Tohoku Mathematical Journal

A non-liftable Calabi-Yau threefold in characteristic $3$

Masayuki Hirokado

Full-text: Open access

Article information

Source
Tohoku Math. J. (2) Volume 51, Number 4 (1999), 479-487.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
http://projecteuclid.org/euclid.tmj/1178224716

Digital Object Identifier
doi:10.2748/tmj/1178224716

Mathematical Reviews number (MathSciNet)
MR1725623

Zentralblatt MATH identifier
0969.14028

Subjects
Primary: 14J32: Calabi-Yau manifolds

Citation

Hirokado, Masayuki. A non-liftable Calabi-Yau threefold in characteristic $3$. Tohoku Math. J. (2) 51 (1999), no. 4, 479--487. doi:10.2748/tmj/1178224716. http://projecteuclid.org/euclid.tmj/1178224716.


Export citation

References

  • [1] M ARTIN AND B MAZUR, Formal groups arising from algebraic varieties, Ann Sci Ecole Norm Sup. (4) 10 (1977), 87-131
  • [2] P DELIGNE, Relevement des surfaces K3 en caracteristique nulle, Lecture Notes in Math 868, Springer Verlag, 1981, 58-79
  • [3] T EKEDAHL, Foliations and inseparable morphisms, Proc. Sympos Pure Math 46, Part 2, Amer. Math Soc, Providence, RI, 1987, 139-149
  • [4] M HIROKADO, Zariski surfaces as quotients of Hirzebruch surfaces by 1-foliations, preprin
  • [5] M HIROKADO, Calabi-Yau threefolds obtained as fiber products of elliptic andquasi-ellipticrational surfaces, to appear in J Pure Applied Algebra
  • [6] W LANG AND N NYGAARD, A short proof of the Rydakov-Safarevic theorem, Math Ann. 251 (1980), 171-173
  • [7] Y MIYAOKA, Vector fields on Calabi-Yau manifolds in characteristic p, Daisuu Kikagaku Symposium a Kinosaki, 1995, 149-156.
  • [8] N NYGAARD, On the fundamental group of a unirational 3-fold, Invent Math 44 (1978), 75-8
  • [9] N NYGAARD, A p-aic proof of the non-existence of vectorfields on K3 surfaces, Ann of Math 110 (1979), 515-528
  • [10] K. OGUISO, On certain rigid fibered Calabi-Yau threefolds, Math Z. 221 (1996), 437-44
  • [11] A RUDAKOV AND I SHAFAREVICH, Inseparable morphisms of algebraic surfaces, Math USSR Izv. 1 (1976), 1205-1237
  • [12] A RUDAKOV AND I SHAFAREVICH, Surfaces of type K3 over fields of finite characteristics, J Soviet Mat 22(1983), 1476-1533.
  • [13] K. SAKAMAKI, Artin-Mazur formal groups and Picard-Fuchs equations attached to certain Calabi-Yau three folds, Master's Thesis, Kyoto University, 1994
  • [14] J SERRE, Sur la topologie des varietes algebriques en caracteristique p, Symposium Internacionalde Topolo gia Algebraica, Mexico, 1958, 24-53.
  • [15] N SUWA, Hodge-Witt cohomology of complete intersections, J. Math. Soc.Japan 45 (1993), 295-30