Tohoku Mathematical Journal

On $p$-adic zeta functions and ${\bf Z}_p$-extensions of certain totally real number fields

Hisao Taya

Full-text: Open access

Article information

Source
Tohoku Math. J. (2) Volume 51, Number 1 (1999), 21-33.

Dates
First available: 3 May 2007

Permanent link to this document
http://projecteuclid.org/euclid.tmj/1178224850

Mathematical Reviews number (MathSciNet)
MR1671739

Zentralblatt MATH identifier
0943.11049

Digital Object Identifier
doi:10.2748/tmj/1178224850

Subjects
Primary: 11R23: Iwasawa theory
Secondary: 11R18: Cyclotomic extensions 11R29: Class numbers, class groups, discriminants

Citation

Taya, Hisao. On $p$-adic zeta functions and ${\bf Z}_p$-extensions of certain totally real number fields. Tohoku Mathematical Journal 51 (1999), no. 1, 21--33. doi:10.2748/tmj/1178224850. http://projecteuclid.org/euclid.tmj/1178224850.


Export citation

References

  • [1] J COATES, p-'dic L-functions and Iwasawa's theory, in Algebraic Number Fields, Durham Symposium, 1975, ed by A Frhlich, Academic Press, 1977, 269-353
  • [2] P COLMEZ, Residu en s= des functions zeta/?-adiques, Invent Math 91 (1988), 371-38
  • [3] B FERRERO AND L. C WASHINGTON, The Iwasawa invariant p vanishes for abelian number fields, Ann of Math 109 (1979), 377-395
  • [4] T FUKUDA AND K. KOMATSU, On the invariants of Zp-extensions of real quadratic fields, J Numbe Theory 23 (1986), 238-242
  • [5] T FUKUDA AND K. KOMATSU, On Z^-extensions of real quadratic fields, J Math Soc Japan 38 (1986), 95-102
  • [6] T FUKUDA, K KOMATSU, M OZAKI AND H. TAYA, On Iwasawa ^-invariants of relative real cycli extensions of degree /?, Tokyo J Math 20 (1997), 475-480
  • [7] T FUKUDA AND H. TAYA, The Iwasawa A-invariants of Zp-extensions of real quadratic fields, Act Arith 69 (1995), 277-292
  • [8] R GREENBERG, On the Iwasawa invariants of totally real number fields, Amer J Math 98 (1976), 263-284
  • [9] H ICHIMURA AND H. SuMiDA, On the Iwasawa ^-invariants of certain real abelian fields, Thok Math J 49 (1997), 203-215
  • [10] H ICHIMURA AND H. SUMIDA, On the Iwasawa A-invariants of certain real abelian fields II, Internationa J Math 7 (1996), 721-744
  • [11] A INATOMI, On Zp-extensions of real abelian fields, Kodai Math J 12 (1989), 420-42
  • [12] K IWASAWA, On -extensions of algebraic number fields, Bull Amer Math Soc 65(1959), 183-22
  • [13] K IWASAWA, On Zextensions of algebraic number fields, Ann of Math 98 (1973), 246-32
  • [14] K IWASAWA, On the -invariants of Zextensions, Number theory, Algebraic Geometry an Commutative algebra (in honor of Y Akizuki), ed by Y Kusunoki, et al, Kinokuniya, Tokyo, 1973, 1-11
  • [15] K IWASAWA, A note on capitulation problem for number fields II, Proc Japan Acad 65A (1989), 183-186
  • [16] J S KRAFT AND R. SCHOOF, Computing Iwasawa modules of real quadratic number fields, Compositi Math 97 (1995), 135-155
  • [17] M KURIHARA, The Iwasawa ^-invariants of real abelian fields and the cyclotomic elements, preprin 1995
  • [18] J-P SERRE, Local class field theory, in Algebraic Number Theory, ed by J W S Cassels and Frhlich, 129-165, Academic Press, 1967
  • [19] M OZAKI AND H TAYA, A note on Greenberg's conjecture for real abelian number fields, Manuscript Math 88 (1995), 311-320
  • [20] H TAYA, On cyclotomic Z^-extensions of real quadratic fields, Acta Arith 74 (1996), 107-11 /7-ADIC ZETA FUNCTIONS AND Zp-EXTENSIONS33
  • [21] H TAYA, On/?-adic L-functions and Zp-extensions of certain real abelian number fields, to appear i J Number Theory
  • [22] L C WASHINGTON, Introduction to Cyclotomic Fields, Graduate Texts in Math. Vol 8 Springer-Verlag, New York, Heidelberg, Berlin 1982