Open Access
2006 EVALUATION OF COMPLETE ELLIPTIC INTEGRALS OF THE FIRST KIND AT SINGULAR MODULI
Habib Muzaffar, Kenneth S. Williams
Taiwanese J. Math. 10(6): 1633-1660 (2006). DOI: 10.11650/twjm/1500404580

Abstract

The complete elliptic integral of the first kind $K(k)$ is defined for $0 \lt k \lt 1$ by \[ K(k) := \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}. \] The real number $k$ is called the modulus of the elliptic integral. The complementary modulus is $k' = (1-k^2)^{\frac{1}{2}}$ ($0 \lt k' \lt 1$). Let $\lambda$ be a positive integer. The equation \[ K(k') = \sqrt{\lambda} K(k) \] defines a unique real number $k(\lambda)$ ($0 \lt k(\lambda) \lt 1$) called the singular modulus of $K(k)$. Let $H(D)$ denote the form class group of discriminant $D$. Let $d$ be the discriminant $-4 \lambda$. Using some recent results of the authors on values of the Dedekind eta function at quadratic irrationalities, a formula is given for the singular modulus $k(\lambda)$ in terms of quantities depending upon $H(4d)$ if $\lambda \equiv 0 \pmod{2}$; $H(d)$ and $H(4d)$ if $\lambda \equiv 1 \pmod{4}$; $H(d/4)$ and $H(4d)$ if $\lambda \equiv 3 \pmod{4}$. Similarly a formula is given for the complete elliptic integral $K[\sqrt{\lambda}] := K(k(\lambda))$ in terms of quantities depending upon $H(d)$ and $H(4d)$ if $\lambda \equiv 0 \pmod{2}$; $H(d)$ if $\lambda \equiv 1 \pmod{4}$; $H(d/4)$ and $H(d)$ if $\lambda \equiv 3 \pmod{4}$. As an example the complete elliptic integral $K[\sqrt{17}]$ is determined explicitly in terms of gamma values.

Citation

Download Citation

Habib Muzaffar. Kenneth S. Williams. "EVALUATION OF COMPLETE ELLIPTIC INTEGRALS OF THE FIRST KIND AT SINGULAR MODULI." Taiwanese J. Math. 10 (6) 1633 - 1660, 2006. https://doi.org/10.11650/twjm/1500404580

Information

Published: 2006
First available in Project Euclid: 18 July 2017

zbMATH: 1139.11025
MathSciNet: MR2275151
Digital Object Identifier: 10.11650/twjm/1500404580

Subjects:
Primary: 11F20
Secondary: 11E16 , 11E25

Keywords: complete elliptic integral of the first kind , Dedekind eta function , singular modulus , Weber's functions

Rights: Copyright © 2006 The Mathematical Society of the Republic of China

Vol.10 • No. 6 • 2006
Back to Top