Abstract
The complete elliptic integral of the first kind $K(k)$ is defined for $0 \lt k \lt 1$ by \[ K(k) := \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}. \] The real number $k$ is called the modulus of the elliptic integral. The complementary modulus is $k' = (1-k^2)^{\frac{1}{2}}$ ($0 \lt k' \lt 1$). Let $\lambda$ be a positive integer. The equation \[ K(k') = \sqrt{\lambda} K(k) \] defines a unique real number $k(\lambda)$ ($0 \lt k(\lambda) \lt 1$) called the singular modulus of $K(k)$. Let $H(D)$ denote the form class group of discriminant $D$. Let $d$ be the discriminant $-4 \lambda$. Using some recent results of the authors on values of the Dedekind eta function at quadratic irrationalities, a formula is given for the singular modulus $k(\lambda)$ in terms of quantities depending upon $H(4d)$ if $\lambda \equiv 0 \pmod{2}$; $H(d)$ and $H(4d)$ if $\lambda \equiv 1 \pmod{4}$; $H(d/4)$ and $H(4d)$ if $\lambda \equiv 3 \pmod{4}$. Similarly a formula is given for the complete elliptic integral $K[\sqrt{\lambda}] := K(k(\lambda))$ in terms of quantities depending upon $H(d)$ and $H(4d)$ if $\lambda \equiv 0 \pmod{2}$; $H(d)$ if $\lambda \equiv 1 \pmod{4}$; $H(d/4)$ and $H(d)$ if $\lambda \equiv 3 \pmod{4}$. As an example the complete elliptic integral $K[\sqrt{17}]$ is determined explicitly in terms of gamma values.
Citation
Habib Muzaffar. Kenneth S. Williams. "EVALUATION OF COMPLETE ELLIPTIC INTEGRALS OF THE FIRST KIND AT SINGULAR MODULI." Taiwanese J. Math. 10 (6) 1633 - 1660, 2006. https://doi.org/10.11650/twjm/1500404580
Information