Tohoku Mathematical Journal

Left cells in affine Weyl groups

Jian Yi Shi

Full-text: Open access

Article information

Source
Tohoku Math. J. (2) Volume 46, Number 1 (1994), 105-124.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
http://projecteuclid.org/euclid.tmj/1178225804

Mathematical Reviews number (MathSciNet)
MR1256730

Zentralblatt MATH identifier
0798.20040

Digital Object Identifier
doi:10.2748/tmj/1178225804

Subjects
Primary: 20F55: Reflection and Coxeter groups [See also 22E40, 51F15]
Secondary: 20H15: Other geometric groups, including crystallographic groups [See also 51-XX, especially 51F15, and 82D25]

Citation

Shi, Jian Yi. Left cells in affine Weyl groups. Tohoku Math. J. (2) 46 (1994), no. 1, 105--124. doi:10.2748/tmj/1178225804. http://projecteuclid.org/euclid.tmj/1178225804.


Export citation

References

  • [1] R. BEDARD, Cells for two Coxeter groups, Comm. Algebra 14(1986), 1253-1286.
  • [2] CHEN CHENGDONG, Two-sided cells in affine Weyl groups, Northeastern Math. J. 6 (1990), 425^41
  • [3] CHEN CHENGDONG, Cells of the affine Weyl group of type /54, to appear in J. Algebra
  • [4] Du JIE, The decomposition into cells of the affine Weyl group of type J?3, Comm. Algebra 16 (1988), 1383-1409.
  • [5] Du JIE, Cells in the affine Weyl group of type D4, J. Algebra 128(1990), 384-404
  • [6] D. KAZHDAN AND G. LUSZTIG, Representations of Coxeter groups and Hecke algebras, Invent. Math 53 (1979), 165-184.
  • [7] D. KAZHDAN AND G. LUSZTIG, Schubert varieties and Poincare duality, Proc. Sympos. Pure Math 36, Amer. Math. Soc., (1980), 185-203.
  • [8] G. M. LAWTON, On cells in affine Weyi groups, Ph. D. Thesis, MIT, 1986
  • [9] G. LUSZTIG, Some examples in square integrable representations of semisimple /?-adic groups, Trans Amer. Math. Soc. 277 (1983), 623-653.
  • [10] G. LUSZTIG, The two-sided cells of the affine Weyl group of type w in "Infinite Dimensional Group with Applications", (V. Kac, ed.), MSRI. Publications 4, Springer-Verlag, 1985, pp. 275-283.
  • [11] G. LUSZTIG, Cells in affine Weyl groups, in "Algebraic Groups and Related Topics", (R. Hotta, ed. Advanced Studies in Pure Math., Kinokuniya and North Holland, 1985, pp. 255-287.
  • [12] G. LUSZTIG, Cells in affine Weyl groups, II, J. Algebra 109 (1987), 536-548
  • [13] G. LUSZTIG, Cells in affine Weyl groups, III, J. Fac. Sci. Univ. Tokyo Sect. IA. Math. 34 (1987), 223 243.
  • [14] G. LUSZTIG, Cells in affine Weyl groups, IV, J. Fac. Sci. Univ. Tokyo Sect. IA. Math. 36 (1989), 297 328.
  • [15] Rui HEBING, Some cells in affine Weyl groups of types other than n and G2, preprint
  • [16] JIAN-YI SHI, "The Kazhdan-Lusztig cells in certain affine Weyl groups, " Lecture Notes in Math. 1179, Springer-Verlag, New York, Heidelberg and Berlin, 1986.
  • [17] JIAN-YI SHI, Alcoves corresponding to an affine Weyl group, J. London Math. Soc. 35 (1987), 42 55.
  • [18] JIAN-YI SHI, A two-sided cell in an affine Weyl group, J. London Math. Soc. 36 (1987), 407^20
  • [19] JIAN-YI SHI, A two-sided cell in an affine Weyl group, II, J. London Math. Soc. 37 (1988), 253-264
  • [20] JIAN-YI SHI, Left cells in the affine Weyl group Wa(B4)9 to appear in Osaka J. Math
  • [21] JIAN-YI SHI, The classification of left cells of the affine Weyl group of type C4, in preparation
  • [22] JIAN-YI SHI, The verification of a conjecture on left cells of certain Coxeter groups, to appear i Hiroshima J. Math.
  • [23] D. VOGAN, A generalized -invariant for the primitive spectrum of a semisimple Lie algebra, Math Ann. 242 (1979), 209-224.
  • [24] ZHANG XIN-FA, Cells decomposition in the affine Weyl group Wa(B4), to appear in Comm. Algebra