Tohoku Mathematical Journal

The product of operators with closed range and an extension of the reverse order law

Saichi Izumino

Full-text: Open access

Article information

Source
Tohoku Math. J. (2) Volume 34, Number 1 (1982), 43-52.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
http://projecteuclid.org/euclid.tmj/1178229307

Digital Object Identifier
doi:10.2748/tmj/1178229307

Mathematical Reviews number (MathSciNet)
MR0651705

Zentralblatt MATH identifier
0481.47001

Subjects
Primary: 47A05: General (adjoints, conjugates, products, inverses, domains, ranges, etc.)
Secondary: 15A09: Matrix inversion, generalized inverses

Citation

Izumino, Saichi. The product of operators with closed range and an extension of the reverse order law. Tohoku Math. J. (2) 34 (1982), no. 1, 43--52. doi:10.2748/tmj/1178229307. http://projecteuclid.org/euclid.tmj/1178229307.


Export citation

References

  • [1] D. T. BARWICK AND J. D. GILBERT, On generalizations of reverse order law, SIAM J. Appl. Math. 27 (1974), 326-330.
  • [2] A. BEN-ISRAEL AND T. N. E. GREVILLE, Generalized Inverses: Theory and Applications, Wiley, New York, 1974.
  • [3] R. BOULDIN, The product of operotors with closed range, Thoku Math. J. 25 (1973), 359-363.
  • [4] R. BOULDIN, The pseudo-inverse of a product, SIAM J. Appl. Math. 24 (1973), 489-495
  • [5] R. BOULDIN, Closed range and relativity for products, J. Math. Anal. Appl. 61 (1977), 397-403.
  • [6] R. BOULDIN, Generalized inverses and factorizations, to appear in Recent Application o Generalized Inverses edited by M. Z. Nashed.
  • [7] P. A. FILLMORE AND J. P. WILLIAMS, On operator ranges, Advances in Math. 7 (1971), 254-281.
  • [8] T. FURUTA AND R. NAKAMOTO, Some theorems on certain contraction operators, Proc Japan Acad. 45 (1969), 565-566.
  • [9] A. M. GALPERIN AND Z. WAKSMAN, On pseudoinverses of operator products, Linear Algebr and Appl. 33 (1980), 123-131.
  • [10] T. N. E. GREVILLE, Solutions of the matrix equation XAX --X, and relations betwee oblique and orthogonal projections, SIAM J. Appl. Math. 26 (1974), 828-832.
  • [11] C. W. GROETSCH, Generalized Inverses of Linear Operators: Representation and Approxi mation, Marcel Dekker, New York and Basel, 1977.
  • [12] S. IZUMINO, Inequalities on operators with closed range, Math. Japon. 25 (1980), 423-429
  • [13] T. KATO, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelber and New York, 1966.
  • [14] J. J. KOLIHA, The product of relatively regular operators, Commentationes Math. Univ Carolinae 16 (1975), 531-539.
  • [15] M. Z. NASHED, Generalized Inverses and Applications, Academic Press, New York, Sa Francisco and London, 1976.
  • [16] G. NIKAIDO, Remarks on the lower bound of linear operators, Proc. Japan Acad. 56 (1980), 321-323.
  • [17] S. V. PHADKE AND N. T. TAKARE, Generalized inverses and operator equations, Linea Algebra and Appl. 23 (1979), 191-199.
  • [18] N. SHINOZAKI AND M. SIBUYA, The reverse order law (AB) = B A", Linear Algebra an Appl. 9 (1974), 29-40.
  • [19] N. SHINOZAKI AND M. SIBUYA, Further results on the reverse order law, Linear Algebr and Appl. 27 (1979), 9-16.
  • [20] E. A. WIBKER, R. B. HOWE AND J. D. GILBERT, Explicit solutions to the reverse orde law, (AB)+ = BrAr, Linear Algebra and Appl. 25 (1979), 107-114.