Tohoku Mathematical Journal

Normal contact structures on $3$-manifolds

Hansjörg Geiges

Full-text: Open access

Article information

Source
Tohoku Math. J. (2) Volume 49, Number 3 (1997), 415-422.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
http://projecteuclid.org/euclid.tmj/1178225112

Digital Object Identifier
doi:10.2748/tmj/1178225112

Mathematical Reviews number (MathSciNet)
MR1464186

Zentralblatt MATH identifier
0897.53024

Subjects
Primary: 53C15: General geometric structures on manifolds (almost complex, almost product structures, etc.)
Secondary: 57M50: Geometric structures on low-dimensional manifolds 57N10: Topology of general 3-manifolds [See also 57Mxx] 57R15: Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)

Citation

Geiges, Hansjörg. Normal contact structures on $3$-manifolds. Tohoku Math. J. (2) 49 (1997), no. 3, 415--422. doi:10.2748/tmj/1178225112. http://projecteuclid.org/euclid.tmj/1178225112.


Export citation

References

  • [1] D. B. A. EPSTEIN, Periodic flows on 3-manifolds, Ann. of Math. 95 (1972), 66-82.
  • [2] A. FROHLICHER, Zur Differentialgeometrie der komplexen Strukturen, Math. Ann. 129 (1955), 50-95
  • [3] H. GEIGES AND J. GONZALO, Contact geometry and complex surfaces, Invent. Math. 121(1995), 147-209
  • [4] H. GEIGES AND J. GONZALO, Seifert invariants of left-quotients of 3-dimensional simple Lie groups, Topology Appl. 66 (1995), 117-127.
  • [5] J. HEMPEL, 3-Manifolds, Ann. of Math. Studies 86, Princeton University Press, Princeton NJ, 1976
  • [6] M. KATO, Topology of Hopf surfaces, J. Math. Soc. Japan 27 (1975), 222-238; erratum: ibid. 4 (1989), 173-174.
  • [7] K. KODAIRA, On the structure of compact complex analytic surfaces II, Amer. J. Math. 88 (1966), 682-721.
  • [8] H. SATO, Remarks concerning contact manifolds, Tohoku Math. J. 29 (1977), 577-584
  • [9] P. SCOTT, The geometries of 3-manifolds, Bull. London Math. Soc. 15(1983), 401-487
  • [10] P. SCOTT, There are no fake Seifert fibre spaces with infinite nl9 Ann. of Math. 117 (1983), 35-70
  • [11] M. UE, Geometric 4-manifolds in the sense of Thurston and Seifert 4-manifolds II, J. Math. Soc Japan 43 (1991), 149-183.
  • [12] C. T. C. WALL, Geometries and geometric structures in real dimension 4 and complex dimension 2, in: Geometry and Topology, Lecture Notes in Math. 1167, Springer, Berlin (1985), 268-292.
  • [13] C. T. C. WALL, Geometric structures on compact complex analytic surfaces, Topology 25 (1986), 119-153.