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1. Introduction

In previous work [18], [19], [20], one of the authors introduced a generalized
modulus of continuity of a function f € L?. Like the usual L? modulus of con-
tinuity it is a function of a positive variable a, but depends also upon a measure
o. By suitable specialization of ¢ this generalized modulus (written «, (f;a))
can serve as a measure either of the smoothness of a function or of the degree to
which the function is approximable in L? norm by its convolution with (1/a)k(t/a),
k being a given integrable function. Comparison theorems were proved enabling the
7 modulus to be estimated in terms of the ¢ modulus under certain conditions,
and this enabled several questions concerning so-called direct and inverse theorems
of approximation theory to be studied from a unified viewpoint.

The main reason for writing a new paper on the subject is as follows. In the
cited work, only sup norm estimates (i.e. p = o) were treated in detail, apart
from a remark in [20] that identical inequalities were valid when all norms were
interpreted in the LP sense. While this is correct, examination showed that the
results so obtained were unsharp for values of p other than 1 and oo, in many
typical cases where one would like to apply the method. Thus, for example, although
the theory yielded the sharp Marchaud estimates (see [13], p. 48) for the (sup norm)
modulus of continuity in terms of the second order modulus of smoothness, it
yielded the identical estimate for all values of p. But it is known from work of
A. F. Timan (p = 2) and Zygmund (general p) that sharper estimates are valid
when 1 << p < oo (more details below in § 6, see also [26], p. 121 and [30]).

The clue to overcoming the difficulty was provided by Zygmund’s paper [30].
In this paper (seldom quoted in the literature, although it pioneered a technique
which has since found wide application) Zygmund employed a characteristic method
based upon the decomposition of the Fourier series into blocks of the type Z cie™,
the summation being from 2° to 2"' — 1, to which he then applied a rather deep
inequality due to Littlewood and Paley.
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In order to apply the Zygmund method to our problems, however, some technical
difficulties had to be overcome, since a version of the Littlewood-Paley theorem
valid for non-periodic functions, and in many variables, was needed. This material
is found in Section 3 of the present paper (with some historical comments in 3.7).
Although the results there are not really new, we could not find just the versions
which we needed, with complete proofs, in the literature. Therefore, after some
hesitation, we decided (in view of the decisive importance of these results for our
work) that we had no choice but to include complete proofs, which explains the
length of that preparatory section. The variation we have selected, based upon a
partition of unity, was suggested to us by J. Peetre’s treatment [14] of Besov spaces.

The (sharp) generalizations to LP of the two basic comparison theorems of
[20] are given in § 4. The proofs are arranged so as to obtain the results of [20]
too, somewhat more easily than in the former paper.

In § 5 a result of somewhat different character is proved (and this is another
reason for the present paper), most nearly related to r»embedding theorems» of
Sobolev and others. Actually, our interest in these questions was partly inspired
by a paper of M. Weiss and Zygmund [28] dealing with conditions on the second
order modulus of smoothness sufficient to force absolute continuity of a function.
The technique employed there is nearly identical to that of [30]. Our Theorem 5.3
yields the theorem of Weiss and Zygmund, as well as its higher-dimensional generali-
zation due to John and Nirenberg [6]. The latter is, by the way, also a special case
of the embedding theorem for Besov spaces (see further discussion in § 5, also [25]).

In § 6, we discuss applications and several counterexamples. We have not striven
for completeness, and have concentrated on applications which specifically require
the theorems of this paper (i.e. are not obtainable from [20]). We also remark
here that, although we work in LP(R™), all theorems of this paper remain valid
(mutatis mutandis) in the corresponding spaces of functions periodic in each variable.

2. Definitions and notation

2.1. By R™(m > 1) we denote real Euclidean m-space. We shall always use
the letters ¢ = (§,,...,¢,) and % = (u;,...,u,) to denote points of K™ In
the context of Fourier analysis we shall sometimes prefer, for conceptual clarity,
to speak of another copy R™ of Euclidean m-space, thought of as the dual group
of R™. We shall use the letters x,y to denote points of R™. We write tu for
>yt (similarly tz, etc.), {if]] = (#)'?, and df (similarly du, dx, etc.) denotes
m-dimensional Lebesgue measure.

2.2. By p we mean a positive number (or 4 o0), where always 1 < p < .
LP = LP(R™) shall have its customary meaning, and ||f||, denotes the L norm
of f. By P we always mean the number
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p=min(p,2), if 1 <p< 0,
p=1, if p=co.

2.3. M = M(R™) denotes the set of bounded complex measures on the Lebesgue
measurable sets of R™ We use Greek letters (especially A,u,7,0,0,7) to
denotes elements of M, and V(o) denotes the total variation of o. As usual,
we use & to denote the Fourier (- Stieltjes) transform of ¢, defined by

&(x) = / e do, .

W = W(R’”) denotes the Banach algebra of Fourier transforms of elements of M,
where ||8]lp = V(o) and »multiplications is ordinary (pointwise) multiplication,
corresponding to the convolution yproduct» {(written =) in the isomorphic ring M.
By abuse of language we also write, for f € I1, J’ to denote the usual Fourier trans-
form (i.e. the Fourier transform of the measure fdf). We also write fx o, where
fE€L?P and ¢ € M, to denote the function whose value at ¢ is / fit — wydo,. It
is defined a.e. and satisfies

1f # olly < V(o)lIfll, -

Occasionally, tempered distributions will enter into the discussion, and we follow
the standard notational conventions of the L. Schwartz theory (i.e. % denotes

convolution and 7' the Fourier transform of .

24. For ¢ €M and @ >0, oy denotes the measure defined by o (E) =
o(a72E) for all measurable sets E. This is equivalent to f fdog = f (S.f)do for
all bounded continuous f, where (S,f)(t) = f(at), and also to &,(x) = é(ax).
For a function f we shall also write f, to denote the function whose value at
t is a"f(t/a). This is in conformity with the preceding definition, since for f € Lt
we have ﬁa)(x) = fA(ax). ¥or a distribution 7', T is defined in the same way,
ie. Ty =T8S,

2.5. For f€LP, ¢ €M and a >0 we define

D, (f;a) = If * ol (the o,p deviation)
“’«np(fQ a) = sup D, (f;b) (the o,p modulus) .
0<b<a

It is not hard to prove that for fixed o,p and f, with 1 <p < o, w, (f;a)
is a non-decreasing and uniformly continuous function of @, bounded by V(o)|fl,.
In most cases of interest o(E™) =0, and then w, (f;a)—>0 as a—0. These
conclusions are valid also for p = oo, provided f is uniformly continuous on R™.
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3. Inequalities »of Littlewood-Paley type»

3.1. A special partition of unily.

Lemma. There exists a function @ on E™ which is infinitely differentiable at
all points, and such that further

(i) Dx) >0 for 1/2 < |z| < 2, and D wvanishes elsewhere,

i) > O@2x)=1 if x+£0.

Prozj)f. Let h(a) denote a function defined for 0 < a << o and equal to one
for 0 <a <1, to zero for @ > 2, strictly decreasing on [1, 2], and infinitely
differentiable. Then @(x) = h(|z|) — h(2|z|) satisfies the requirements. Observe
that in the series (ii) at most two terms are different from zero, for each «x == 0.

® is the Fourier transform of a certain function ¢ which is infinitely differen-
tiable, and ¢ and all its partial derivatives tend to zero at infinity more rapidly
than any negative power of |¢].

We shall, throughout this paper, write ¢; to denote @pj, ie.

(pj(t) = (P(zj)(t) = 2-Mj(p(2_jt) , J=0,x£1,... (1)
Observe that

px) = D2z), j=0,+1,... (2)
We shall also require the relation, for positive integral v,

S G2x) =1 for 27 < 2] <2, (3)
f=pis
which follows from (ii), since for « in this range, and |j| > r, ®(2/z) = 0.

In the analysis which follows, we shall always suppose the dimension m and
the choice of a particular @ with the properties enumerated in the lemma to have
been fixed, and treat as »constantsy numbers which depend only on m and @.

The reader wishing to move on to § 4 need only consult sections 3.2 and 3.3.4
for the essential preparatory material.

3.2. THEOREM. Let T' be a tempered distribution in R™, and let ¢; be the funclions
defined in 3.1. Suppose moreover, for some p (1 <p < ) T » ¢; belongs to L* for
each j and

© / plp © _
2 (fiwemoraf = S iwagp—p< . w
where § s defined by
p=min(p,2), f 1<p< o, (2)
p=1, if p= .
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Then T is a function, which is representable in the form f + P, where P is a poly-
nomial and f € L?, moreover |f|E < O, B, where C, depends only on p.

Remarks. 1. Note that T #¢; is meaningful, and is a function of class €%,
because ¢; is the Fourier transform of an infinitely differentiable function with
compact support.

2. Observe that any polynomial P satisfies P * ;=0 for all j.

The proof of the above theorem is rather long, and will occupy most of this
section. The essential step is the following inequality.

3.3. LemmA. Let f € LP(R™), where 1 << p < oo and suppose moreover that the
spectrum of f (i.e. the support of its distributional Fowrier transform) is compact
and does not contain the origin. Then, if ¢; denote the functions defined in 3.1,

/lfl”dt < A’,?f (_i (f = )"y dt (M

where A, is a constant depending only on p.
It is sometimes convenient to write the inequality in the form

i1, < AJF,, (2)
where
Ft) = (_Z [(f = @) ). (3)

We emphasize that, in contradistinction to Theorem 3.2, in the present lemma
we presuppose 1 < p < co.

3.3.1. Let us define

Gx) = > ¢p(2/x)*, z€R™.
Then, for x 3 0, G(x) >b* where b is the (positive) minimum of ¢@(x) for
3/4 < |#| < 3/2. Hence ¢/G vanishes outside the »spherical shelly {1/2 < || < 2}
and is infinitely differentiable on R™, therefore it is the Fourier transform of a
certain function y € LY(R™). One readily verifies, using the fact that G(2/z) = G(x)
for all integers j,

> e@a)pRir)y =1, z#£0. (1)

j=—
It is easily seen from (1) that if ¢ is a positive integer
> p2r)p(2ix) =1, for 277 < |z < 2. (2)
Jj=-r

We shall consistently write y; to denote the function Yy
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3.3.2. Fix a positive integer r, and let E = E, denote the (27 - 1)-dimensional
Hilbert space of complex sequences ¢ = (c_,,¢_,.1,...¢,) with the usual ©* norm

el = (3l

By L*(R™, E) we denote the Banach space of (vector-valued) functions ¥, defined
in R™, taking values in Z, measurable, and such that

lp
W) = IFlpm, ) = ( /HF(t)H% dt)
Rm

is finite. We denote by F,(f) the j* component of F().
We now define a function K whose domain is R™ and whose value at the
point ¢ is the linear map (functional) from E to the complex numbers defined by

K(tye = > wit)e;, c€E. (1)
j=—r
Consider now, for F € LP(R™, E) the map
F— / K(t — w)F(u)du (2)

We propose to show that this is o bounded map from L*(R™,E) to LP(R™) if
1<p<< o0, te

( / ; / Kt — wFw)dul

where A4, depends on p, but not on F nor r. To establish this it is enough, by
virtue of Theorem 2 of [1], to verify: (i) that (3) holds for some particular choice
of p > 1 (we shall make the choice p = 2, asis usual when employing this method),
and (ii) the estimate

1/p
w)s%WMUV (3)

Kt — u) — K@)lidt < C (4)
jt] = 4lu]
for all w € R™. Here || denotes the operator norm, and C must be independent

of %. The constant A, in (3) can be determined in terms of C, 4,, and p. As
for (i): for p = 2, the left side of (3) is

{103 e o o

and by Parseval’s identity the square of this expression equals (we assume here
the Fourier transform suitably normalized, so we may suppress factors of (27)"):
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|3 penb@lde < [ (3 BRI FEP d <

J=-r
<20 [ (3 F@P) d =20 / \Fy(0)f dt = 201° / P de

where M = max [ ()|, since for any a there are at most two values of j such
that 9(2/z) # 0. Taking square roots gives (3), with p = 2. As for (ii) (i.e. the
proof of (4)) this is harder. We have

IKG— 0~ KOF = 3 Iyt —u) — p0f° < )
< 3 2ip - u) -y < 3 27 2 Vg

if [f] > 4|u|, where @(x) denotes the maximum of |grad y(f)| in the spherical
shell {3x/4 << |t| << 5x/4}. Since p and all its partial derivatives vanigh at infinity
faster than any negative power of [t|, @ is bounded and, for a suitable constant C,

Qx) < Ox™tm¥D | 5 >1,
Therefore, writing
R(t) ={ 2 27mhiQe|y)* e (6)
j=—w

the series on the right converges for [f| % 0. Now, in order to prove (4) we have
only, in view of (3), to establish, for a > 0

R@)dt < Ca™* (7
Za

with C independent of a. Now, replacing ¢ by 2¢ in (6) and making the change
of variable j—j 4+ 1 we see that

R(2t) = 2="*DR(t), 0£1t€R",

so that S(f) = [{{"T'R(f) satisfies S(f) = S(2¢) and since S(¢) is bounded on
1 <t <2 it is bounded on [f| > 0, in other words

R(t) < Colt|™™Y | 0£t€R™.
This implies (7), and thus we can now assert that (3) holds.
3.3.3. We can now easily prove Lemma 3.3. Indeed, suppose f € LP(R™) and
the spectrum of f omits neighborhoods of zero and infinity. Fix an integer r so

large that the spectrum lies in the open set {277 < [z| << 2}. We now apply the
result of the previous paragraph to the (vector valued) function ¥ whose value
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at the point ¢ € B™ is {(f* ¢;)(¢)};~_,. Observe that fK(t — u)F(u)du is just
the convolution of f with 37 ¢ *y;, whose Fourier transform is

2 p(2x)p(2a)

j=-r

and this equals 1 for 277 < |z| < 2", as remarked in 3.3.1. Since the spectrum
of f is contained in the interior of this set, we conclude that

/K(t — w)F(u)du = f(t) a.e.
Applying 3.3.2(3) we get

i lp
e < 4{ [ (3 s poread”.

J=-r

completing the proof of Lemma 3.3. (It is essential to observe here that the bound
4, obtained in the previous paragraph did not depend upon the choice of the integer

7).

3.3.4. Actually we require not Lemma 3.3 but a corollary of it, as follows:
Under the hypotheses of Lemma 3.3, we have

) * plp)plp
[isra< 4l ([ s mporan)”| (1)

where A, depends only on p.
Indeed, writing f; for fs¢;, we observe, using the elementary inequality

Ca)y<>a, %=0,0<a<l,

that (O |fi(t)")P* < S |fi(0))P for p < 2. Therefore, the right side of (1) majorizes
that of 3.3(1) when p < 2.

On the other hand, when p > 2 we have, applying Minkowski’s inequality
with exponent p/2

so that, also in the case p > 2, (1) is a consequence of 3.3(1).
Observe that any choice of A, which works in 3.3(1) also renders (1) valid.
Also, (1) can be written more compactly as

B < 4,35 1 5 gE @)

So far, (2) is established only under the restriction 1 < p << co. However,
since f = > f*¢; (the series containing only finitely many non-zero terms, under
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the stated hypotheses about f), (2)is valid trivially for p = 1 and p = o« (recall
that we interpret $ as 1 in the latter case). More generally, Minkowski’s inequality
gives

iy < 3 1F * gl - 3)

It is worth while to compare (2) and (3): for 1 << p << o, (2) is stronger, and
is the key to the »sharp» results which we shall obtain in the present paper, whereas
an analogous use of (3) would lead only to the results in [20] (see § 4.3.1 below).

3.4. We can now complete the proof of Theorem 3.2. By hypothesis, we have
T + ¢; € L” for each j. We claim that for arbitrary % and =, k <mn,
ntl

13T 5 pff < 4,3 1T g - (1)

To prove (1), let ¢ =>" , T * ¢;, and note that g € L* and that the spectrum
of g is compact and does not contain the origin. Hence we can apply 3.3.4 (2)
to g and obtain

n+41

lalf < 4, 3o = 9 = 4,3 o+ 9} 2)

The last equality holds because ¢;*¢; =0 for |i — j| > 1. Similarly, for each
¢+ the sum

DT wgegi=g*o;
=k
can contain at most three non-vanishing terms. Hence
lg = @ll, <3C T *ql,, i=0,+1,..., (3)

where C = |¢g|l;. Combination of (2) and (3) gives (1) (with a new constant 4,)-
Using (1) we see that

2. T g
is a Cauchy sequence in L” if the hypothesis of Theorem 3.2 is fulfilled. Let f € L
be the limit of this sequence. Clearly
IfIE <4, 2 1T « g5

From the definition of f it follows that (I' — f) x ¢; = 0 for all j. This shows
that the (distributional) Fourier transform of 7 — f is supported at the origin.
But a distribution with support at the origin must be a finite linear combination of
the Dirac functional and its derivatives ([16], p. 100), hence T — f is a polynomial.



100 ARKIV FOR MATEMATIK. Vol. 9 No. 1

Bemark. It is evident that T cannot have two distinct representations of the
form f+4 P, except in the case p = oo when the representation is unique only
modulo an additive constant.

3.5. We wish here to make an observation that is important for applications
later. The constant 4, in Lemma 3.3 and C, in Theorem 3.2 depend upon the
initial choice of @ (and so of the ¢;). However if we replace @(x) by P(ax) (where
@ > 0), so that the system {@pj)} becomes replaced by {@.s5}, Lemma 3.3 and Theorem
3.2 remain valid, with the same constants. This is seen by simply replacing f by
Jaw (resp. T by T,) and making the change of variable ¢— t/a.

3.6. In the case 1 <p < 2 one could prove 3.3.4(2) using the Riesz-Thorin
interpolation theorem instead of the Marcinkiewicz interpolation theorem on which
the proof above is based (see below). The Riesz-Thorin theorem ([31], p. 95)
implies that the set of values of p for which a linear operator is continuous from
LP(X) to L?(Y) (X and Y are arbitrary measure spaces) is an interval. To deduce
3.3.4(2) from this theorem we observe that

(2 * gl

is the LP-norm of the function

FG.8) =f+gl)

defined in Z X R™, where Z denotes the set of integers. Now it has been proved
above that the operator U defined by

U(f) = f = ot)

is a bounded operator from LP(R™) to L?(Zx R™) for p = 1 and 2. Hence, by the
Riesz-Thorin theorem, 3.3.4(2) holds for 1 < p < 2, and in fact with a constant
A, independent of p. On the other hand, the proof given above, based on the
Marcinkiewicz interpolation theorem shows only that A4, is bounded in each
compact subinterval of 1 << p < co.

3.7. Hustorical comments concerning Theorem 3.2. The prototype of Theorem
3.2 (or Lemma 3.3), as well as their converses, is found in Littlewood and Paley
[10}, and is in terms of Fourier series rather than integrals. The original proof
utilized analytic functions in a way that made extensions to several variables
seem quite difficult.

The first to prove an inequality of this type by real variable methods was E. M.
Stein [23]. A simplification and extension of Stein’s result was later given by
Hormander [5]. Hérmander’s method was based on a combination of the Calderén-
Zygmund technique for estimating singular integrals and the Marcinkiewicz inter-
polation theorem. It would have been possible for us to deduce Theorem 3.2 from
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Theorem 3.5 of Hoérmander’s paper dealing with so-called »mixed L? estimatesy
(he employs a continuous, rather than a discrete parameter), or else to paraphrase
the proof of the latter theorem in our context. However, we followed a somewhat
different path. Namely, as remarked by J. Schwartz [17], and independently
Benedek, Calderén and Panzone [1], (L?, L?) mixed norm estimates involving a
parameter can often be most conveniently dealt with by proving an L? estimate
for vector-valued functions (with values in a suitable L? space), acted on by con-
volution with operator-valued kernels. They observed that the theorems of Marcin-
kiewicz and Calderén-Zygmund, the basis of Hormander’s method, extend to
this more general context. Our Theorem 3.2 is essentially taken from Peetre’s lecture
notes [14]. Peetre based his proof on an operator-valued »Mihlin-type theorem»
which we could not locate in the literature; its verification would involve an analysis
similar to that given above.

There is by now a rather considerable literature dealing with extensions of the
Littlewood-Paley theorem, and the interested reader is referred to [9], [11],
[14] where also further references may be found.

4. Comparison theorems

4.1, We begin by recapitulating and extending some basic lemmas from [20],
contenting ourselves in part with references to that paper and others for proofs.

4.1.1. We recall that if ¢ € M(R™), then the map f-—o*f from L? to L?
is continuous, with bound not exceeding V(o).

4.1.2. If we consider a tempered distribution ¢ which is not necessarily a
bounded measure, the inequality |lo = fll, < A||fll, with 4 = 4, independent of
f, may hold for all functions f€ L?. For a discussion of such distributions see
Hoérmander [5]. The Fourier transform &(x) is then necessarily a bounded
measurable function, called a Fourier multiplier (associated with the exponent p).
It is known (see [5]) that the class M, of Fourier multipliers associated with the
exponent p is identical with M, (p’ = p/(p — 1)), moreover M, c M, for
1 <p <q < 2. The remark in the preceding paragraph implies W c M, for all
p > 1. It is known, moreover, that M, = M _ = W, and M,= L*. It is the fact
that the elements of W are in all the M, that explains the important role which
bounded measures and their Fourier transforms play in the present investigation,
as well as in studies of L* inequalities relating differential operators ([3], [4], [12]).
The function sgn x on R! is the classic example of a function not in W which is
nevertheless in M, for 1 < p < o, the corresponding convolution operator
being the Hilbert transform.
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4.1.3. If 0,7 € M(R™ and & divides 7 in W, then for 1 <p < oo
'D‘I P(f; a) S O‘Do,p(f; a) (1)
HAfi0) < Co, (f;a) (2)

for all f€ L?. Here C can be taken as the W-norm of any element F € W such
that 7 = 6F (F is not always uniquely determined). These inequalities follow
easily from 4.1.1 (cf. [20]). In view of the discussion in 4.1.2 they remain valid
even if ¢ divides 7 in M - In this case C' must be taken to be the M ,-norm
(see [5]) of the function F. We remark, too, that if ¢ is a tempered distribution
such that & € M,, then also d(ax) € M,, and so D, (f;a) and o, ,(f;a) can
still be defined in the obvious way for f belonging to LP?; likewise for 7, and
(1), (2) are then valid providing ¢ divides 7 in M,.

For conciseness we shall state our theorems below in terms of elements of W
rather than M, but shall indicate some results which are valid in the wider context,
as these are useful in some applications to approximation theory.

Finally, the analogues of (1), (2) hold when 7 has a representation >7_, 0.6
where g; are elements of W (or, more generally, of M »); in this case one has n
summands on the right side of the inequality (cf. [20], p. 286).

wl’s

4.1.4. A continuous function F on R™ is said to satisfy the Tauberian condition
if, for every x with |x] = 1, there exists ¢ > 0 such that F(cx) # 0, in other
words, if F takes a non-zero value on every closed half-ray. (If, in particular,
F(0) £ 0, F satisfies the Tauberian condition trivially.) By way of orientation

we may remark that, for f € L', the Tauberian condition on f(x) is necessary and
sufficient that every g € L' with §(0) = 0 be approximable (in L' norm) by
finite linear combinations of the functions f(ct 4+ u), where ¢ > 0 and » € R™.
(This is a simple consequence of Wiener’s Theorem.)

4.1.5. Levma. If F is continuous on RB™ and satisfies the Tauberian condition,
0 > 0 s arbitrary, there exist positive numbers dy, < d,...<<d, such that

SR >0, 8< o] <16

Proof. Let 8 denote {z:|z| =1} and F, for ¢ > 0, the function on §
defined by F (x) = F(cx). The hypotheses imply {F,},., have no common zero
on S, i.e. the closed subsets K, of S defined by E, = {z|F (x) = 0} have an
empty intersection. Therefore, since S is compact, there is some finite subset
E, ,....,E, ofthe E, whose intersection is empty. This means that G(x) =
> i1 F(cz)| is positive on S, and hence by continuity remains positive in the
spherical shell & << |z| <1/b if b is chosen sufficiently close to 1. Therefore, if
k is chosen large enough, >f_ ,Q(b/z) is positive for 8 < |x| <1/, which
implies the assertion in the lemma.
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4.1.6. Lemma. If ¢,7v € M(R™), & satisfies the Tauberian condition and <
vanishes in neighborhoods of the origin and infinity, then for f€ LP (1 <p < )
and a >0,

o, (f;a) < Ao, (f; Ba) 1

where A, B depend only on o and T.

Proof. By Lemma 4.1.5, there exist positive d; such that > |6(d;x)]| is positive
on the (compact) support of 7, therefore (cf. [20], p. 282) 7 belongs to the ideal
in M generated by og,,.-.,04) Therefore

'D‘[,p(f; a) —<—~ ZlAjDG,P(f; d]a) S ZlAjwo,p(f; d]a) S Awa,P(f; Ba/) H
J= J=

where B = maxd; and A = > A, depend only on ¢ and v. For 0 <b <a
we have, therefore,

D, (f;b) < Ao, (f; Bb) < Aw, (f; Ba)

which implies (1).

4.2. As in [20], we wish now to remove the restriction that 7 in Lemma 4.1.6
vanishes in a neighborhood of infinity. The method used in [20] leads to an estimate

of the form
Ba
dv
o, (f;a) < A/wt,,,,(f; v) 5 - (1)

0

(The formulation in [20] was in terms of D rather than , and infinite sums
rather than integrals were employed, but these differences are not essential.)
The essential novelty of the present paper, the technical backbone of which is
the following lemma, is to replace (1) by a finer estimate which takes better account
of the concrete choice of p.
Lemma. If o, v € M(R™), é satisfies the Tauberian condition, and T wvanishes
©n a neighborhood of the origin, then for f€LP (1 <p < ) and a >0

Ba

o, (f;0f <A fw,,,p(f; v)

0

_ dv
P
v

3 (2)

where A , B depend only on o, and p.
Proof. Observe that f=x 7, is in LP. By 3.3.4(2) in conjunction with the
remark in § 3.5, we have, for any b >0

If = T(a)HIZ < AP. i If * T(a) * (p(2fb)HI; ’ (3)

j=—o
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where 4, depends on p only (we emphasize the fact that it does not depend on
b). Now, the Fourier transform of g, is supported in 277~'%6~" < Ja| < 277+,
By hypothesis 7 vanishes in a neighborhood of the origin, say for || < ¢, hence
7 vanishes for [z| <cfa and s0 7y * @eiy =0 if 27767 <cla. Let us
make the choice b = 2a/c, so that the latter condition is fulfilled for j > 0. Then,
on the right side of (3) we need consider only negative values of j, and the sum
becomes

—1 -1
] z IIf = T(a) * (P(zib)Hg < V(T)Ff Z [1f * Peinllh - (4)
j=—w j=—o
Now, the summands on the right can be estimated by Lemma 4.1.6, since the
measure @dt (which here plays the role of = in Lemma 4.1.6) has a Fourier trans-
form which vanishes in neighborhoods of the origin and infinity. We get

IIf * (P(zjb)Hp < Awa,p(f5 B2jb) (5)

where 4, B depend only on ¢ (p being considered fixed once for all). Finally,
from (3), (4), (5), and recalling that b = 2a/e,

If * 1@l < A, V(z)P ;Aﬁwa,p(f ; Bem'27mHg)P = Cln;w”( £ 0,27 )P,

where C; and C; depend only on ¢, v and p. This completes the proof, once we
take account of the elementary inequality

S < [ v

for functions y continuous and decreasing for 0 << A < o, and apply it to
P(A) = o, (f; C.2 ).

Remark. Observe that, using 3.3.4(3) in the above argument in place of 3.3.4(2),
we obtain the weaker estimate (1) instead of (2). This remark has some methodo-
logical interest, since (1) is for many purposes as useful as (5), but does not require
for its proof the deep inequality 3.3.4(2). Moreover, the same method of proof
establishes (1) not only for LF(R"), but for a large class of Banach spaces with

translation-invariant norm (cf. Shapiro [22], Chapter 9).

4.3. THEOREM. Suppose o, v € M(R™), & satisfies the Tauberian condition, and
there exists F € W such that 7(x) = é(x)F(x) for x in some neighborhood of the
origin. Then for fEL? (1 <p < ©) and a >0

Ba
_ ' _ dv
o, (f; @) < A/w,,,,,(f; vy (1)

0

where A and B depend only on o, 1, and p.
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Proof. By hypothesis 7 — éu + » where u,v € M and ¥ vanishes in a neigh-
borhood of the origin. Then for f€L? and a > 0

D, (f;a) <D, (f;6)+ D, (f;a) < V@D, (f;a) + D, (f;a) <
< Vipo,, (f;a) + o, (f;a).

Estimating o, ,(f;a) by the previous lemma, and observing that

the proof is complete. (Note that B is actually independent of p.)

Remarks. Since the restriction to any compact set of a Fourier-Stieltjes
transform coincides with the restriction to that set of the Fourier transform of an
integrable function, it would involve no loss of generality in Theorem 4.3 to require
F to be a function of the latter type. On the other hand, as an examination of the
proof shows, Theorem 4.3 remains valid if we only require that F be an element
of M, (see 4.1.2). We will use this in 6.4.

4.3.1. In view of the remark at the end of 4.2, a correct theorem is obtained
when the exponent § is dropped on both sides of 4.3(1). This is the comparison
theorem of [20]; its proof along the lines of the present paper (i.e. based upon a
partition of unity) is perhaps simpler, or at least more instructive.

To see that the present theorem is stronger we observe that for r > 1 (write
o(a) = o, ,(f ; )

3 dv 1jr . d?) 1/r
( / o) 7) gw(a)“*"/'( / 0 7;) ,
0 0
and since w(a) is increasing

2a

2a
dv dv
w(a)log2 < [ w(v) o < | o) > -
a 0

Hence

a 2a

v\ L dv
o) ) <Oog2) T [ ow) 5,

0 0

which, with r = §, proves the assertion. It is easy to see by examples that except
for p=1 (i.e. p =1 or o) an inequality in the reverse direction cannot hold,
80 that Theorem 4.3 is stronger than the comparison theorem in [20].



106 ARKIV FOR MATEMATIK. Vol. 9 No. 1

4.3.2. Just as in [20], we may state in place of 4.3 a more general theorem
in which the role of ¢ is taken over by a set Tiseees O of measures such that
> 8(x)| satisfies the Tauberian condition, and 7 agrees in a neighborhood of the
origin with an element of the ideal in W generated by &,,...,d,. On the right
side of 4.3(1) we then get an estimate with Z;’;lwaim(f ; v)P in place of o, A5 )P,
We suppress the details, as the necessary modifications in the above argument
are similar to what was done in [20]. This kind of generalization, important for
certain applications, applies equally well to the remaining theorems in this paper,
and shall henceforth be taken for granted.

4.4. THEOREM. Suppose o, v € M(R™) and & satisfies the Tauberian condition.
Let P be a function which is positive-homogeneous of degree r > 0 (i.e. P(bx) =
b P(x) for b > 0), and suppose there exist F, G € W such that F(x) = P(x) and

G(x)P(x 7(x) for all x in some neighborhood of the origin. Then, for f € LP

@) P(x) =
1<p<0) and a>0

o0

Pl s = 4 / [min (1, (afo)) o, ,(f; I % 1)

0

where A depends only on o, v and p.
Proof. Write v =pu +» and u(x) = (x)@( ), where u, », 0 € M(R™), and

7 and 0 vanish in neighborhoods of the origin and infinity respectively. According
to Lemma 4.2, o, ,(f,a) can be estimated by the integral in (1) taken only from
0 to Ba. To estimate w, (f,a) we use Theorem 3.2 and obtain

Hf* M(“)Hg 'S AP Z Hf * lu’(a) * (p(2jm)||I; ’ (2)
where ¢ is at our disposal. Since fi(z) = 0 for large , we may choose ¢ such that

fr@)(®) * Ppica@) = fi(ax)p(2caz)

is identically zero for j < 0. This choice of ¢ depends (ultimately) only on the
measure 7. For j > 0 we rewrite the last expression as follows:

fi (@) P pien(®) = Plaz) Baz) §(Peaz) = O, 27 b(az) §(2cax) ,

where g € L'(R™) is defined by

Hence

LS = Mo * Pieall, < C1 277 f % 6(«1) * Jdealp < C, V(0) 277 f = Jicall, <
S C12 V( ) 2_”(’06,1) f’ 2 O3a’ 3
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by Lemma 4.1.6, since g vanishes in neighborhoods of zero and infinity (here and
in the following all constants depend (ultimately) only on o, = and p). Using
this estimate in (2) we get

If * ulll < Cs Zf‘ﬁp o, (f; 27Csa)? . @)
s

To estimate the last sum by an integral we use the fact that for any increasing
function w(v) and 4 >0
2j+1

2774 (27) < (log 2)~" 24 / w)v 4 dv,

2J
and hence

> 277 w(2)) < O /w(v) vy .
=1
2
Applying this to the right side of (3), with 4 =rp and w(v) = w,, (f; C,av)? gives
H —r5—1 = a ® — dU
Wf*pelh <O [ o7, (f; Cyav)f dv = Cy ” w, (f;v)F - =

2 Cya

oo . pd
<0 [ [min (1. (5] )0 %

Since the last expression is increasing in @, it majorizes o, ,(f;@)’. Combining
the estimates of o, (f;a) and w, (f;a@) gives the result, since

o, (fi0) <o, (fia)+ o, (f;a).

Remark. In applications, it is often convenient to write the estimate for o,

P
in the more extended form
P P dv Ty P 71
o, (f30) <A [ o, (f;0) - + Ad® [ o, (f;0)F 077 dv. (4)
0 a

Observe that, since w, (f;v) is bounded, the upper limit oo in the last integral
can be replaced by 1 if we add on a term Ca? — here C will depend of course
on f (more precisely, on ||f|l,) but this is of little consequence in most applications.

It is instructive to compare (4) and 4.3(1). The first term on the right of (4) is
(apart from a constant factor) identical with the right side of 4.3(1), so that in a
situation where Theorems 4.3 and 4.4 are both applicable, the latter can never yield
a better estimate for o, » than the former. Of the two terms on the right of (4),
either one may (under appropriate circumstances) have a larger order of magnitude
than the other as a —0.
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5. An »embedding theorem» for distributions

5.1. In order to state our next theorem we introduce some further notation.
Let &« = (%;,...,,) denote a multi-index whose coordinates «; are non-negative
integers, and write |x| for > |x]. By D* we mean the differential operator
(o/at,)*r ... (9/ot,)*m. We recall that the Sobolev space W;,’)(R'") is the set of functions
f in L?(R™) such that all the derivatives D*f with |x| <s (understood in the
distribution sense) are functions of class Lf. If 1 <p << oo, WI(,“’) can also be
characterized as the Banach space obtained by forming the completion of the set:
of functions g which are infinitely differentiable and have compact support, with.

respect to the norm
lip
lgll = {/(] é [D%F) dt}

(see, for example, [8] or [29]).
The prototypical rembedding theorem», due to Sobolev, states that W;f) is

contained in Wg’), the injection map being continuous, providing
1

§ — 7

1
q P m
(the right side being assumed positive). An important corollary is that an element
of W;f), after correction on a set of measure zero, has r continuous derivatives
in the ordinary sense, providing r < s — m/p . Results of this kind are important
in applying the methods of functional analysis to the solution of e.g. elliptic boundary
value problems. A vast literature has sprung up generalizing in numerous ways
Sobolev’s results; for our purposes here the most relevant work is that of Besov [2],
in which partial derivatives are replaced by finite differences, and Peetre [15].

5.2. From the point of view of this literature, our two theorems in § 4 are of
the nature of »embedding theorems» in the sense that for measures o,v with
(0) = 7(0) = 0 the o,p modulus and the z,p modulus of a function are (as
reflected in their behavior for small values of the parameter a) in some general
sense measures of the »smoothnessy of a function f in L2

5.3. THEOREM. Suppose o € M(R™), & satisfies the Tauberian condition and
s is a positive integer. Let 1 <p < oo, and suppose f€ LP and

1

_da
f [0~ 0, ,(f; ) o < oo (1)

0

Then the distribution D*f is a function of class LP? for each « such that |o| <s.
In other words, f belongs to the Sobolev space WI(,’).
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Remarks. This theorem is very similar to a case of the yembedding theorem» for
Besov spaces, namely in the usual notation B} ; c Wz(:)' In fact the latter result
is a consequence of our theorem, providing we use measures oy, ..., 6, In place
of o, as discussed in 4.3.2. The embedding theorem for Besov spaces is proved in
Besov’s paper [2] as well as in [14], [15], [25]. Peetre’s proof in [14] has served
as our model in the following proof of Theorem 5.3. We remark that it would be
easy to extend the formulation and proof to cover non-integral values of s; in
this respect we do not strive for maximum generality. :

Proof of Theorem 5.3. Let K(x) be infinitely differentiable on R™, equal to
one for || < 3 and zero outside a compact set. Define k € L'(R™) by k=K,
so that k has integrable derivatives of all orders. Then f« k € C* and D*(f * k) =
J & (D*) € LP(R™) for all «. Therefore, it is sufficient to prove that the derivatives
up to order s of g =f— (f+k) are in L?. Now, g isin L? and the support of
its (distributional) Fourier transform lies in |z| > 2. Let now |x| <s, and write
T = D*3. We propose to apply Theorem 3.2, and to this end wish to show

S ITrglE <. (2)
j=—w
Now, T x¢; =g+ (D%,), and
Da(pj = 2—][&]6(2})
where 6 = D%p. Therefore v
1T g, = 277g % Ojll, < 427 o, (g ; 2/B)

by Lemma 4.1.6, since the Fourier transform of the measure dv = 0(t)d¢ vanishes
in neighborhoods of zero and infinity. Moreover, the Fourier transform of 0))
vanishes for || > 2 when j=0,1,... and so g * 0(2,') is zero for these values
of j. Hence

> T »gll < AP 3 2P o (g5 27 "B (3)
j=—w i=1
Using the elementary inequality

g—i+1l

21‘
ir —1i —r—1 .
27 w(2 )§<10g2>/w(v)v dv, 1=1,2,...,

92—

valid for an increasing function w, and s > 0, and recalling that [x| <s, we
see that the right hand side of (3) is bounded by a constant times

1

'/‘wa,P(g ; Bu)P v P~ gy .

[
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Finally, since g =f— (f* k), we have
@,, (9 5 0) < o, (f; @)1 + [[&],) -

Thus, in view of the hypothesis (1), (2) holds.

Therefore, by Theorem 3.2, T = D%g € L? (observe that the polynomial part
of D*¢ must be zero, since g(x) = 0 in a neighborhood of the origin). This implies
the conclusion of Theorem 5.3.

6. Examples, applications and remarks

6.1. To simplify the computation of the Fourier transforms involved, we illustrate
our theorems (4.3, 4.4 and 5.3) mainly in R' and for measures of very simple
structure. Our emphasis will be on clarification of the previous theorems, rather
than novelty as such. The measures we shall principally employ are the following.

(a) x, where k€L' and fk(t)dt =1, is defined by doy = & — k{t)dt
where § is the »Dirac measures. The o, ,p deviation of f € LP is then the L?
norm of

f(t) — / ft — awyk(u)du = f(t) — f F(t — w)Ak(Aw)du

where A = l/a is a »large» parameter. Hence the «;,p modulus of f measures
the error of approximation to f by a standard type of convolution integral with
skernely k, depending on a parameter A. It will be convenient below to write
k,(t) for Ak(Af).

(b) B., where n is a positive integer, is the purely atomic »binomial measure»,
with »massy (— 1) (:’;) at the point j (j=0,1,...,n). The f,,p modulus

of f€ L? is then the ymodulus of smoothnessy of f of order n, relative to the L?
metric. In particular, the B;,p modulus is the usual L? modulus of continuity,
and shall be denoted in this section simply by w,(f ; ), whereas the $,, p modulus
shall be denoted by w}(f;a). Finally, observe that all the measures o, and g,
satisfy the Tauberian condition.

We turn first to the deduction of the results mentioned in § 1.

6.2. Estimation of w, from wy. We apply Theorem 4.4 with o = f,, 7= f;.
Here z(x) = 1 — ¢~ and the theorem is applicable with P(z) = z, r = 1. From
4.4(4) we get

s !
- _d - R -
w,(f; a)? < Al_/ wi(f;0)? 7” + A2a”/ w(f; )PP do 4 A;aP
0

a
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where the various constants A; are independent of a. In particular, if w¥(f;a) =
O(a) as a—0, we see that w,(f;a) = O(a(log 1/a)'F). This is the theorem of
Zygmund referred to in the introduction. Zygmund [30] constructed examples to
show that the exponent 1/ of the logarithmic factor cannot here be replaced by
any smaller number. Thus, indirectly, we have evidence of the »sharpness» of Theorem
4.4, and of Theorem 4.3 upon which it is based.

6.3. Relation of wy to the derivative.
Let us apply Theorem 5.3 with ¢ = f, and s = 1. We conclude that if, for
some f € LP,

/a_p_lw§(f; a)? da < o, (1)

then f has a distributional derivative which is a function of class L?. Since this
in turn implies that f is (after correction on a set of measure zero) absolutely con-
tinuous and f’ belongs to L?, we have obtained the theorem of M. Weiss and
Zygmund [28] referred to in the introduction. Counter-examples in [28] show that
for each p, (1) is essentially the weakest hypothesis which will force this con-
clusion. For example, consider the case 2 < p << o, so that § = 2. Then one
can construct (modifying slightly the Weiss-Zygmund construction, since those
authors work with periodic functions) a continuous function f of compact support
such that its uniform (and a fortior: its LF) second order modulus of smoothness
is O(a(log 1/a)~'?), so that the integral in (1) »just barely» diverges, yet f fails to
be absolutely continuous. In the Weiss-Zygmund example, f is a.e. non-dif-
ferentiable. (Other counter-examples in which f has bounded variation, but is
purely singular, follow from constructions in [7], [21].) Further examples constructed
in [28] show that for 1 <p <2, wf(f;a) may be O(a(logl/a)~'?), with f
absolutely continuous and yet not locally in L?. Here again, the integral in (1)
vjust barely» diverges (now $ == p). These examples support the view that Theorem
5.3 is »sharps. The John-Nirenberg generalisation [6] to several variables of the
Weiss-Zygmund theorem also follows from an earlier mentioned generalisation
of Theorem 5.3, taking in place of ¢ an m-tuple o,,..., 0, of measures, each
of the type of B, with respect to a different coordinate, so that > 7T [6,(x)| satisfies
the Tauberian condition on R™

6.4. Approximation generated by a Fejér kernel. Let k() denote the function
sin? ¢/(nt?), the so-called »Fejér-de la Vallée Poussin kernely (the entire discussion
in the present paragraph applies equally well to the »Cauchy kernely (1/z)(1 + )1,
in which case the results may be interpreted in terms of the boundary behaviour
of a harmonic function in a half-plane, cf. [18], Chapter 5). Let us first apply Theorem
4.3 with é(x) =1 —e™*, and 7(x) = 1 — k(x) which equals |z| for |z| < 1.
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In this case 7/é does not coincide with an element of W near x =0, in fact this
ratio has a jump discontinuity at = = 0. Tt does, however, coincide with a Fourier
multiplier of class M, if 1 <<p << o (cf. 4.1.2). We get therefore, setting k,(f) =
Ak(A):

B

_dv\YP
= ol < 4, [ ars0r )" M

This holds for all f € L?, provided 1 << p < co. Here B is an absolute constant,
and A, depends on p only. (1) is a so-called »directs theorem of approximation
theory, being of the form »smoothness implies approximability». For example, if
o, (f;v) = O(v) as v —0, (1) says that the »approximation errory represented by
the expression on the left must be O(1/1) as 1— co. Observe that we get non-
trivial information from (1) in case w,(f;v) is O((log 1/v)~°) with ¢ > 1/p, what
we might call a »threshhold» phenomenon.

The above analysis is entirely symmetrical so far as ¢ and v are concerned,
and therefore we also have the »inverse» theorem:

Ba

_dv\'F
w,(f;a) < AP(/ P(v)? 7,‘) (2)

valid for 1 < p << o0, where
P(v) = sup [|f — (f = k)|, -

izip

The above results are false in the limiting cases p =1 and p = o, as is
known e.g. from the ssaturation theory» of the kernel k. We can get valid analogues
of (1) and (2) in this case by applying Theorem 4.4. For instance, applying Theorem
4.4 with p = o0, r=1, P(x) = |z|] and ¢ and 7 as above gives the following
estimate in place of (1):

d d
If — (f = k)l < A/min (1, (20)7) og(f , v) "vg (3)

If w (f,v) = O(v”), where 0 << & << 1, then the right hand side of (3) is O(1™%),
so in this case (3) gives the same result as (1). However, if w(f,v) = O(v), (3) gives
something weaker than (1), i.e. the well known estimate

If — (f* k)l = O (A'log 1) as A— o0,
which cannot be strengthened (see [26]).

6.5. »Inversen theorems for trigonomeiric approximaiion. As remarked in the
introduction, the results of this paper apply mutatis mutandis to periodic functions,
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and in this section we shall mean by LP the space of measurable 2n-periodic functions,

with
. 2 1p
111, = (% f i)

Let us consider the sequence
B, (f)=if{|f—T|,; T €%, }

measuring the goodness of approximation to f € L? by elements of T, _, (trigono-
metric polynomials of degree at most n — 1.) It is easy to show (cf. [19], p. 504)
that if ¢ is any measure such that &(x) vanishes for |x| <1, then

0, ,(f30) < V(o) B, (f), (1)

where « is the smallest integer such that na > 1. This inequality enables us to
apply theorems 4.4 and 5.3 to the »inverse» problem of trigonometric approximation.
For example, suppose

B, o(f) <v(jn), (2)

where y(v) is a continuous increasing function defined for v > 0, and y(0) = 0.
Note that, by (1), @, ,(f;a) is bounded by a constant times yp(a). If now o
satisfies the Tauberian condition, we get from 4.4(4) (with v = 8;, r = 1, P(x) = %)

_ : _d _ ’ o
w(f; O)F < 4, [ f p(0) = + a? / p(o)? P! dv} , (3)

a

where A, depends on p only. For example, if y(v) = O(v), Wwe get (assuming,

as we may, y bounded)
’ 1 1/p
wp(f;a)=0(a log; .

The estimate (3) gives non-trivial information for y(v) = [log v|”° when ¢ > 1/,
but gives no information when ¢ < 1/f. On the other hand, from a theorem of
A. F. and M. F. Timan (cf. Timan [26], p. 331), it is known that (2) implies

0

w,(f; a) < Ca / p() v dv . (4)

a

(Of course, (4) gives non-trivial information for arbitrary ¢(v) tending to zero as
v — 0. Comparing (3) and (4) makes it natural to expect that an estimate

0o

w,(f; a)F < Ca? /w(v)5 v P dy (5)

a
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should hold. It is clear that (5) cannot be deduced from any of the comparison
theorems of this paper. However, one of the authors (J. B.) has recently proved
that Theorems 4.3 and 4.4 can be sharpened to yield estimates like (5) for a large
class of measures o, including, in particular, any measure that is the sum of a
discrete and an absolutely continuous measure. The sharpening consists in replacing

the integral
Be

/wmp(f; v)P v~ dv

0

by w, (f; Ba)?. It can also be proved that this stronger conclusion is not valid
for arbitrary measures o satisfying the Tauberian condition.)
Similarly, applying Theorem 5.3 with s =1, we get: if (2) holds, where
1

/a”_’"l p(@)? da < oo,
0

then f is equal a.e. to an absolutely continuous function, having a derivative of class L* .

6.6. COROLLARY TO THEOREM 4.4. If, under the hypotheses of Theorem 4.4 the
integral
/wa,p(f; v o~ P dy (1)
0
is finite, then o, (f;a) = O(@).
Indeed, this is an immediate consequence of 4.4(4).
Observe that the finiteness of (1) is implied by
1

/ 0, (f3 0P 0P dv < ()

which is precisely the hypothesis of Theorem 5.3.

6.7. Mixed (L?,L?) estimates. The nclassicaly embedding theorems (of Sobolev,
Besov, etc.) are always carried out in the generality of mixed (L?, L) estimates,
whereas in each of our theorems-the same value of p appears in both hypothesis
and conclusion. By way of contrast, consider the following known results ([27],
p. 677) valid for functions on [0, 1].

(i) For 1 <p<<qg<< o, if fEL? and

11 1\
wp(f;a)=0<a1’ q(logzl) )
where ¢ > 1/q, then f€ L%



COMPARISON THEOREMS FOR A GENERALIZED MODULUS OF CONTINUITY 115
(ii) For 1 <p << 0, of fEL? and

1\
w,(f;a) =0 (a”" (log E) )

where ¢ > 1, then [ coincides a.e. with a continuous function.

Using general embedding theorems, e.g. as given by Peetre in [15], it is not
hard to extend our theorems so as to encompass results like the cited theorem of
Ulyanov. As an example we mention the following theorem.

THEOREM 6.1. Suppose o, v € M(R™), & satisfies the Tauberian condition, and
there exists F € W such that 7(x) = 6(x)F(x) for x in some neighborhood of the
origin. Let 1 <<p<<q<<ow, s=m(llp—1/q9), and 1 <r <q. Assume that
JE€LP(R™) and that the integral in the right hand side of (1) converges. Then f € LY{R™)
and

Ba
o, (f>a) < C’/[wa,p(f, v) v“’]'djv - (1)
H
For the proof of this theorem one needs the inequality
I, <C 5 @FIf gy @)
in place of 3.3.4(2). The inequality (2) is related to the embedding theorem (cf. [15])
Wy e Lt (3)

just as 3.3.4(2) is related to
WoF e LP.

In fact, taking into account the definition of the spaces W;" and LP one observes
that (2) is just another way of stating (3). Using (2) one can prove Theorem 6.1
in the same way as Theorem 4.3.
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