Tohoku Mathematical Journal

Shimura curves as intersections of Humbert surfaces and defining equations of {QM}-curves of genus two

Ki-ichiro Hashimoto and Naoki Murabayashi

Full-text: Open access

Article information

Source
Tohoku Math. J. (2) Volume 47, Number 2 (1995), 271-296.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
http://projecteuclid.org/euclid.tmj/1178225596

Digital Object Identifier
doi:10.2748/tmj/1178225596

Mathematical Reviews number (MathSciNet)
MR1329525

Zentralblatt MATH identifier
0838.11044

Subjects
Primary: 14G35: Modular and Shimura varieties [See also 11F41, 11F46, 11G18]
Secondary: 11G10: Abelian varieties of dimension > 1 [See also 14Kxx] 14H10: Families, moduli (algebraic) 14K10: Algebraic moduli, classification [See also 11G15]

Citation

Hashimoto, Ki-ichiro; Murabayashi, Naoki. Shimura curves as intersections of Humbert surfaces and defining equations of {QM}-curves of genus two. Tohoku Math. J. (2) 47 (1995), no. 2, 271--296. doi:10.2748/tmj/1178225596. http://projecteuclid.org/euclid.tmj/1178225596.


Export citation

References

  • [1] G. VANDER GEER, Hubert modular surface, Springer-Verlag, Berlin, Heidelberg, 1988.
  • [2] R. HARTSHORNE, Algebraic geometry, Springer-Verlag, New York, 1977
  • [3] K. HASHIMOTO, Base change of simple algebras and symmetric maximal orders of quaternion algebras, Memoirs of Sci. & Eng., Waseda Univ. 53 (1989) 21-45.
  • [4] K. HASHIMOTO, Explicit form of quaternion modular embeddings, to appear in Osaka Math. J.
  • [5] T. HAYASHIDA, A class number associated with the product of an elliptic curve with itself, J. Math Soc. Japan 20 (1968), 26^3.
  • [6] T. HAYASHIDA AND M. NISHI, Existence of curves of genus two on a product of two elliptic curves, J. Math. Soc. Japan 17 (1965), 1-16.
  • [7] R. W. H. T. HUDSON, Kummer's quartic surface, Cambridge Univ. Press, 1990
  • [8] G. HUMBERT, Sur les fonctions abeliennes singulieres, (Euvres de G. Humbert 2, pub. par les soin de Pierre Humbert et de Gaston Julia, Paris, Gauthier-Villars (1936), 297-401.
  • [9] T. IBUKIYAMA, On maximal orders of division quaternion algebras over the rational number field wit certain optimal embeddings, Nagoya Math. J. 88 (1982), 181-195.
  • [10] J. IGUSA, Arithmetic variety of moduli for genus two, Ann. of Math. 72 (1960), 612-649
  • [11] B. JORDAN AND R. LIVNE, Local Diophantine properties of Shimura curves, Math. Ann. 270 (1985), 235-248.
  • [12] T. IBUKIYAMA, T. KATSURA AND F. OORT, Supersingular curves of genus two and class numbers, Comp Math. 57 (1986), 127-152.
  • [13] A. KRAZER, Lehrbuch der Thetafunktionen, Chelsea, New York, 1970
  • [14] R. M. KUHN, Curves of genus 2 with split jacobian, Trans. Amer. Math. Soc. 307 (1988), 41-49
  • [15] A. KURIHARA, On some examples of equations defining Shimura curves and the Mumfor uniformization, J. Fac. Sci. Univ. Tokyo 25 (1979), 277-301.
  • [16] A. KURIHARA, On/?-adic Poincare series and Shimura curves, International J. of Math. 5, No. 5 (1994), 747-763.
  • [17] Yu. I. MANIN, The theory of commutative formal groups over fields of finite characteristic, Russia Math. Surveys 18 (1963), 1-83.
  • [18] F. MESTRE, Families de courbes hyperelliptiques multiplications reelles, Arithmetic Algebraic Geometry, Birkhauser, (1991), 193-208.
  • [19] D. MUMFORD, Abelian varieties, Oxford Univ. Press, London, 1970
  • [20] M. OHTA, On /-adic representations of Galois groups obtained from certain two dimensional abelia varieties, J. Fac. Sci. Univ. Tokyo 21 (1974), 299-308.
  • [21] G. SHIMURA, Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan, no. 11, Princeton Univ. Press, 1971.
  • [22] G. SHIMURA, On the zeta-functions of the algebraic curves uniformized by certain automorphi functions, J. Math. Soc. Japan 13 (1961) 275-331.
  • [23] G. SHIMURA, Construction of class fields and zeta functions of algebraic curves, Ann. of Math. 8 (1967), 58-159.
  • [24] G. SHIMURA AND Y. TANIYAMA, Complex multiplications of Abelian varieties and its applications t number theory, Publ. Math. Soc. Japan, no. 6, 1961.
  • [25] J. TATE, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144
  • [26] N. Yui, On the Jacobian varieties of hyperelliptic curves over fields of characteristic p 2, J. of Algebr 52 (1978), 378^10.