B(0,  r)) n 

such that  Ev is smooth in B(0, 1) \B(0 ,  r).  Let 

f 0 on OB(O, 1), 
V k  ! u k - u  on OB(O,r), 

and define 
u+Evk onB(O,  1) \B(O,r ) ,  

W k 
uk on/~(0,  r).  
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It is easy to see that  w~: B--+R '~ is continuous and identity on the boundary. Hence 
by the Brouwer fixed point theorem BCwk(B), and thus ]wk(B)l>]B [. 

Moreover, w k ~ W I ' p ( B )  n satisfies the Luzin property (the Luzin property is 
satisfied in the annulus B(0, 1)\/3(0, r) because wk is smooth there). Hence invoking 
Lemma 2.11 we obtain 

IBt<_Iwk(B)I<_/B IdetVwkldx 
(0,1) 

=/B IdetVukldx+ f "ldetVwkldx" 
(O,r) JB(O,1)\B(O,r) 

The second integral in the right-hand side converges to zero. Indeed, 

vk--->O in WI'n-I(OB(O, 1)UOB(O,r)), 

so wk=u+Evk-+u in Wt,n(B(O, 1)\B(0,  r)) which implies that  

f f  [det Vwk[ dx --> ff  [dee Vu[ dx 
JB ( 0 , 1 ) \ S ( 0 : r )  J B(O,1)kB(O,r) 

Hence 

(10) lim inf f ]det Vuk[ dx > [B I 
k--~oo JB(O,r) 

which contradicts the convergence det Vuk--+det Vu--0 in L q. [] 

Remarks. 1. When n- l<p<n the proof can be slightly simplified. Indeed, 
by the Sobolev embedding theorem uk--+u uniformly on the sphere S(0, r). Then 
the construction invoking the extension operator is not needed as inequality (10) 
follows rather easily from the Brouwer theorem. 

2. The obstacle for the existence of the approximation has a topological nature, 
it is essential that  we create a hole in the image of the mapping. If p=n, then we 
cannot construct counterexamples as above simply because u: x~-+x/Ix[ does not 
belong to WI:n(B)'L 

C o r o l l a r y  3.4. The function ui(x)=xi/IxIEWl'p(B), iE{1, ... ,n}, n- l<p< 
n, cannot be approximated by a sequence of continuous functions which satisfy the 
conditions (b) and (c) of Theorem 1.3. 

Proof. We argue by contradiction. If there is such a sequence for one i, then 
oo it can be found for each i and thus there is an approximating sequence {vk}k=t for 

u(x)=x/lx I satisfying the properties (b) and (c) coordinate-wise. Since Vv~(x)E 
{Vui(x),0} a.e., it follows that  the functions vk are locally Lipschitz continuous 
outside the origin and thus satisfy the Luzin property. Hence by Corollary 3.1, vk 
approximate u in Bp,q which contradicts Proposition 3.3. [] 
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4. Weakly  m o n o t o n e  funct ions  

We say that  uEWI'P(~'~), l<p<cx~, is weakly K-pseudomonotone, K > I ,  if for 
every x E ~  and a.e. 0< r<d i s t (x ,  ~c), 

osc u < K  osc u, 
B(=,r) S(z,r) 

where the oscillation on the left is essential with respect to the Lebesgue measure 
and the oscillation on the right is essential with respect to the (n-1)-dimensional 
Hausdorff measure. 

This class contains a class of weakly monotone functions, see Section 1. The 
proof of the fact that  weakly monotone functions are weakly 1-pseudomonotone 
is standard and left to the reader. One may, e.g., use the characterization of 
the Sobolev space by the absolute continuity on lines, see [12, Section 4.9.2] and 
[43,Theorem 1.41]. 

The following result is a slightly stronger version of a result due to Manfredi [44] 
(cf. [64]). 

T h e o r e m  4.1. Let uE W~lo'v( ~ ) be weakly K-pseudomonotone for some K>_ 1. 
(1) If  n - l  <p<n, then u is locally bounded and 

(11) ( osc u~  < C ( n , p ) K V r P ~  IVulPdx, 
~ , B ( ~ o , r )  - ( = o , 2 , ' )  

whenever B(xo,2r)C~.  Moreover there exists a set ZCI2 with 7-/n-P(Z)=0 and 
such that u is continuous on the set 12\Z. 

(2) If  p=n, then u is continuous. Moreover 

(12) ( osc u ) n <  C ( n ) K n / B  IVu[ ndx,  
~B(=o,r) - log(R/r) (~o,a) 

whenever B(xo, R ) C ~  and r <R. 

Remark. The estimate (12) is a generalization of the Courant-Lebesgue lemma, 
see [7] and [31, Lemma 8.3.5]. 

Proof. Let uEWl'V(12), p > n - 1 ,  be a weakly K-pseudomonotone function, 
and let B(xo,R)C~2, r<R.  By Fubini's theorem, uEWl'p(S(xo,t))  for almost all 
r<t<R.  Hence by Lemma 2.9 we get a family of inequalities 

(/S /\lip (13) osc u < C(n,p)t IVul p dT-I n - i }  �9 
S(=o,t) (=o,t) 
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Integrating those inequalities with respect to t yields 

(14) ( osc u ~  dt < C(n,p) ]VuiP dx. 
\S(xo,t) / t P - - n T 1 -  (xo,R)\B(xo,r) 

Since u is weakly K-pseudomonotone we get 

(15) osc u <  osc u < K  osc u 
B(xo,r) B(xo,t) S(xo,t) 

for almost all t E Jr, R]. 
From (14) and (15) we infer (11) and (12). Inequality (12) implies the continuity 

when p=n. The continuity outside a set Z with 7-ln-P(Z) =0 is a direct consequence 
of inequality (11) and Lemma 2.1. [] 

Remark. In the case n - l < p < n ,  Manfredi [44] and also Sver~k [64] obtained a 
weaker result. They proved continuity of u outside a set with vanishing p-capacity. 
The estimate was improved in [55, Theorem 7.4]. 

Yet another property of weakly K-pseudomonotone mappings has been ob- 
tained by Mal~ and Martio [42], see also [40, Theorems 3.4 and 4.3]. 

T h e o r e m  4.2. If  uEWl'n(12) n is weakly K-pseudomonotone for some K >  1, 
then u has the Luzin property. 

The following result is known among specialists as folklore. For the case p--n 
see [58, Corollary, p. 341] and also [40], the general case can be found in [66]. 

T h e o r e m  4.3. I fuE l p Wlo' c (~),  p > n -  1, is weakly K-pseudomonotone for some 
K>_I, then u is differentiable a.e. 

Proof. I f p > n ,  then any Sobolev function is differentiable a.e., so we can assume 
that  p<n. We also can assume that  p<n, since Wllo'~ C Wllo 'p for p<n. Then by (11) 
the condition from the Stepanov theorem (Lemma 2.2) is satisfied, whenever x is a 
Lebesgue point of [Vu[ p. [] 

Observe that  Lemmas 1.1 and 1.2 are consequences of the above results. 
We close this section by recalling two classes of examples of weakly monotone 

functions. 

Definition. We follow Koskela, Manfredi and Villamor [33]. Let 0<a(x)_</~< 
c~ a.e. in ~, where ~ is a measurable function and/~ is a constant. Let l < p < c ~  
and .A: 12 • R n - + R  n be a Carath~odory function such that  

]A(x,~)]</~]~l p-1 and A(x,~).~>_a(x)]~] p. 
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Weak solutions u E W, lo~(D) to the equation div A(x, Vu)=0,  are called A-harmonic 
functions. The usual assumption is that  a ( x ) > a > 0  a.e., but our assumption is 
much weaker, so the equation may be very degenerate. It is easy to prove, [33], 
that  A-harmonic functions are weakly monotone. Thus the properties of weakly 
monotone functions yield the following result. 

T h e o r e m  4.4. Let,4 be as above, n -  1 <p<_n. Then any A-harmonic function 
u is locally bounded and continuous outside a set Z with 7-ln-P(Z)=0. Moreover u 
is differentiable a.e. 

Remarks. 1. The continuity property has been observed in [33], but with a 
worse estimate for the size of the discontinuity set. The differentiability result 
generalizes that of Sojarski [4], and Reshetnyak [57]; see also [26], [30] and [32] for 
related elliptic results, and [62] and [63] for related parabolic results. 

2. In the nondegenerate case (~(x)>a>0 a.e., it is known that  any A-harmonic 
function is Hhtder continuous, [43], and differentiable a.e., see [4] and [57]. 

Definition. We say that  the mapping uE WI'P(~) ~, 12CR n, has finite dilatation 
if there is a function K,  l<_K(x)<cc  a.e., such that  

IVu(x)V ~ < K(x) det Vu(x) a.e. 

In other words finite dilatation means that  for almost every point x either det Vu > 0 
or Vu(x)=0.  

Obviously mappings with det V u > 0  a.e. have finite dilatation. 
Gol'dshteYn and Vodop~yanov [20], proved that  if p=n, then the coordinate 

functions of a mapping with finite dilatation are weakly monotone. The following 
result is a generalization of the result of Gol'dshte~n and Vodop'yanov [20], see 
also [15], [29], [44], [54] and [64]. 

T h e o r e m  4.5. If  uEAp,q(~), p > n - 1 ,  q>n/ (n -1 ) ,  is a mapping of finite 
dilatation, then the coordinate functions of u are weakly monotone. 

Proof. We argue by contradiction. Suppose that  one of the coordinate func- 
tions, say u 1, is not weakly monotone. Then there is l~'~!2 and m, M E R  such that  
either (ul -M)+eW~'P(~' )  and I{xel2':ul(x)>M}l>O, or (m-ul)+eW~'P(~')  
and I{xe~':ul(x)<m}l>O. Assume the first case. Let f i l=min{ul ,M}X~,+ 
ulX~\n, and ~--(f i l ,u2, . . . ,un) .  Obviously fiEAp,q(12). We will prove in a while 
that 
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Before we do this, however, we show how to complete the proof of the theorem. Let 

E={xEfY:u l (x )>M}.  Observe tha t  det Vf i=0  in E.  This, identity (16) and the 
fact tha t  u= f i  in f ~ \ E  imply tha t  

Ede t  Vu dx = /E  det Vfi dx = O. 

Hence the finiteness of the dilatation implies tha t  Vu- -0  in E which is not possible. 
Thus we are left with the proof of (16). 

Let C E C ~ ( ~ )  such tha t  ~bl~,-1. Employing Lemma  2.12 we obtain 

/ (det V u - d e t  Vfi) dx = f ~  r  V u - d e t  Vfi) dx 

= f~ r Adu2A...Adu n -df i  1 Adu2A... Adu n) 

= -  ~(ul - f t l )dCAdu2A. . .Adun=O.  [3 

5. The  proof  of  t h e  main  result  

This section is devoted to the proof of Theorem 1.3. The proof of the theorem 
is quite difficult so we star t  with describing the main idea. We hope it will help to 
understand the steps of the proof. 

The rough idea is the following. Applying infinitely many  corrections "from 
above" to u we make the function "locally weakly upper  monotone".  Then applying 
infinitely many  corrections "from below" we make it "locally weakly lower mono- 

tone". The resulting function is locally weakly monotone. Now we describe the 
corrections "from above". The function fails to satisfy the weak maximum princi- 
ple on an open set f~'~12 if there is a t E R  such tha t  (u- t)+EWI'p(~ ') and u>t 
on some subset of ~ with positive Lebesgue measure. 

This suggests the method of corrections "from above". We fix R > 0 .  Whenever 
ECl2 is a set with diameter  less than  or equal to R and such that  u>t a.e. in E 
and (u-t)XEEWI'P(~) we replace u with the upper truncation v-~tXE-~-U)(~]\E. 

The upper R-correction is defined as the infimum of all upper  truncations over 
all t real and E as above. We prove then tha t  the resulting function satisfies the 
weak max imum principle on all open sets 12~ l] with diameter  less than or equal 
to R. 

This is a delicate construction as a priori we take the infimum over an uncount- 
able set of functions. Since each function is measurable, and hence defined up to a 
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set of measure zero, such an infimum does not  really make sense. Thus  we have to  

be very careful in our constructions.  

Then  we apply  similar corrections "from below" to  the modified funct ion to 

make the  function satisfying the weak min imum principles on open sets 12'~ ~ with 

d iameter  less t han  or equal to  R. The  result ing function is locally weakly monotone.  

Next  we prove tha t  passing to the limit as R--+0 gives the desired approxima-  

tion. 

Observe tha t  in each step of  the correct ion we get a function v with Vv=O 
on the set {x:u(x)~v(x)}.  This proper ty  is stable when we take the infimum and 

hence proper ty  (b) follows. 

To prove (c) we use the  fact t h a t  the LP-distance of the  R-correct ion from u is 
l imited by the scaling constant  in the  Poincar~ inequali ty which behaves as R. 

The  proof  is quite long and difficult, so we divide it into several lemmas. 

It  is cus tomary  to call the symbols  U and M, cup and cap, respectively. The  
shape of  the symbols  explains the  terminology tha t  follows. 

First  we define the  class of  sets on which we will t runca te  the funct ion u. 

Let  vEWI'P(~) and a E R .  We say tha t  a Borel set Ecl2  is an a-cap set (a-cup 
set) for v if v>a ( v < a )  a.e. on E and (v--a)XEEW~'P(fl). We say tha t  E is a cap 
set (cup set) for v if E is an a-cap set (a-cup set) for v and some a E R .  

Let E be an a-cap set or an a-cup set of  positive measure for v. Since no 

characterist ic  funct ion of  a set of  positive measure  can be in Wol'P(fl), the  value a 
is uniquely determined by the funct ion v and the  set E.  (In fact, it is the essential 

infimum (for a cap set) or essential sup remum (for a cup set) of  v over E. )  We set 

v = ( v - a ) % .  

We say tha t  v is R-capless (R-cupless) if all cap (cup) sets for v of  d iameter  

less t han  or equal to  R have measure  0. 

L e m m a  5.1.  If  uEWI,P(12) is R-capless and 1 2 ' ~  with diaml2~_<R, then 
u satisfies the weak maximum principle on ~ .  If  u is R-cupless and ~ 1 2  with 
diam l~' < R, then u satisfies the weak minimum principle on ~'. Hence any function 
u that is both R-capless and R-cupless is locally weakly monotone. 

Proof. Assume tha t  uEWI'P(~) is R-capless. Suppose tha t  1 2 ~  is an open 
set with d i a m ~ ' < R  and (u - t )  + EWI'P(~~'). I fE={xE~ ' :u (x )>t} ,  then ( u - - t ) X E =  

(u--t)+X~,EW~'P(~) and thus E is a t -cap set for u. Since u is R-capless, IEI- -0  

and thus u<t a.e. on 12 ~. This verifies the weak max imum principle on ~ .  Similarly 

we can prove the s ta tement  about  the weak min imum principle and the final par t  
is obvious. [] 



Approximation in Sobolev spaces of nonlinear expressions involving the gradient 265 

The last l emma suggests tha t  to make the appropriate  corrections, the right 
idea will be to "remove caps and cups". 

First we need to prove some nice properties of cap sets and truncations. 

L e m m a  5.2. Let vEWI,p(12). I r E  is an a-cap set for v, F is a b-cap set for 
v and a<_b, then F \ E  is a b-cap set for v. Hence max{v E, ~)F} : m ~ x { v  E, v F \ E } _ ~  
V E -~-vF\ E " 

Proof. The first assertion follows from the identity 

( v - b ) X F \  E = v F - m i n { v  F, vE}. 

The second one is an obvious consequence. [] 

L e m m a  5.3. Let vEWI,p(f~), R > 0 ,  g be a subclass of the family of all cap 
sets E for v with d i a m E ~ R  and 

Then ~eWo~, ' (a) ,  

(17) 

and 

w = V{vE:  E E C}. 

Vw = VvX{x:w(x)>0} 

(is) Ilwll, <_ CRIIVvlI~. 

Proof. First let us assume tha t  g is a finite family. Then we use Lemma 5.2 
to show tha t  we may pass to a finite disjointed family ~" of cap sets F for v with 
diam F_< R, such tha t  

w = V l v  F :F  E ~ ' } =  ~ v F. 
FE~= 

This proves tha t  wEW~'P(f~) and (17) holds. Fix F e ~ ' .  Then there is a ball 
B(z,  R) in R n which contains F.  The function v F can be extended to a function in 

W~'P(B(z, R)) by setting v F = 0  outside f~. By the Poincar6 inequality (Lemma 2.8) 
we have 

Summing over F E 9  r we obtain 

~l wl ~ dx <_ C R  p ~ IVvl  ~ dx. 
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Now we consider the general case of s Let 

/4 = {max{v E1 .... , v Ek } : E l ,  ..., Ek E C for some k}. 

It  follows from formulas (17) and (18), proved above for finite maxima,  that  U is 
bounded in W~)'P(~). Hence Lemma 2.7 implies tha t  w-~VI4EW(~'P(I~) and there 

is a countable subfamily {El,  E2, ...} C~  such that  {wk}k~__l, 

W k : I n a x { v E 1 ,  ... , V Ek }, 

is increasing and l i m k ~  w k = w .  By the preceding step, 

(19) V W k =  VVX{x:w~(~)>o } and IlWkllp < _ e R l l V V H p .  

We have the a.e. pointwise convergence wk--+w and Vwk--+VvX{x:w(~)>o}. Further, 

w p is a majorant  to IWk-Wl  p and 1~Tvl p is a majorant  to IVWk--VvX{x:~(x)>O}] p. 

Hence by the Lebesgue dominated convergence theorem, Wk--+W in Wol'P(O) and 
(17) holds. Passing to the limit in (19) we obtain (18). [] 

Definition. Let vE  Wa,P(12). We introduce 

- - R  
M e v -~ A { v - v  E : E is an a-cap set for v with diam E < R} 

- ~ v - - V { v E : E  is an a-cap set for v with d i a m E <  R}, 

M n v  = A { v - - v E : E  is a cap set for v with d i a m E  < R} 

~- v - V { v  E : E is a cap set for v with diana E < R} 

:a e R } .  

The function 2~Rv is called the upper R-correction of v. Similarly we define the 
lower R-correction of v as 

M Rv = V { v - - v E : E  is a cup set for v with diam E < R}. 

By Lemma 5.3, v - - I~RvEWI 'P(12) ,  

(20) V M R v  = Vv)c(~:~/%(~)_,(x)}, 

- - R  
and similarly for M a v and M Rv. We easily observe that  

- - R  
(21) E is an a-cap set for v with diam E _< R ~ M a v -- a a.e. on E.  

It  is less obvious than  it perhaps seems to be tha t  the cap sets for the upper  
R-correction of v with diameter  less than  or equal to R are cap sets for v and thus 
removed. Before we prove tha t  the upper  R-correction of v is R-capless (Lemma 5.6) 
we need some partial  steps. 
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L e m m a  5.4. Let vEW~,P(~) and a E R .  Then each a-cap set E for MRv with 
diam E<_R has measure zero. 

Proof. Let E be an a-cap set for /~Rv with diamE<_R. Then M ~ v > a  i.e. 

on E. Obviously t ~ v = v  i.e. on { x : . ~ v ( x ) > a } .  Hence (v--a)XE=(t~RaV--a)XEE 

W~'P(~) and thus E is an a-cap set for v. Now (21) yields M ~ v = a  i.e. in E,  and 
hence [El =0. [] 

(22) 

L e m m a  5 .5 .  Let vEWI 'P(~)  and a E R .  Then 

> a i .e .  on {x :  > a}.  

Proof. We write 

(23) 

Consider sER.  We claim that  

(24) w~ > a 

If s>a, then obviously 

- - R  
wb = M b v , b E R ,  and w = MRv. 

i.e. on {x: w~(x) > a}. 

Thus by (21) 

(25) w a = a  a.e. o n { x E E : v ( x ) > a } .  

Passing to the lattice infimum, Lemma 2.6 and (25) imply that  

wa-=a i.e. in {x:v(x)  >max{a, Ws(X))}. 

Since (x:wa(x)>a} D {x:v(x)>a} we conclude that  

w =v>wo>a i .e .  on { x : w o ( x ) > a }  

which proves the claim. Passing to the lattice infimum in (24) we obtain (22). 

i.e. on E. 0<__ i v -a )  + <_v-s 

[] 

w~ > min{v, s} > min{wa, s}  > a i . e .  on ( x :  wa(x) > a}. 

There is nothing to prove for s=a. Suppose that  s<a. Let E be an s-cap set for v 
with diamE<R.  Observe that  {xEE:v(x)>a} is an a-cap set for v. Indeed, this 
follows from Corollary 2.4 as 
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L e m m a  5.6. Let vEWI,P(f i ) .  Then MRv is R-capless. 

Proof. We continue using the notation (23). Consider t E R  and a t-cap set F 

for w with diam F<R. We claim tha t  if a>t, then (xEF:w~(x)>a} is an a-cap set 
for wa. Indeed, Lemma 5.5 yields the inequality 

0 < min{(wa-a)X{~:wa(~)>a},a- t}  < w - t  a.e. on F,  

and then Corollary 2.4 implies that  

m i n { ( w a -  a)X(x~F:w~(~)>~ } , a- t }  E W(~'P(fl). 

1,p Hence Lemma 2.5 gives ( w a - a ) X { x E F : w ~ ( x ) > a } E W ~  (fl), which proves the claim. 

Thus by Lemma 5.4, I{xeF:wa(x)>a}l=O. We infer tha t  w<_wa<__a a.e. on F.  

Since a>t was arbitrary, we conclude tha t  w<<t a.e. on F and thus IFI=O. The 
proof is complete. [] 

The next important  step is the following lemma. 

L e m m a  5.7. If vEWI,P(~) is R-cupless, then MRv is R-cupless as well. 

Proof. We write 
W ----- M R V .  

Let F be a b-cup set for w with d i a m F < R .  Then 

O<_(b-v)+<b-w a.e. o n F .  

By Corollary 2.4, (b--v)X{~eF:~(,)<b} E W~'P(Y~) and hence {xeF:v(x)<b} is a b-cup 
set for v. Since v is R-cupless, it follows tha t  

(26) v > b a.e. on F. 

Now, let E be an a-cap set for v with d i a m E < R .  We claim that  

(27) v - v  E >b a.e. on FV~E. 

To prove this, we distinguish two cases. If  a>b, then (27) holds as 

v - v ~ ' = a > b  a.e. o n F O E .  

Let us suppose that  a<b .  Then by (26) and the fact that  w<_v-vE-=a a.e. on E 
we conclude tha t  

0 < b-a < min{(v-a)XE, (b - -W)XF}  ~- min{v ~, --W F } a.e. on FNE. 
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Since 
min{v E, -- wF } XFnE = min{v E, --w E } E W~'P ( D ), 

we get from Corollary 2.4 that  (b--a)XFAEEW~'P(~) which implies that  [FNE[=0  
and (27) holds as well. By (26), 

v - -vE:v>_b  a.e. on F \ E .  

This together with (27) yields 

(28) v - v  E >b a.e. on F. 

Passing to the lattice infimum with the aid of Lemma 2.6 we obtain 

w > b  a.e. on F. 

This shows that  I F [ : 0 .  We have proved that  w is R-cupless. [] 

Now we complete the proof of the whole theorem as follows. 

Proof of Theorem 1.3. Let Rk"xa0. We set 

W k = M R k u .  

Write 

Ek:{X:Wk(X)%U(X)} and E = f l E k .  
k : l  

Then from the definition of the corrections it easily follows that  for i> j  we have 
u___< M R~ u___< M Rs u a.e., and hence neglecting sets of measure zero we get inclusions 

By (20), 

Hence 

(29) 

Now Lemma 5.3 yields 

(30) 

E1D E2D .... 

Vwk = VuY~\Ek. 

VWk--+ VuY~\ E in LP(ft) n. 

tlw -ullp < CRk IlVull . 
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We deduce from (29) and (30) tha t  wk--+u in WI'P(~)  and 

Vu-= VuXn\  E a.e. in 12. 

Now, we set 

Then as above we obtain tha t  

(31) 

and 

:--~Rj 
wk,j = M Wk. 

Vwk,j  = VuX{x:~(x)=wk(x)=~k.~(~)} 

(32) lim IIWkj--Wklkp = O. 
j - - ~  

Hence we may find j ( k ) > k  such tha t  

llwk,j(k) -wk]l  = O. 

Set 

U k ~ W k , j ( k ) .  

Then Uk converges to u in WI'p(f~), which is (c). From (31) we obtain (b). By the 

mirror version of Lemma 5.6, Wk is Rk-cupless and by Lemma 5.6 and Lemma 5.7, 
uk is both  Rj(k)-capless and cupless. Hence, by Lemma 5.1, uk is locally weakly 

monotone, and this is (a). The proof is finished. [] 
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