Abstract
In the present paper we mainly consider the second order evolution inclusion with proximal normal cone: \begin{equation} \begin{cases} -\ddot{x}(t)\in N_{K(t)}(\dot{x}(t))+F(t,x(t),\dot{x}(t)), \quad \text{a.e.}\\ \dot x(t)\in K(t),\\ x(0)=x_0,\quad\dot x(0)=u_0, \end{cases} \tag{$*$} \end{equation} where $t\in I=[0,T]$, $E$ is a separable reflexive Banach space, $K(t)$ a ball compact and $r$-prox-regular subset of $E$, $N_{K(t)}(\,\cdot\,)$ the proximal normal cone of $K(t)$ and $F$ an u.s.c. set-valued mapping with nonempty closed convex values. First, we prove the existence of solutions of $(*)$. After, we give an other existence result of $(*)$ when $K(t)$ is replaced by $K(x(t))$.
Citation
Fatine Aliouane. Dalila Azzam-Laouir. "A second order differential inclusion with proximal normal cone in Banach spaces." Topol. Methods Nonlinear Anal. 44 (1) 143 - 160, 2014.
Information