Open Access
2011 Lubin-Tate and Drinfeld bundles
Jan Kohlhaase
Tohoku Math. J. (2) 63(2): 217-254 (2011). DOI: 10.2748/tmj/1309952087

Abstract

Let $K$ be a nonarchimedean local field, let $h$ be a positive integer, and denote by $D$ the central division algebra of invariant $1/h$ over $K$. The modular towers of Lubin-Tate and Drinfeld provide period rings leading to an equivalence between a category of certain $\mathrm{GL}_h(K)$-equivariant vector bundles on Drinfeld's upper half space of dimension $h-1$ and a category of certain $D^*$-equivariant vector bundles on the $(h-1)$-dimensional projective space.

Citation

Download Citation

Jan Kohlhaase. "Lubin-Tate and Drinfeld bundles." Tohoku Math. J. (2) 63 (2) 217 - 254, 2011. https://doi.org/10.2748/tmj/1309952087

Information

Published: 2011
First available in Project Euclid: 6 July 2011

zbMATH: 1287.11076
MathSciNet: MR2812452
Digital Object Identifier: 10.2748/tmj/1309952087

Subjects:
Primary: 11G18
Secondary: 14G35 , 20G05

Rights: Copyright © 2011 Tohoku University

Vol.63 • No. 2 • 2011
Back to Top