Tohoku Mathematical Journal

$L^p$ boundedness of Carleson type maximal operators with nonsmooth kernels

Yong Ding and Honghai Liu

Full-text: Open access

Abstract

In this paper, the authors give the $L^p$ boundedness of a class of the Carleson type maximal operators with rough kernel, which improves some known results.

Article information

Source
Tohoku Math. J. (2) Volume 63, Number 2 (2011), 255-267.

Dates
First available in Project Euclid: 6 July 2011

Permanent link to this document
http://projecteuclid.org/euclid.tmj/1309952088

Digital Object Identifier
doi:10.2748/tmj/1309952088

Mathematical Reviews number (MathSciNet)
MR2812453

Zentralblatt MATH identifier
1226.42008

Subjects
Primary: 42B20: Singular and oscillatory integrals (Calderón-Zygmund, etc.)
Secondary: 42B25: Maximal functions, Littlewood-Paley theory

Keywords
Carleson maximal operators singular integral operators rough kernel

Citation

Ding, Yong; Liu, Honghai. $L^p$ boundedness of Carleson type maximal operators with nonsmooth kernels. Tohoku Math. J. (2) 63 (2011), no. 2, 255--267. doi:10.2748/tmj/1309952088. http://projecteuclid.org/euclid.tmj/1309952088.


Export citation

References

  • L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135–157.
  • L. Colzani, Hardy spaces on spheres, Ph. D. Thesis, Washington University, St. Louis, 1982.
  • W. Connett, Singular integrals near $L^1$, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Amer. Math. Soc. 35, Providence, R.I., 1979. 163–165.
  • Y. Ding and H. Liu, Weighted $L^p$ boundedness of Carleson type maximal operators, to appear in Proc. Amer. Math. Soc.
  • D. Fan and Y. Pan, Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math. 119 (1997), 799–839.
  • C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36.
  • L. Grafakos and A. Stefanov, Convolution Calderón-Zygmund singular integral operators with rough kernels, Analysis of Divergence: Control and Management of Divergent Processes, 119–143, Birkhauser, Boston-Basel-Berlin, 1999.
  • R. Hunt, On the convergence of Fourier series, Orthogonal Expansions and Their Continuous Analogues (Proc. Cont. Edwardsville, Ill., 1967), 235–255, Southern Illinois Univ. Press, Carbondale Ill., 1968.
  • E. Prestini and P. Sjölin, A Littlewood-Paley inequality for the Carleson operator, J. Fourier Anal. Appl. 6 (2000), 457–466.
  • F. Ricci and G. Weiss, A characterization of $H^1(\Sigma_n-1)$, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), 289–294, Amer. Math. Soc. 35, Providence, R.I., 1979.
  • P. Sjölin, Convergence almost everywhere of certain singular integral and multiple Fourier series, Ark. Mat. 9 (1971), 65–90.
  • E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970.
  • E. M. Stein and S. Wainger, Oscillatory integrals related to Carleson's theorem, Math. Res. Lett. 8 (2001), 789–800.