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Asymptotic values of strongly normal functions
Karl F. Barth and Philip J. Rippon

Dedicated to the memory of Professor Matts Essén

Abstract. Let f be meromorphic in the open unit disc D and strongly normal; that is,
(1=[21*)f#(2) =0 as|z| =1,

where f# denotes the spherical derivative of f. We prove results about the existence of asymptotic
values of f at points of C=8D. For example, f has asymptotic values at an uncountably dense
subset of C, and the asymptotic values of f form a set of positive linear measure.

1. Introduction

Let D denote the unit disc {z:]2[<1}, C denote the unit circle {z:|z|=1}, and
C denote the extended complex plane. Let the function f be meromorphic in D.
A curve T:2(t), 0<t<1, in D is a boundary path if |z(t)|—1 as t—1. The set 'NC
is called the end of I'. We say that f has the asymptotic value a€C if there is a
boundary path I':z(¢), 0<¢<1, such that

flzt))—a ast—1.

Whenever the end of T is contained in a subset F of C, we say that f has the
asymptotic value a in E; if the end of T is a singleton {(}, then we say that f has
the (point) asymptotic value a at (.

Recall that f is said to be normal if the functions

_ ipf tta
F(6(2), where d(z)=¢ (1+az)’ la| <1, 9€R,
form a normal family or, equivalently, if
!
1.1 c=sup(1—|z|?)f#(z) <oo, where f#(z)f’f—(z),—.

2D S 1+f(2)P



70 Karl F. Barth and Philip J. Rippon

The quantity c¢ is the order of normality of f. See [14] and [18] for properties of
normal functions. For example, the modular function is normal because it omits the
three values 0, 1 and co. By a theorem of Bagemihl and Seidel [4], all asymptotic
values of non-constant normal meromorphic functions are point asymptotic values,
and all such point asymptotic values are angular limits, by a theorem of Lehto and
Virtanen [16]. Also, non-constant normal analytic functions are in the MacLane
class A since they have point asymptotic values at a dense set of points in C; see [4]
and [17, p. 43]. However, there exist normal meromorphic functions in D with no
asymptotic values. See [16, p. 58] for an example based on a modification of the
modular function.
The class Ny consists of functions meromorphic in D such that

(1.2) (1=122)f#(z) =0 as |z|—=1.

Such little normal functions have been characterised in various ways; see [2],
and also [10], where they were called strongly normal. To our knowledge, no results
have been published about the existence of asymptotic values for general functions
in My. For various subclasses of Ny, however, a great deal is known about the
existence of asymptotic values, as we now indicate.

It was noted in [1, p. 31] that the hypothesis (1.2) means that the spherical
radius of the largest schlicht disc around f(z) on the Riemann image surface of f
tends to 0 as |z|—1. In particular, every univalent function is in My. Such functions
have angular limits at all points of C apart from a set of logarithmic capacity zero.

If f is meromorphic in D and v

(L= # () =0 (A~ |z])* s |z] > 1,

where ¢>0, then feN. It follows from a result of Carleson [9, p. 61] that such
functions f have angular limits at all points of C apart from a set of (an appropriate)
capacity zero.

The little Bloch class By consists of functions analytic in D such that

(A=[zPIf () =0 as|z] =1,

and these functions evidently lie in Ny. Also, it is easy to see that if feBy and
¢ has bounded spherical derivative in C (for example, if g is a rational function),
then go feNy. There exist functions in By which have finite angular limits almost
nowhere on C', but all such functions must have finite angular limits on a set of
Hausdorff dimension 1, by a result of Makarov; see [19, Chapters 8 and 11]. More-
over, Rohde [21] has shown that if f is in By and f has almost no angular limits
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on C, then for all ®€C the function f has angular limit « on a set of Hausdorff
dimension 1. Also, Gnuschke-Hauschild and Pommerenke [13] have shown that for
functions in By the set of point asymptotic values of f has positive linear measure.

In a recent paper [7], the authors showed that a locally univalent meromorphic
function in Ay must have asymptotic values at points of an uncountably dense set
{that is, the set meets each non-trivial arc of €' in an uncountable set) and that
the set T'p(f,v) of point asymptotic values of f in any non-trivial arc v on C is of
positive linear measure. Here we show, by a different method, that the hypothesis
of local univalence can be omitted in these results.

Theorem 1. Let f be in Ny, let acC and let ~ be a non-trivial arc in C. If
the set of points of v at which f has asymptotic value o is at most countable, then
f has angular limits ot o subset of v of positive measure.

As will be clear from the proof of Theorem 1, if we add the hypothesis that ‘ f
takes values arbitrarily close to o near each point of 4, then the conclusion can be
strengthened to ‘f has angular limits with values in any given neighbourhood of o
at a subset of v of positive measure’.

We have the following corollary of Theorem 1.

Corollary 1. Any f in Ny must have angular limits at an uncountably dense
subset of C.

Note that Corollary 1 is false if we assume that f is just normal. For example,
the modular function has angular limits at only countably many points of C; see [17,
p. 56].

Corollary 1 shows that a non-constant meromorphic function f in Ny must
belong to the meromorphic MacLane class A,,, introduced in [5]. In view of the re-
sults of Makarov and Rohde about By, mentioned above, it is natural to ask whether
‘uncountably dense’ can be replaced by ‘Hausdorff dimension 1’ in Corollary 1.

Our next result also implies Corollary 1. Here I'p(f,7) denotes the set of
angular limits of f in the arc ~.

Theorem 2. Let f be non-constant and in Ny, and let v be a non-trivial arc
i C. Then Tp(f,v)=Tr(f,~) has positive linear measure.

As in Theorem 1, if we add the hypothesis that ‘ f takes values arbitrarily close
to a near each point of +’, then the conclusion can be strengthened, in this case to
Tp(f,v)=Tr(f,~) has positive linear measure in any given neighbourhood of «’.

The plan of the paper is as follows. In Section 2 we prove a topological lemma
concerning the existence of asympftotic values of continuous functions and in Sec-
tion 3 we prove several lemmas about functions in Ny. Section 4 contains the proof
of Theorem 1 and Section 5 contains the proof of Theorem 2.
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2. A topological lemma

In {15] Hayman proved that certain functions which are meromorphic in C,
with relatively few poles, have asymptotic value co. A key lemma in his proof
states that if f is meromorphic in C, then at least one of the following is true:

(a) there is a path I' tending to co such that f(z)—oc as z— 00 along T

(b) there is a nested sequence I',, of Jordan curves such that dist(T",,,T';)—00
as n—oo and f is bounded on (J;- | I'y;

(c) there is a path I tending to oo on which f is bounded.

This result was extended to continuous functions in C by Brannan [8], and to
continuous functions u: R —[0, oo], m>2, with a strengthened version of case (c),
by one of the present authors [20]. Here we need a variant of this last result, which
we state in C though the proof extends readily to R™. We shall apply this result
to real-valued functions on bounded simply connected domains in C, using the fact
that such domains are homeomorphic to C.

First recall from [20] that a set £ in C is solid if E=F, where E denotes the
union of F and its bounded complementary components; equivalently, E is solid if
a\E is connected. The name full is also used for this concept.

Lemma 1. Let u: C—[0, 0] be continuous, with a bounded meiric on [0, 0]
giving the usual topology there. Then one of the following holds:
(a) there is a path [ tending to co such that

(2.1) u(z)—o00 asz—so0 along I

(b) there exist M <oo and a sequence K,, of solid, compact, connected sets such
that K1 CKoC..., dist{0K,, K1)—00 as n—oo and

u<M on U 0K,;
n=1
(c) there exists My such that for all M>My there are infinitely many un-
bounded components of {z:u(z)>M}.

We remark that, since the function u is uniformly continuous on compact sets,
we can take the sets K,,,n=1,2,..., in case (b), to be bounded by Jordan curves.

Proof. To prove Lemma 1, we need some further notation and results from [20].
For each M in (0,00) we let Uy denote the set of components of {z:u(z)<M}.
Then, for U in Ups, we put Qp =U{V:V €ldy; and UCV}. The set Qy is solid, and
u(z)=M, for z€08y,. It is shown in [20, p. 313] that if Qy=C for some M and
some U in Uy, then case (b) holds. Thus we can assume that

(2.2) Qu#C  for each M € (0,00) and each U € Uy;.
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It follows from (2.2) that, for each M €(0, c0), the set {z:u(z)>M} has at least one
unbounded component. We outline the argument; see [20, proof of Lemma 3] for
more details. If for some M, 0<M <oco, there exists an unbounded Q;, Uclyy,
such that Qpy#C, then (AZ‘\QU is a compact, connected subset of 6, so Oy U{oo}
is a compact, connected subset of (Al from which it follows that each component
of 9y is unbounded and so lies in an unbounded component of {z:u(z)>M}.
On the other hand, if for some M, 0<M <oo, all Qy, UEUyy, are bounded, then
the complement of the union of these 2y is an unbounded, connected subset of
{z:u{z)>M?}.

We now suppose that case (c) is false and deduce that case (a) holds. Then
there is an increasing sequence M;, j=1,2, ..., tending to co with the property that
there are only finitely many unbounded components of {z:u(z)>M;}, for j=1,2,....
For each j this finite number is non-zero, as noted above.

Evidently there is at least one component Ey of {z:u(z)>M;} which contains
an unbounded component of {z:u(z)>M;} for each j=1,2, .... Then there is at least
one component Ey of {z:u(z)>Ms} in F; which contains an unbounded component
of {z:u(z)>M;} for each 7=2,3,.... Continuing in this way, we obtain unbounded
components E; of {ziu(2)>M;}, j=1,2, ..., such that F1DFEsD....

For j=1,2,..., let G, denote the (unbounded) component of {z:u(z)>M;} such
that G;DFE;41. Then G; DGy, for j=1,2,.... Thus if z;€G; and the path I is
of the form Iy Ul',U..., where I'; joins z; to z;41 in G, then we deduce that u(z)
tends to oo as z proceeds along I'. For a general continuous function « we cannot
conclude that the path T" tends to oo, since I' may accumulate at an unbounded,
closed, connected subset of C on which u=co. To overcome this problem, we
consider the set £=I". Then E is an unbounded, closed, connected set with the
property that

u(z) o0 asz—o0, z€E.

Since u is uniformly continuous on compact sets, we can choose a decreasing con-

tinuous function 8: [0, 00)— (0, 3] such that if

Es= ] {z: =<l <80},

(EE

then
u(z) >o00 as z— 00, z € Ej.

To complete the proof, we use the fact that the set Es5 must contain a path tending
to 0o; see [20, Theorem 2]. [
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3. Properties of A

We recall the following results of Dragosh [12, Theorem 1 and Theorem 2],
which were proved using the Lehto-Virtanen maximum principle; see Section 4.
Here and in what follows we put

5(z) = L+(142%)1/2

exp(—(1+2%)'/?),
x
which is a decreasing function on (0, co).

Theorem A. Let f be meromorphic in D with order of normality ¢, 0<c<oc.
Let v be an open subarc of C and let v, be a sequence of arcs in D which converges
to v in the Hausdorff metric. Put My=sup,c, |f(2)]. If f is unbounded near any
point of v, then

(3.1) lin_1>inf M, >é(c).

Dragosh used Theorem A to give a sufficient condition for membership of the
class L, of functions f non-constant and meromorphic in D such that the level sets
of f ‘end at points’. To be precise, let d(r, \) denote the supremum of the diameters
of the components of the set

{z:1f(z)|=X, r<|z|<1}, where A>0and 0<r<1.
Then feL,, if, for each A>0, we have
d(r,A\) =0 asr—1;
see [17] and [5] for more details of this notion.

Theorem B. Let ¢*~0.663 be the unique solution of the equation 6(c)=1. If
f is meromorphic in D with order of normality c<c*, then fCL,,.

Next, we state a result about functions in the class £,,, given in [5, Theorem 2].
Here we need the notion of a tract of f for oo, which is a family of components Dy
of {z:[f(2)|>A}, A>0, such that Dy, CDy,, for A2>Ay, and ()., Da=0. The set
E=(1ys( D is called the end of the tract, and the function f has asymptotic value
oo at each point of F.

Theorem C. Let f be in L,, and suppose that v is a non-trivial arc of C such
that no level curve of f ends at any point of ~. Then exactly one of the following
statements holds:

(a) for each interior point { of ~ there exists a path T'¢ in D ending at ¢, such
that f is bounded on | J{I'¢c:(e~};

(b) there exists a tract of f for oo with end containing ~.

We use Theorems A, B and C to prove the following result about Nj.
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Lemma 2. Let f be in Ny. Then

(a) if f is bounded on a sequence v, of arcs in D which converges in the
Hausdorff metric to an open arc v in C, then f is bounded near each point of -;

(b) there is a dense set of points in C, each of which is the end of a path in D
on which [ is bounded.

Proof. To prove part (a) suppose that f is unbounded near some point g of .
For some M >1, we have
(3.2) M, =sup |f(z)| <M < co.
Z€Yn
Since feMNy, we can choose a boundary neighbourhood Dy of (o in D such that
Yo=CNODyC~ and

(3.3) (11 f*(z) <c, z€ Dy,

where ¢ is so small that §(c)>M.

Let ¢: D— Dg be conformal and put ¢(¢)=f(¢(t)). Then, by the Schwarz—Pick
lemma,

A=[t)e' Ol <1-ls0)]?,
0
(1=[t)g™ () < (A=lo(0)*) f# (1)) <e, teD.
Thus the order of normality of g is at most ¢. Now, for n=1,2,..., choose a com-
ponent v, of v,NDp in such a way that ~/, tends to 7o in the Hausdorff metric.
Then ¢~!(v/,) is a sequence of arcs in D tending to the open arc ¢~!(7p), and g is
unbounded near ¢~*(p), which is in ¢~ (7). Since |g(t)|< M, for tep= (), we
deduce by Theorem A that
liminf M, > d(c) > M,

n—roc

which contradicts (3.2).

To prove part (b) suppose that g is a non-trivial arc of C. We can choose a
boundary neighbourhood Dy in D such that vo=CNdDg and (3.3) holds with c<c*.
As in the proof of part (a), we take ¢: D— Dy to be conformal, so g(t)=f(¢(t)) is
normal of order at most ¢. Thus gc/£,, by Theorem B. Also, since g is normal, it
cannot have a tract for oo with end containing an arc, by the theorem of Bagemihl
and Seidel; see [4]. Hence, by applying Theorem C to g on the arc ¢ (), we
deduce either that a level curve of f ends at a point of v or that f is uniformly
bounded on a family of boundary paths I'; with endpoints at interior points ¢ in vo.
This proves part (b). O

Next we need a result about the level sets of functions in Ny.
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Lemma 3. Let f be in Ny, let Q be a simply connected Jordan domain in D
such that each component of OQND is part of a level set of the form {z:|f(z)|=A},
where 0< A< \g, and let ¢ be a conformal map of D onto Q. Then

(a) the function g=fopeNy;

(b) if there is some >0 such that the components of {z:|f(2)|>u} in Q are
all compact, then [ is bounded in Q near 9Q; that is, there is a compact subset K
of Q such that f is bounded in Q\ K.

Proof. To prove part (a) suppose, for a contradiction, that for some sequence
tn in D, we have |t,|—1 and

(3.4) (1=1ta|P)g*(tn) >e>0, n=1,2,....

Without loss of generality, we have t, —t,€C and ¢(t,)—>z€D. If zp€C, then
(3.4) together with the inequality

(I=[t)g™ (1) < (1-lo())*) [ (4(t), teD,

contradict the fact that feNy. If 20¢ C, then 2o €9QND. Hence |f(z)|=A\ for z near
zo on 99, so |g(¢t)|=A for t near t; on C. Since f is analytic near zy, we deduce that
¢ has an analytic continuation to a neighbourhood of ¢y, which contradicts (3.4).
Hence gcN.

To prove part (b), note that the function u=|g| cannot satisfy case (a) or
case (c) of Lemma 1 in D, since each of these cases implies the existence of non-
compact components of {z:|g(z}|>u} in D for arbitrarily large p and hence non-
compact components of {z:|f(z){>u} in © for arbitrarily large p. Thus u=|g|
satisfies case (b) of Lemma 1, so ¢ is bounded in D near ' by Lemma 2 and the
remark following the statement of Lemma 1, because geANy. Hence f is bounded
in Q near 91, as required. [

4. Proof of Theorem 1

Without loss of generality, we may assume in the proof that =00, since we
obtain a function in Ay by composing f with a rotation of the Riemann sphere
taking « to co.

We shall assume that f is in Ay and has angular limits almost nowhere in +,
and then deduce that f has asymptotic value oo at points of an uncountable subset
of v. The first step is to show that there is at least one point in o where f has
asymptotic value co. By Lemma 2, part (b), we can choose a cross-cut v’ of D with
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distinct endpoints in v on which f is bounded, say |f|<M’. Then let D(v) denote
the component of D\~ such that dD(~)NC Cr.

Since D(vy) is homeomorphic to C, we can apply Lemma 1 to u=|f| in D(v). If
case (a) occurs, then f has asymptotic value oo in v, as required. Case (b) does not
occur since, by Lemma 2, part (a), and the remark following Lemma 1, this would
imply that f is bounded near interior points of dD(y)NC and so f would have
angular limits at almost every point of this arc by Fatou’s theorem, contrary to our
assumption. If case (¢) of Lemma 1 holds, then there exists Mq>M’ such that, for
all M >Mj, there are infinitely many non-compact components of {z:|f(z)|>M}
in D(v).

We now consider components Dy of sets of the form {z:|f(2)|>A}, where A>0.
Following the usage in [11, p. 123], we say that such a component D) is unbounded
if 9Dy meets C, and D, is bounded otherwise. From the above argument, it follows
that if Lemma 1, case (c) holds, then we can choose p>A>M; and unbounded
components D,, and Dy of {z:|f(z)|>p} and {z:|f(z)|>A}, respectively, such that

D(’y) >D\D DM'

We call such a pair of unbounded components (Dy, D,,) an unbounded component
pair for f in D(v).

Lemma 4. Let f and D(v) be as above, and suppose that (Dyx,D,) is an
unbounded component pair for f in D(v). Then

(a) Dx contains an unbounded component pair (D, D,v), with X' >\+1;

(b) Dy contains a tract of f for co, so f has asymptotic value 0o at some point
of .

First note that if Dy contains an unbounded component D,,/, where p/>A+1,
then we can choose X with p/>X>A+1 and take D) to be the component of
{z:1f(2)]>N'} that contains D,

Otherwise, for p'>A+1, the components of {z:|f(z)|>u'} in Dy are all
bounded. Now let D>\ denote the union of D, and its compact complementary
components, and let ¢ be a conformal map from D onto D,\ Note that DA is a
Jordan domain, because f€L,,; see the proof of Lemma 2 (b). Thus ¢ can be ex-
tended to a homeomorphism from &D onto 8D5. Also, each component of oD \ND
is part of the level set {z:|f(2)|=A}. Thus, by Lemma 3, the function g(¢)=f($(t))
is in Ay and |g| is bounded near C, by y” say. Hence g has finitely many poles in
D and finite angular limits a.e. on C, by Fatou’s theorem.

Thus we can choose a finite Blaschke product B such that gB is analytic in D
and hence |gB| is bounded there by p”. But |¢B| is not bounded in D by ), since
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there exist points of D in ¢~ *(D,,) where |g|>u> A, and these points are arbitrarily
close to C because D,, is unbounded. Hence, by the extended maximum principle,
the angular limits of gB exceed A in modulus on a set ECC of positive length, and
this must also hold for g. Since |f|=A on dD,ND, it follows that the set o(E) is
contained in v and has positive harmonic measure with respect to D » and therefore
positive length, by the domain extension principle. But f has an asymptotic value,
and hence an angular limit, at each point of ¢(FE), which contradicts our initial
assumption about f. This proves part (a).

We deduce from part (a) that D(v) contains a sequence of unbounded compo-
nent pairs (Dy,, D, ), n=0,1,2,..., such that D,,=D, and

D)\TLDDA >\n+1>/\n+1> n=0,1,2,....

nt1
Therefore the sequence Dy, n=0,1,2, ..., determines a tract for co of f. If we now
choose z, €Dy, n=0,1,2, ..., such that |z,]—1 as n—0c0, and take the path I' to
be of the form I'y UT'>U..., where T',, joins z,, to 2,41 in D, _, then I tends to C in
D(~), since I' cannot accumulate at any point of D(v)\C. Thus f has asymptotic
value co along I', so f has asymptotic value co at a point of . This proves part (b)
of Lemma 4.

From Lemma 4 and the discussion before it, we deduce that if f is in Ny and
has angular limits almost nowhere in ~, then f has asymptotic value co at some
point of «; in particular, D(+) must contain an unbounded component pair for f.

The next lemma will enable us to deduce that there are uncountably many
points in v at which f has asymptotic value co. The argument is a modification of
the proof of [6, Theorem 1].

Lemma 5. Let f and D(v) be as above, and suppose that (Dx,D,) is an
unbounded component pair for f in D(v). Then

(a) there exists N >A+1 such that Dy contains distinct unbounded component
pairs (Dg\,,DZ,), i1=1,2;

(b) Dy contains uncountably many tracts of f for co.

By Lemma 4, part (a), there is a sequence of unbounded component pairs

(Dx,. Dy, ),n=0,1,2,..., such that Dy,=Dy and

DAnDD)\ )\714,1>/\n—i-17 n=0,1,2,....

n+1?

The D), n=0,1,2,..., determine a tract for co of f, the end of which must be a
point of v, say (p, since f is normal. Hence f has asymptotic value oo at (o and

(4.1) diam Dy, —0 asn—oo.
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If the assertion in part (a) is false, then (because A, >Xo+1=A+1, for n>1) each
of the unbounded component pairs (Dy,, Dy, ) is unique in Dy,. It follows that,
for n>1, the set

(4.2) Gn=Dx,\Dx,

contains no unbounded component pair (D} , D], ). Hence the components, if any,
of {z:|f(2)|>un} in G, are bounded; for otherwise we could take an unbounded
component D], CG., and the corresponding component D of {z:|f(z)|>A,}, with
D, D) CGp, to give a different unbounded component pair in D). Now G, is
a Jordan domain because feL,,, so G, satisfies the hypotheses for 2 in Lemma 3.
Thus, by Lemma 3, part (b), we deduce that

(4.3) f is bounded in G,, near 8G,, for n>1.

In the remainder of the proof, we consider two cases. First suppose that the
set OD,,NC has positive harmonic measure with respect to Dy,. In this case we
can apply the following result [6, Lemma 1].

Theorem D. Let G be a simply connected Jordan domain with GCD, and
suppose that E=0GNC has positive harmonic measure with respect to G. Then
there is o subset 1 of E of positive length such that each ¢ in Ey is the vertex of
an open Stolz angle S¢ contained in G.

Applying Theorem D with G:f)AO’ we deduce that if (€ F1\{({y}, then S.C
ém, for some Stolz angle S¢ and some m>1, by (4.1) and (4.2). Thus, by (4.3),
we can assume that f is bounded in each such S¢. Plessner’s theorem [11, p. 147]
then gives a contradiction to our initial assumption that f has angular limits almost
nowhere in .

Otherwise, the set 815,\0 NC has harmonic measure zero with respect to l~)>\0.
In this case we claim that

(4.4) limsup | f(2)| < Ao for ¢ € (8D,NC)\{Co}-
Z_JC
ZEDAO

To prove (4.4) suppose that ¢;€(0Dx,NC)\{¢o}. Then by (4.1) there exists
m>1 and a boundary neighbourhood

N1:{Z€DZ|Z—€1|<91}, Q1>0,

such that Ny HBAO Cém, and f is bounded in Nlﬁf)% by (4.3). If H is a component
of NyND,, which contains ¢; in its closure, then H is regular for the Dirichlet
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problem, since 13,\0 is a Jordan domain. Also dHNC has harmonic measure zero
with respect to H, by the domain extension principle. The function

[f(Q)] for C€OHND,

h(o:{ X for CEOHNC,

is bounded on 8H and continuous there, except possibly at the points (at most two)
of JHNCN{z:1z—(1|=01}. Hence the Dirichlet problem for h in H has a unique
solution, h say, which is bounded in H and continuous on H, except possibly at the
points just mentioned. In particular,

lim h(z)=Ag.
z2—(1
zcH

Now the function

is subharmonic and bounded above in H, with boundary value zero at each point of
OH , except for a subset of harmonic measure zero. Thus, by the extended maximum
principle, u<0 in H. Hence (4.4) holds.

It follows from (4.4) that D, cannot include any point of (9Dx, NC)\{(o}, so
815,\1 ND is a simple path T'; approaching o at both ends, on which |f|=X;. Since
f has asymptotic value oo at {p, and hence angular limit co at (o, we have obtained
a contradiction to the following theorem of Anderson, Clunie and Pommerenke;
see [1, p. 31]. Here Cg(f,¢), (€C, denotes the cluster set of f along a set ECD
such that (€E; that is, the set of all limits of sequences of the form f(z,), where
2n—C, zn€F.

Theorem E. Let f be in Ny, let I be a path in D ending at ¢ in C, and let
S be any Stolz angle with vertex at (. Then

CS(va)CCF(f7C)

This proves Lemma 5, part (a), and part (b) follows immediately.

To complete the proof of Theorem 1 we use the fact that f can have at most
one tract for co ending at each point ¢ of C. Indeed, if a normal function f has
asymptotic value « along two paths approaching ¢ in C, then f(z) must tend to «
as z tends to ¢ between the paths. It is sufficient to prove this result for =0, and
we can do this by combining results from [18] and [19]. First we state a version of
the maximum principle of Lehto and Virtanen. This involves the real function §(z)
defined in Section 3.
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Theorem F. Let f be meromorphic in D and normal of order ¢, let A be an
open arc of C and let By, 0<A<m, be the lens-shaped domain in D bounded by A
and the circular arc in D making angle A with A. Let G be a domain in By with
aGCB—,\\A If

|f(2)]| <d<é(5) for z€ OG\OBy,

where x=cA/sin A, then
[f(2)|<n  for z€G,

where n=n(0, ¢, \) is the smallest positive solution of

e 5(:2)

Note that, for fixed ¢ and A, we have 1(d,¢,A\)—0 as §—0. Theorem F is
given in [18, Theorem 9.1], with the extra assumption made there that GCD. To
deduce the above version, we can apply this special case to a sequence of lens-shaped
regions approximating By from within, as described in [19, part (b) of the proof of
Theorem 4.2].

Suppose now that f has asymptotic value 0 at ¢ along a simple path I'. It is
suflicient to show that f(z) tends to 0 as z tends to ¢ between I'' and the radius R,
of D with endpoint at . To do this we show that, for each £>0, there is a Jordan
domain in D, in which |f|<e and in the closure of which I and R, both eventually
lie.

Let T's be a subpath of T' such that |f|<dé on T's, where § is so small that
7](5, c, %’/T) <e. TFollowing the proof of [19, Theorem 4.3], we construct a pair of
open discs DF such that the circles C*=0D* each pass through ¢, making the
angle 27 with C, and also I'sN(C*UC™)#0. Then the radius R lies eventually
in D*ND~. We may also assume that T'sN(D*UD™) is connected. Then let V*
be the component of D*¥\Ts that contains points of the unit circle C, and put
GF=D*\(V*UI,). Since V1 are disjoint, we have D*ND~ CG*UG UTs. It
follows that

int(GYUG~UT's)

is a Jordan domain in D, in the closure of which I' and R both eventually lie and
in which |f|<e, by Theorem F. This completes the proof of Theorem 1.

5. Proof of Theorem 2

To prove Theorem 2, we establish the following lemma.
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Lemma 6. Let f be in Ny, and let v be a non-trivial arc of C. If Tp(f,7)
has linear measure zero, then f has asymptotic value oo at a point of .

As noted earlier, we can replace co here by any « in 6, so Theorem 2 follows
immediately from Lemma 6.

The proof of Lemma 6 is similar to the proof of the first part of Theorem 1,
that is, up to Lemma 4. There we assumed that f has angular limits at almost no
points of v and deduced that f has asymptotic value oo at some point of . Here
our initial assumption is that I'p(f,~) has linear measure zero, and we again wish
to deduce that f has agsymptotic value oo at some point of .

We need the following slight generalisation of a theorem of Collingwood and
Cartwright.

Theorem G. Let f be meromorphic in D and bounded in a simply connected
Jordan domain Q in D such that OQNC is an arc v of C. Let f have angular limits
wyFwe at interior points (1#£Co of ~v, and let L be a polygonal path joining w1 and
we, with the property that for any line M normal to L the points wy and ws lie in
different components of C\M. Then, for each line segment L' of L, we have

(a) the orthogonal projection of T'p(f,7) on the interior of L' includes all of
the interior of L';

(b) the set of points of T'p(f,7) that can be projected orthogonally onto L' has
positive linear measure.

In the original result [11, p. 120], the path L consisted of a single line segment.
A similar proof works in this more general case, since the polygonal path L has the
property that any smooth path from w; to wo meets any normal line to L.

In the part of the proof of Theorem 1 before Lemma 4, we can replace the
use of Fatou’s theorem by that of part (b) of Theorem G in order to deduce that
there is an unbounded component pair for f in D(v). In the proof of Lemma 4,
part (a), a little more work is required. There we have a function g=fo¢ that is
meromorphic in D and bounded near C. Moreover, the angular limits of ¢ on C
include a point wy with |wi|=A, and a point wy with |ws|>A. Thus we can apply
part (b) of Theorem G to the function g on an annulus Q={z:ro<|z| <1}, taking
the path L from w; to wy to consist of (at most) two line segments, one of which
is the shortest line segment from wy to the circle {w:|w|=A}. We deduce that the
set Tp(f, CYN{w:|w|>A} has positive linear measure. Since each angular limit of g
with modulus greater than ) is also a point of T'p(f, ), we deduce that I'p(f,v) has
positive linear measure, which contradicts our initial assumption. Thus the proof
of Lemma 4, part (a), goes through with this new assumption. This completes the
proof of Lemma 6 and hence that of Theorem 2.
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