Tohoku Mathematical Journal

On the $L^2$ form spectrum of the Laplacian on nonnegatively curved manifolds

Marco Rigoli and Alberto G. Setti

Full-text: Open access

Abstract

Let $(M,g_o)$ be a complete, noncompact Riemannian manifold with a pole, and let $g=fg_o$ be a conformally related metric. We obtain conditions on the curvature of $g_o$ and on $f$ under which the Laplacian on $p$-forms on $(M,g)$ has no eigenvalues.

Article information

Source
Tohoku Math. J. (2) Volume 53, Number 3 (2001), 443-452.

Dates
First available in Project Euclid: 3 May 2007

Permanent link to this document
http://projecteuclid.org/euclid.tmj/1178207419

Mathematical Reviews number (MathSciNet)
MR2002g:58054

Zentralblatt MATH identifier
0998.58023

Digital Object Identifier
doi:10.2748/tmj/1178207419

Subjects
Primary: 58J50: Spectral problems; spectral geometry; scattering theory [See also 35Pxx]
Secondary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60]

Keywords
Differential forms Hodge Laplacian $L^2$-spectrum

Citation

Rigoli, Marco; Setti, Alberto G. On the $L^2$ form spectrum of the Laplacian on nonnegatively curved manifolds. Tohoku Math. J. (2) 53 (2001), no. 3, 443--452. doi:10.2748/tmj/1178207419. http://projecteuclid.org/euclid.tmj/1178207419.


Export citation

References

  • [A] N. ARONSZAJN, A unique continuation for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (1957), 235-249.
  • [Dl] J. DODZIUK, L2 harmonic forms on rotationally symmetric Riemannian manifolds, Proc.Amer. Math.Soc 77 (1979), 395-400.
  • [D2] J. DODZIUK, I?" harmonic forms on complete manifolds, Seminar on Differential Geometry, Ann. of Math Stud. 102(1982), 291-302.
  • [D3] J. DODZIUK, Vanishing theorems for square-integrable harmonic forms, Geometry and Analysis, Paper dedicated to the memory of V. K. Patodi, Indian Acad. of Sci. (1981), 21-27.
  • [Dn] H. DONNELLY, The differential form spectrum of hyperbolic space, Manuscripta Math. 33 (1981), 365 385.
  • [DnX] H. DONNELLY AND F. XAVIER, On the differential form spectrum of negatively curved Riemannianman ifolds, Amer. J. Math. 106 (1984), 169-184.
  • [E] J. F. ESCOBAR, On the spectrum of the Laplacian on complete Riemannian manifolds, Comm. Partia Differential Equations 11 (1986), 63-85.
  • [EF1] J. F. ESCOBAR AND A. FREIRE, The spectrum of the Laplacian of manifolds of positive curvature, Duk Math. J. 65 (1992), 1-21.
  • [EF2] J. F. ESCOBAR AND A. FREIRE, The differential form spectrum of manifolds of positive curvature, Duk Math. J. 69 (1993), 1-41.
  • [GW] R. GREENE AND H. H. WU, Function Theory on Manifolds Which Possess a Pole, Lecture Notes in Math 699, Springer Verlag, Berlin, 1979.
  • [K] A. KASUE, A note on L2 harmonic forms on a complete manifold, Tokyo J. Math. 17 (1994), 455-465
  • [Kz] J. KAZDAN, Unique continuation in geometry, Comm. Pure Appl. Math.41 (1988), 667-681
  • [RS] M. RIGOLI AND A. G. SETTI, Energy estimates and Liouville theorems for harmonic maps, Internat. J. Math. 11 (2000), 413^48.
  • [Se] H. C. J. SEALEY, Some conditions ensuring the vanishing of harmonic differential forms with application to harmonic maps and Yang-Mills theory, Math.Proc. Cambridge Philos. Soc. 91 (1982), 441-452.
  • [St] R. S. STRICHARTZ, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal. 5 (1983), 44-79.
  • [Y] S. T. YAU, Some function theoretic properties of complete Riemannian manifolds and their applications t geometry, Indiana Univ. Math.J. 25 (1976), 659-670.