Tohoku Mathematical Journal

Individual ergodic theorems for commuting operators

Ryōtarō Satō

Full-text: Open access

Article information

Source
Tohoku Math. J. (2) Volume 35, Number 1 (1983), 129-135.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
http://projecteuclid.org/euclid.tmj/1178229106

Digital Object Identifier
doi:10.2748/tmj/1178229106

Mathematical Reviews number (MathSciNet)
MR0695664

Zentralblatt MATH identifier
0522.47005

Subjects
Primary: 47A35: Ergodic theory [See also 28Dxx, 37Axx]

Citation

Satō, Ryōtarō. Individual ergodic theorems for commuting operators. Tohoku Math. J. (2) 35 (1983), no. 1, 129--135. doi:10.2748/tmj/1178229106. http://projecteuclid.org/euclid.tmj/1178229106.


Export citation

References

  • [1] M. A. AKCOGLU AND R. V. CHACON, A convexity theorem for positive operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1965), 328-332.
  • [2] A. BRUNEL, Theoreme ergodique ponctuel pour un semi-groupe commutatif finimen engendre de contractions de L1, Ann. Inst. H. Poincare Sect. B (N. S.) 9 (1973), 327-343.
  • [3] R. V. CHACON AND U. KRENGEL, Linear modulus of a linear operator, Proc. Amer. Math Soc. 15 (1964), 553-559.
  • [4] N. DUNFORD AND J. T. SCHWARTZ, Linear Operators, Part I, Interscience, New York, 1958.
  • [5] R. EMILION, Some ergodic applications of Brunei's barycentric operator, preprint
  • [6] S. R. FOGUEL, The Ergodic Theory of Markov Processes, Van Nostrand Reinhold, Ne York, 1969.
  • [7] F. HIAI AND R. SATO, Mean ergodic theorems for semigroups of positive linear operators, J. Math. Soc. Japan 29 (1977), 123-134.
  • [8] S. A. McGRATH, Some ergodic theorems for commuting LI contractions, Studia Math 70 (1981), 153-160.
  • [9] Y. Io, Uniform integrability and the pointwise ergodic theorem, Proc. Amer. Math Soc. 16 (1965), 222-227.
  • [10] R. SATO, Contraction semigroups in Lebesgue space, Pacific J. Math. 78 (1978), 251-259