Tohoku Mathematical Journal

Oscillations of Volterra integral equations with delay

George Karakostas, I. P. Stavroulakis, and Yumei Wu

Full-text: Open access

Article information

Source
Tohoku Math. J. (2) Volume 45, Number 4 (1993), 583-605.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
http://projecteuclid.org/euclid.tmj/1178225851

Digital Object Identifier
doi:10.2748/tmj/1178225851

Mathematical Reviews number (MathSciNet)
MR1245724

Zentralblatt MATH identifier
0789.45001

Subjects
Primary: 45D05: Volterra integral equations [See also 34A12]
Secondary: 34K15

Citation

Karakostas, George; Stavroulakis, I. P.; Wu, Yumei. Oscillations of Volterra integral equations with delay. Tohoku Math. J. (2) 45 (1993), no. 4, 583--605. doi:10.2748/tmj/1178225851. http://projecteuclid.org/euclid.tmj/1178225851.


Export citation

References

  • [1] O. AKINYELE, Asymptotic properties of solutions of a Volterra integral equation with delay, Anal. Stiint. Univ. "AI. I. Cuza". Iasi. Sect. la. Mat. 30 (1984), 25-30.
  • [2] D. C. ANGELOVA AND D. D. BAINOV, On oscillation of a Volterra integral equation with delay, J. Math. Anal. Appl. 117 (1986), 26-272.
  • [3] A. F. BACHURSKAYA, Uniqueness and convergence of successive approximations for a class of Volterr equations, Differential Equations 10 (1974), 1325-1327.
  • [4] K. BALACHANDRAN AND S. IIAMARAN, An existence theorem for a Volterra integral equation wit deviating arguments, J. Appl. Math. Stoch. Anal. 3 (1990), 155-162.
  • [5] S. R. BERNFELD AND A. LASOTA, Quickly oscillating solutions of autonomous ordinary differentia equations, Proc. Amer. Math. Soc. 30 (1971), 519-526.
  • [6] J. M. BOWNDS, J. M. CUSHING AND R. SCHUTTE, Existence, uniqueness and extendibility of solution of Volterra integral systems with multiple, variable lags, Funk. Ekvac. 19 (1976), 101-111.
  • [7] S. S. DRAGOMIR, "The Gronwall Type Lemmas and Applications", Monograii Matematice, Univ Timisoara, 29 (1987).
  • [8] G. KARAKOSTAS, Causal operatorsandtopological dynamics, Ann.Mat.Pura.ed Appl. 131(1982), 1-27
  • [9] G. KARAKOSTAS, Asymptotic behavior of a certain functional equation via limiting equations. Czech Math. J. 36 (1986), 259-267.
  • [10] G. LADAS AND I. P. STAVROULAKIS, On delay differential inequalities of first order, Funk, Ekvac. 2 (1982), 105-113.
  • [11] G. LADAS, Y. G. SFICAS AND I. P. STAVROULAKIS, Functional differential inequalities and equation with oscillating coefficients, Lecture Notes in Pure and Appl. Math. 90, Dekker, New York, (1984), 277-284.
  • [12] M. J. LEITMAN AND V. J. MIZEL, Hereditary laws and nonlinear integral equations on the line, Adv in Math. 22 (1976), 220-266.
  • [13] M. J. LEITMAN AND V. J. MIZEI, Asymptotic stability and the periodic solutions of x(t) _ a{t-s)g(s9x(t))ds =/(/), J. Math. Anal. Appl. 66 (1978), 606-625.
  • [14] J. J. LEVIN, Boundedness and oscillation of some Volterra and delay equations, J. Differential Equation 5 (1969), 369-398.
  • [15] J. J. LEVIN, On a nonlinear Volterra equation, J. Math. Anal. Appl. 39 (1972), 458^76
  • [16] S. O. LONDEN, On the asympotic behavior of the bounded solutions of a nonlinear Volterra equation, SIAM J. Math. Anal. 5 (1974), 849-857.
  • [17] R. K. MILLER, On the linearization of Volterra integral equations, J. Math. Anal. Appl. 23 (1968), 198-208.
  • [18] R. K. MILLER, "Nonlinear Volterra Integral Equations", W. A. Benjamin, Inc., California, 1971
  • [19] R. K. MILLER AND G. R. SELL, Volterra integral equations and topological dynamics, Memoirs Amer Math. Soc. 102 (1970).
  • [20] H. ONOSE, On oscillation of Volterra integral equations and first order functional differential equations, Hiroshima Math. J. 20 (1990), 223-229.
  • [21] N. PARHI AND NIYATI MISRA, On oscillatory and nonoscillatory behavior of solutions of Volterr integral equations, J. Math. Anal. Appl. 94 (1983), 137-149.
  • [22] CH. G. PHILOS AND V. A. STAIKOS, Quick oscillations with damping, Math. Nachr.92 (1979), 153-160
  • [23] CH. G. PHILOS AND V. A. STAIKOS, Non-slow oscillations with damping, Rev. Roum. Math. Pures Appl. 25 (1980), 1099-1110.
  • [24] B. SINGH, Damped trajectories and slow oscillation in forced Lienard type functional equations, Funk Ekvac. 23 (1980), 63-81.
  • [25] B. SINGH, On quick oscillations in functional equations with deviating arguments, J. Math. Anal Appl. 101 (1984), 598-610.
  • [26] I. P. STAVROULAKIS, Nonlinear delay differential inequalities, Nonlinear Anal. 6 (1982), 389-396
  • [27] V. R. VINOKURON AND Ju. N. SMOLIN, On the asymptotics of Volterra equations with almost periodi kernels and lags, Soviet Math. Dokl. 12 (1971), 1704^1707.
  • [28] J. WERBOWSKI, On some asymptotic behavior of solution of a Volterra integral equation with delay, Demonstratio Math. 13 (1980), 579-584.
  • [29] P. P. ZABREYKO ETAL., "Interal Equations–a reference text", Noordhoff Interational Publishing, Leyden, 1975.