Tohoku Mathematical Journal

Semi-simplicial Weil algebras and characteristic classes

Franz W. Kamber and Philippe Tondeur

Full-text: Open access

Article information

Source
Tohoku Math. J. (2) Volume 30, Number 3 (1978), 373-422.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
http://projecteuclid.org/euclid.tmj/1178229977

Digital Object Identifier
doi:10.2748/tmj/1178229977

Mathematical Reviews number (MathSciNet)
MR0509023

Zentralblatt MATH identifier
0398.57006

Subjects
Primary: 57R32: Classifying spaces for foliations; Gelfand-Fuks cohomology [See also 58H10]
Secondary: 55R55: Fiberings with singularities 57R30: Foliations; geometric theory

Citation

Kamber, Franz W.; Tondeur, Philippe. Semi-simplicial Weil algebras and characteristic classes. Tohoku Math. J. (2) 30 (1978), no. 3, 373--422. doi:10.2748/tmj/1178229977. http://projecteuclid.org/euclid.tmj/1178229977.


Export citation

References

  • [1] R. BOTT, Lectures on characteristic classes and foliations, Springer Lecture Notes 279 (1972), 1-94.
  • [2] R. BOTT, On the Chern-Weil homomorphism and the continuous cohomology of Li groups, Advances in Math. 11 (1973), 289-303.
  • [3] R. BOTT AND A. HAEFLIGER, On characteristic classes of -foliations, Bull. Amer. Math Soc. 78 (1972), 1039-1044.
  • [4] R. BOTT, H. SHULMAN, AND J. STASHEFP, On the De Rham theory of certain classifyin spaces, Advances in Math. 20 (1976), 43-56.
  • [5] H. CARTAN, Cohomologie reelle (Tun espace fibre principal differentiable, Seminair Cartan, exposes 19 et 20 (1949/50).
  • [6] C. GODBILLON AND J. VEY, Un invariant des feuilletages de codimension un, C. R. Ac Sci. Paris, t. 273 (1971), 92-95.
  • [7] R. GODEMENT, Topologie algebrique et theorie des faisceaux, Hermann, Paris (1958)
  • [8] A. GROTHENDIECK, Sur quelques points d'algebre homologique, Tohku Math. J. 9(1957), 119-221.
  • [9] A. GROTHENDIECK, On the De Rham cohomology of algebraic varieties, Publ. Math IHES 29 (1966), 95-103.
  • [10] A. HAEFLIGER, Sur les classes caracteristiques des feuilletages, Seminaire Bourbaki, 24 annee 1971/72, n. 412.
  • [11] L. ILLUSIE, Complexe cotangent et deformations, I et II, Springer Lecture Notes 23 (1971) and 283 (1972).
  • [12] F. KAMBER AND Ph. TONDEUR, Cohomologie des algebres de Weil relatives tronquees, C. R. Acad. Sci. Paris, t. 276 (1973), 459-462.
  • [13] F. KAMBER AND PH. TONDEUR, Algebres de Weil semi-simpliciales, C. R. Ac. Sci. Paris, t. 276 (1973), 1177-1179; Homomorphisme caracteristique d'un fibre principal feuillete, ibid, 1407-1410; Classes caracteristiques derivees d'un fibre principal feuillete, ibid, 1449-1452.
  • [14] F. KAMBER AND PH. TONDEUR, Characteristic invariants of foliated bundles, Manuscript Mathematica 11 (1974), 51-89.
  • [15] F. KAMBER AND PH. TONDEUR, Semi-simplicial Weil algebras and characteristic classe for foliated bundles in Cech cohomology, Proc. Symposia Pure Math. Stanford 1973, Vol. 27 (1975), Part I, 283-294.
  • [16] F. KAMBER AND PH. TONDEUR, Foliated bundles and characteristic classes, Springe Lecture Notes 493 (1975), 1-208.
  • [17] F. KAMBER AND PH. TONDEUR, Non-trivial characteristic invariants of homogeneou foliated bundles, Ann. Scient. Ee, Norm. Sup. 8(1975), 433-486.
  • [18] F. KAMBER AND PH. TONDEUR, On the linear independence of certain cohomology classe of B, Advances in Math., to appear.
  • [19] F. KAMBER AND PH. TONDEUR, Characteristic classes of complex analytic foliated bundles, to appear.
  • [20] F. KAMBER AND PH. TONDEUR, Cohomology of g-DG-algebras, to appear
  • [21] J. L. KOSZUL, Multiplicateurs et classes caracteristiques, Trans. Amer. Math. Soc. 8 (1958), 256-266.
  • [22] J. L. KOSZUL, Espaces fibres et pre-associes, Nagoya Math. J. 15 (1959), 155-169
  • [23] G. SEGAL, Classifying spaces and spectral sequences, Publ. Math. IHES 34 (1968), 105 112.
  • [24] H. SHULMAN, Characteristic classes of foliations, Ph. D. Thesis, University of California, Berkeley (1972).
  • [25] H. SHULMAN AND J. STASHEFF, De Rham theory for B, Springer Lecture Notes 65 (1978), 62-74.
  • [26] J. VEY, Quelques constructions relatives aux -structures, C. R. Acad. Sc. Paris, t 276 (1973), 1151-1153.
  • [27] A. Weil, Sur les theorems de De Rham, Comment. Math. Helv. 26 (1952), 119-145