Open Access
2003 Complete constant Gaussian curvature surfaces in the Minkowski space and harmonic diffeomorphisms onto the hyperbolic plane
Jose A. Gálvez, Antonio Martínez, Francisco Milán
Tohoku Math. J. (2) 55(4): 467-476 (2003). DOI: 10.2748/tmj/1113247124

Abstract

We complete the global classification of spacelike surfaces in the Minkowski three-space with constant Gaussian curvature in terms of harmonic diffeomorphisms onto the hyperbolic plane. A harmonic representation of them is also obtained.

Citation

Download Citation

Jose A. Gálvez. Antonio Martínez. Francisco Milán. "Complete constant Gaussian curvature surfaces in the Minkowski space and harmonic diffeomorphisms onto the hyperbolic plane." Tohoku Math. J. (2) 55 (4) 467 - 476, 2003. https://doi.org/10.2748/tmj/1113247124

Information

Published: 2003
First available in Project Euclid: 11 April 2005

zbMATH: 1061.53041
MathSciNet: MR2017219
Digital Object Identifier: 10.2748/tmj/1113247124

Subjects:
Primary: 53C42
Secondary: 53C43 , 53C50 , 58E20

Keywords: Gaussian curvature , Harmonic Maps , Weierstrass representation

Rights: Copyright © 2003 Tohoku University

Vol.55 • No. 4 • 2003
Back to Top