Statistics Surveys

Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain

Sean L. Simpson, F. DuBois Bowman, and Paul J. Laurienti

Full-text: Open access

Abstract

Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field of statistics has been integral in advancing activation analyses and some connectivity analyses in functional neuroimaging research, it has yet to play a commensurate role in complex network analyses. Fusing novel statistical methods with network-based functional neuroimage analysis will engender powerful analytical tools that will aid in our understanding of normal brain function as well as alterations due to various brain disorders. Here we survey widely used statistical and network science tools for analyzing fMRI network data and discuss the challenges faced in filling some of the remaining methodological gaps. When applied and interpreted correctly, the fusion of network scientific and statistical methods has a chance to revolutionize the understanding of brain function.

Article information

Source
Statist. Surv. Volume 7 (2013), 1-36.

Dates
First available: 28 October 2013

Permanent link to this document
http://projecteuclid.org/euclid.ssu/1382965566

Digital Object Identifier
doi:10.1214/13-SS103

Mathematical Reviews number (MathSciNet)
MR3161730

Citation

Simpson, Sean L.; Bowman, F. DuBois; Laurienti, Paul J. Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain. Statistics Surveys 7 (2013), 1--36. doi:10.1214/13-SS103. http://projecteuclid.org/euclid.ssu/1382965566.


Export citation

References

  • [1] Biswal, B.B., Mennes, M., Zuo, X., Gohel, S., Kelly, C., Smith, S.M., et al. Toward discovery science of human brain function. Proc. Natl. Acad. Sci. USA, 107: 4734–4739, 2010.
  • [2] Sporns, O. Networks of the Brain. The MIT Press, 2010.
  • [3] Ogawa, S., Lee, T.M., Kay, A.R., and Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA, 87: 9868–9872, 1990.
  • [4] Biswal, B.B., Yetkin, F.Z., Haughton, V.M., and Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med., 34: 537–41, 1995.
  • [5] Friston, K.J. Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping, 2: 56–78, 1994.
  • [6] Bullmore, E. and Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10: 186–198, 2009.
  • [7] Telesford, Q.K., Simpson, S.L., Burdette, J.H., Hayasaka, S., and Laurienti, P.J. The brain as a complex system: using network science as a tool for understanding the brain. Brain Connectivity, 1(4): 295–308, 2011.
  • [8] Bassett, D.S. and Bullmore, E.T. Human brain networks in health and disease. Curr. Opin. Neurol., 22: 340–347, 2009.
  • [9] Fornito, A., Zalesky, A., Pantelis, C., and Bullmore, E.T. Schizophrenia, neuroimaging, and connectomics. NeuroImage, 62: 2296–2314, 2012.
  • [10] Wu, T., Wang, L., Chen, Y., Zhao, C., Li, K., and Chan, P. Changes of functional connectivity of the motor network in the resting state in Parkinson’s disease. Neuroscience Letters, 460: 6–10, 2009.
  • [11] Minoshima, S., Giordani, B.J., Berent, S., Frey, K.A., Foster, N.L., and Kuhl, D.E. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann. Neurol., 42: 85–94, 1997.
  • [12] Burdette, J.H., Minoshima, S., Vander Borght, T., Tran, D.D., and Kuhl, D.E. Alzheimer disease: improved visual interpretation of PET images by using three-dimensional stereotaxic surface projections. Radiology, 198(3): 837–843, 1996.
  • [13] Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., and Sporns, O. Mapping the structural core of human cerebral cortex. PLoS Biol., 6: e159, 2008.
  • [14] Rubinov, M. and Sporns, O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 52: 1059–1069, 2010.
  • [15] Fornito, A., Zalesky, A., and Bullmore, E.T. Network scaling effects in graph analytic studies of human resting-state fMRI data. Front. Syst. Neurosci., 4: 22, 2010.
  • [16] Sporns, O., Tononi, G., and Kotter, R. The human connectome: a structural description of the human brain. PLoS ONE, 2: e1049, 2005.
  • [17] Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., et al. Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Human Brain Mapping, 30(5): 1511–1523, 2009.
  • [18] Honey, C.J., Kotter, R., Breakspear, M., and Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. USA, 104: 10240–10245, 2007.
  • [19] Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., and Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15: 273–289, 2002.
  • [20] van den Heuvel, M.P., Stam, C.J., Boersma, M., and Hulshoff Pol, H.E. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. NeuroImage, 43: 528–539, 2008.
  • [21] Hayasaka, S. and Laurienti, P.J. Comparison of characteristics between region- and voxel-based network analysis in resting-state fMRI. NeuroImage, 50: 499–508, 2010.
  • [22] Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., et al. Functional network organization of the human brain. Neuron, 72: 665–678, 2011.
  • [23] Smith, S.M., Miller, K.L., Gholamreza, S., Webster, M., Beckmann, C.F., Nichols, T.E., et al. Network modelling methods for fMRI. NeuroImage, 54: 875–891, 2011.
  • [24] Bowman, F.D., Zhang, L., Derado, G., and Chen, S. Determining functional connectivity using fMRI data with diffusion-based anatomical weighting. NeuroImage, 62: 1769–1779, 2012.
  • [25] Varoquaux, G., Gramfort, A., Poline, J.B., and Thirion, B. Brain covariance selection: better individual functional connectivity models using population prior. arXiv:1008.5071v4 [stat.ML], 2010.
  • [26] Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., and Raichle, M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA, 102: 9673–9678, 2005.
  • [27] Cecchi, G.A., Rish, I., Thyreau, B., Thirion, F.B., Plaze, M., Paillere-Martinot, M.L., Martelli, C., Martinot, J., and Poline, J. Discriminative network models of schizophrenia. In: Neural Information Processing Systems, 2009.
  • [28] Moussa, M.N., Steen, M.R., Laurienti, P.J., and Hayasaka, S. Consistency of network modules in resting-state fMRI connectiome data. PLoS ONE, 7: e44428, 2010.
  • [29] Zalesky, A., Fornito, A., and Bullmore, E.T. On the use of correlation as a measure of network connectivity. NeuroImage, 60: 2096–2106, 2012.
  • [30] Hlinka, J., Palus, M., Vejmelka, M., Mantini, D., and Corbetta, M. Functional connectivity in resting-state fMRI: is linear correlation sufficient? NeuroImage, 54: 2218–2225, 2011.
  • [31] Achard, S., Salvador, R., Whitcher, B., Suckling, J., and Bullmore, E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26: 63–72, 2006.
  • [32] Marrelec, G., Krainik, A., Duffau, H., Pélégrini-Issac, M., Lehéricy, S., Doyon, J., and Benali, H. Partial correlation for functional brain interactivity investigation in functional MRI. NeuroImage, 32: 228–237, 2006.
  • [33] Hlinka, J., Hartman, D., and Palus, M. Small-world topology of functional connectivity in randomly connected dynamical systems. Chaos, 22: 033107, 2012.
  • [34] Curtis, C.E., Sun, F.T., Miller, L.M., and D’Esposito, M. Coherence between fMRI time-series distinguishes two spatial working memory networks. NeuroImage, 26: 177–183, 2005.
  • [35] Muller, K., Lohmann, G., Bosch, V., and von Cramon, D.Y. On multivariate spectral analysis of fMRI time series. NeuroImage, 14: 347–356, 2001.
  • [36] Chang, C. and Glover, G. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage, 50: 81–98, 2010.
  • [37] Ombao, H. and Van Bellegem, S. Evolutionary coherence of nonstationary signals. IEEE Transactions on Signal Processing, 56: 2259–2266, 2008.
  • [38] Fiecas, M. and Ombao, H. The generalized shrinkage estimator for the analysis of functional connectivity of brain signals. Annals of Applied Statistics, 5: 1102–1125, 2011.
  • [39] Ma, S., Calhoun, V.D., Eichele, T., Du, W., and Adali, T. Modulations of functional connectivity in the healthy and schizophrenia groups during task and rest. NeuroImage, 62: 1694–1704, 2012.
  • [40] Salvador, R., Martinez, A., Pomarol-Clotet, E., Sarro, S., Suckling, J., and Bullmore, E. Frequency based mutual information measures between clusters of brain regions in functional magnetic resonance imaging. NeuroImage, 35: 83–88, 2007.
  • [41] Hartman, D., Hlinka, J., Palus, M., Mantini, D., and Corbetta, M. The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks. Chaos, 21: 013119, 2011.
  • [42] Dauwels, J., Vialatte, F., Musha, T., and Cichocki, A. A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. NeuroImage, 49: 668–693, 2010.
  • [43] Stam, C.J. and van Dijk, B.W. Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D, 163: 236–251, 2002.
  • [44] Pereda, E., Quiroga, R.Q., and Bhattacharya, J. Causal influence: nonlinear multivariate analysis of neurophysical signals. Prog. Neurobiol., 77: 1–37, 2005.
  • [45] Netoff, I., Caroll, T.L., Pecora, L.M., and Schiff, S.J. Detecting coupling in the presence of noise and nonlinearity. In: Handbook of Time Series Analysis. B. Schelter, M. Winterhalder, J. Timmer (eds). Wiley-B.W., 2006.
  • [46] Winterhalder, M., Schelter, B., Hesse, W., Schwab, K., Leistritz, L., Klan, D., et al. Comparison of linear signal procesing techniques to infer directed interactions in multivariate neural systems. Signal Process, 85: 2137–2160, 2005.
  • [47] Varoquaux, G., Gramfort, A., Poline, J.B., and Thirion, B. Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks? J. Physiol., doi:10.1016/j.jphysparis.2012.01.001, 2012.
  • [48] Cribben, I., Haraldsdottir, R., Atlas, L.Y., Wager, T.D., and Lindquist, M.A. Dynamic connectivity regression: determining state-related changes in brain connectivity. NeuroImage, 61: 907–920, 2012.
  • [49] Kolaczyk, E.D. Statistical Analysis of Network Data: Methods and Models. Springer, 2009.
  • [50] Rubinov, M. and Sporns, O. Weight-converving characterization of complex functional brain networks. NeuroImage, 56: 2068–2079, 2011.
  • [51] van Wijk, B.C.M., Stam, C.J., and Daffertshofer, A. Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE, 5: e13701, 2010.
  • [52] Stam, C.J. and Reijneveld, J.C. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedical Physics, 1: 3, 2007.
  • [53] Watts, D.J. and Strogatz, S.H. Collective dynamics of small-world networks. Nature, 393: 440–442, 1998.
  • [54] Stam, C.J. Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci. Lett., 355: 25–28, 2004.
  • [55] Laurienti, P.J., Joyce, K.E., Telesford, Q.K., Burdette, J.H., and Hayasaka, S. Universal fractal scaling of self-organized networks. Physica A, 390: 3608–3613, 2011.
  • [56] Ginestet, C.E. and Simmons, A. Statistical parametric network analysis of functional connectivity dynamics during a working memory task. NeuroImage, 55: 688–704, 2011.
  • [57] Kinnison, J., Padmala, S., Choi, J., and Pessoa, L. Network analysis reveals increased integration during emotional and motivational processing. The Journal of Neuroscience, 32: 8361–8372, 2012.
  • [58] Ginestet, C.E., Nichols, T.E., Bullmore, E.T., and Simmons, A. Brain network analysis: separating cost from topology using cost-integration. PLoS ONE, 6: e21570, 2011.
  • [59] Joyce, K.E., Laurienti, P.J., and Hayasaka, S. Complexity in a brain-inspired agent-based model. Neural Networks, 33: 275–290, 2012.
  • [60] Newman, M.E.J. The structure and function of complex networks. SIAM Rev., 45: 167–256, 2003.
  • [61] Latora, V. and Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett., 87: 198701, 2001.
  • [62] Onnela, J.P., Saramaki, J., Kertesz, J., and Kaski, K. Intensity and coherence of motifs in weighted complex networks. Phy. Rev. E., Stat. Nonlinear Soft Matter Phys., 71: 065103, 2005.
  • [63] Saramäki, J., Kivelä, M., Onnela, J.P., Kaski, K., and Kertész, J. Generalizations of the clustering coefficient to weighted complex networks. Phy. Rev. E., Stat. Nonlinear Soft Matter Phys., 75: 027105, 2007.
  • [64] Fagiolo, G. Clustering in complex directed networks. Phy. Rev. E., Stat. Nonlinear Soft Matter Phys., 76: 026107, 2007.
  • [65] Sporns, O. and Honey, C.J. Small worlds inside big brains. Proc. Natl. Acad. Sci. USA, 103: 19219–19220, 2006.
  • [66] Maslov, S. and Sneppen, K. Specificity and stability in topology of protein networks. Science, 296: 910–913, 2002.
  • [67] Humphries, M.D. and Gurney, K. Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS ONE, 3: e0002051, 2008.
  • [68] Sporns, O. and Zwi, J. The small world of the cerebral cortex. Neuroinformatics, 2: 145–162, 2004.
  • [69] Telesford, Q.K., Joyce, K.E., Hayasaka, S., Burdette, J.H., and Laurienti, P.J. The ubiquity of small-world networks. Brain Connectivity, 1: 367–375, 2011.
  • [70] Barabasi, A.L. and Albert, R. Emergence of scaling in random networks. Science, 286: 509–512, 1999.
  • [71] Rubinov, M., Sporns, O., Thivierge, J., and Breakspear, M. Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLoS Computational Biology, 7: e1002038, 2011.
  • [72] Virkar, Y. and Clauset, A. Power-law distributions in binned empirical data. arXiv:1208.3524v1 [physics.data-an], 2012.
  • [73] Newman, M.E.J. Assortative mixing in networks. Phys. Rev. Lett., 89: 2087011–2087014, 2002.
  • [74] Leung, C.C. and Chau, H.F. Weighted assortative and disassortative networks model. Physica A, 378: 591–602, 2007.
  • [75] Freeman, L. A set of measures of centrality based on betweenness. Sociometry, 40: 35–41, 1977.
  • [76] Freeman, L. Centrality in social networks: conceptual clarification. Soc. Networks, 1: 215–239, 1979.
  • [77] Bonacich, P. Power and centrality: a family of measures. Am. J. Sociol., 92: 1170–1182, 1987.
  • [78] Borgatti, S.P. and Everett, M.G. A graph-theoretic perspective on centrality. Soc. Networks, 28: 466–484, 2006.
  • [79] He, Y., Chen, Z., and Evans, A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J. Neurosci., 28: 4756–4766, 2008.
  • [80] Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T., et al. Corticalhubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci., 29: 1860–1873, 2009.
  • [81] Lynall, M.-E., Bassett, D.S., Kerwin, R., McKenna, P.J., Kitzbichler, M., Muller, U., and Bullmore, E. Functional connectivity and brain networks in schizophrenia. J. Neurosci., 30: 9477–9487, 2010.
  • [82] Lohmann, G., Margulies, D.S., Horstmann, A., Pleger, B., Lepsien, J., Goldhahn, D., et al. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS ONE, 5: e10232, 2010.
  • [83] Borgatti, S.P. Centrality and network flow. Soc. Networks, 27: 55–71, 2005.
  • [84] Südhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci., 27: 509–547, 2004.
  • [85] Beggs, J.M. and Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci., 23: 11167–11177, 2003.
  • [86] Girvan, M. and Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA, 99: 7821–7826, 2002.
  • [87] Fortunato, S. Community detection in graphs. Phys. Rep., 486: 75–174, 2010.
  • [88] Newman, M.E.J. and Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E, Stat. Nonlin. Soft Matter Phys., 69: 026113, 2004.
  • [89] Danon, L., Diaz-Guilera, A., Duch, J., and Arenas, A. Comparing community structure identification. J. Stat. Mech., P09008, 2005.
  • [90] Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA, 103: 8577–8582, 2006.
  • [91] Fortunato, S. and Barthélemy, M. Resolution limit in community detection. Proc. Natl. Acad. Sci. USA, 104: 36–41, 2007.
  • [92] Good, B.H., de Montjoye, Y.-A., and Clauset, A. The performance of modularity maximization in practical contexts. Phys. Rev. E, 81: 046106, 2010.
  • [93] Ruan, J. and Zhang, W. Identifying network communities with a high resolution. Phys. Rev. E, Stat. Nonlin. Soft Matter Phys., 77: 016104, 2008.
  • [94] Newman, M.E.J. Analysis of weighted networks. Phys. Rev. E, Stat. Nonlin. Soft Matter Phys., 70: 056131, 2004.
  • [95] Leicht, E.A. and Newman, M.E. Community structure in directed networks. Phys. Rev. Lett., 100: 118703, 2008.
  • [96] Aldecoa, R. and Marín, I. Deciphering network community structure by Surprise. PLoS ONE, 6: e24195, 2011.
  • [97] Blondel, V.D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. Fast unfolding of community hierarchies in large networks. J. Stat. Mech., P10008, 2008.
  • [98] Wu, K., Taki, Y., Sato, K., Sassa, Y., Inoue, K., et al. The overlapping community structure of structural brain network in young healthy individuals. PLoS ONE, 6: e19608, 2011.
  • [99] Palla, G., Derenyi, I., Farkas, I., and Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435: 814–818, 2005.
  • [100] Lancichinetti, A., Radicchi, F., Ramasco, J.J., and Fortunato, S. Finding statistically significant communities in networks. PLoS ONE, 6: e18961, 2011.
  • [101] Kovács, I.A., Palotai, R., Szalay, M.S., and Csermely, P. Community landscapes: an integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics. PLoS ONE, 5: e12528, 2010.
  • [102] Steen, M., Hayasaka, S., Joyce, K.E., and Laurienti, P.J. Assessing the consistency of community structure in complex networks. Phys. Rev. E, Stat. Nonlin. Soft Matter Phys., 84: 016111, 2011.
  • [103] Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., and Onnela, J.-P. Community structure in time-dependent, multiscale, and multiplex networks. Science, 328: 876–878, 2010.
  • [104] Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., and Grafton, S.T. Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. USA, 108: 7641–7646, 2011.
  • [105] Guimerà, R. and Amaral, L.A. Functional cartography of complex metabolic networks. Nature, 433: 895–900, 2005.
  • [106] Guimerà, R., Sales-Pardo, M., and Amaral, L.A. Classes of complex networks defined by role-to-role connectivity profiles. Nat. Phys., 3: 63–69, 2007.
  • [107] Viles, W., Balachandran, P., and Kolaczyk, E. Uncertainty propagation from network inference to network characterization. New England Statistics Symposium, April 21, 2012.
  • [108] Bassett, D.S., Bullmore, E., Verchinski, B.A., Mattay, V.S., Weinberger, D.R., and Meyer-Lindenberg, A. Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci., 28: 9239–9248, 2008.
  • [109] Stam, C., Jones, B., Nolte, G., Breakspear, M., and Scheltens, P. Small-world networks and functional connectivity in Alzheimer’s disease. Cereb. Cortex., 17: 92–99, 2007.
  • [110] Zalesky, A., Fornito, A. and Bullmore, E.T. Network-based statistic: identifying differences in brain networks. NeuroImage, 53: 1197–1207, 2010.
  • [111] Zalesky, A., Cocchi, L., Fornito, A., Murray, M.M., and Bullmore, E. Connectivity differences in brain networks. NeuroImage, 60: 1055–1062, 2012.
  • [112] Meunier, D., Achard, S., Morcom, A., and Bullmore, E. Age-related changes in modular organization of human brain functional networks. NeuroImage, 44: 715–723, 2009.
  • [113] Hipp, J.F., Engel, A.K., and Siegel, M. Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron, 69: 387–396, 2011.
  • [114] Fornito, A., Yoon, J., Zalesky, A., Bullmore, E.T., and Carter, C.S. General and specific functional connectivity disturbances in first episode schizophrenia during cognitive control performance. Biol. Psychiatry, 70: 64–72, 2011.
  • [115] Zhang, J., Wang, J., Wu, Q., Kuang, W., Huang, X., He, Y., and Gong, Q. Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol. Psychiatry, 70: 334–342, 2011.
  • [116] Simpson, S.L., Hayasaka, S., and Laurienti, P.J. Exponential random graph modeling for complex brain networks. PLoS ONE, 6: e20039, 2011.
  • [117] Robins, G.L., Pattison, P.E., Kalish, Y., and Lusher, D. An introduction to exponential random graph (p*) models for social networks. Social Networks, 29: 173–191, 2007.
  • [118] Simpson, S.L., Moussa, M.N., and Laurienti, P.J. An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks. NeuroImage, 60: 1117–1126, 2012.
  • [119] Song, M., Liu, Y., Zhou, Y., Wang, K., Yu, C., and Jiang, T. Default network and intelligence difference. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2212–2215, 2009.
  • [120] Valencia, M., Pastor, M.A., Fernández-Seara, M.A., Artieda, J., Martinerie, J., and Chavez, M. Complex modular structure of large-scale brain networks. Chaos, 19: 023119, 2009.
  • [121] Joyce, K.E., Laurienti, P.J., Burdette, J.H., and Hayasaka, S. A new measure of centrality for brain networks. PLoS ONE, 5: e12200, 2010.
  • [122] Jirsa, V.K., Sporns, O., Breakspear, M., Deco, G., and McIntosh, A.R. Towards the virtual brain: network modeling of the intact and the damaged brain. Arch. Ital. Biol., 148: 189–205, 2010.
  • [123] Zuo, X., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F.X., Sporns, O., and Milham, M.P. Network centrality in the human functional connectome. Cerebral Cortex, 22: 1862–1875, 2012.
  • [124] Gratton, C., Nomura, E.M., Perez, F., and D’Espsito, M. Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain. Journal of Cognitive Neuroscience, 24: 1275–1285, 2012.
  • [125] Handcock, M.S. Statistical models for social networks: inference and degeneracy. Dynamic Social Network Modelling and Analysis: Workshop Summary and Papers. R. Breiger, K. Carley, and P.E. Pattison (eds). Washington, DC: National Academy Press: 229–240, 2002.
  • [126] Rinaldo, A., Fienberg, S.E., and Zhou, Y. On the geometry of discrete exponential families with application to exponential random graph models. Electronic Journal of Statistics, 3: 446–484, 2009.
  • [127] Krivitsky, P.N. Exponential-family random graph models for valued networks. Electronic Journal of Statistics, 6: 1100–1128, 2012.
  • [128] Desmarais, B.A. and Cranmer, S.J. Statistical inference for valued-edge networks: the generalized exponential random graph model. PLoS ONE, 7: e30136, 2012.
  • [129] Hoff, P.D. Multiplicative latent factor models for description and prediction of social networks. Comput. Math Organ. Theory, 15: 261–272, 2009.
  • [130] Hoff, P.D. Bilinear mixed-effects models for dyadic data. Journal of the American Statistical Association, 100: 286–295, 2005.
  • [131] Krivitsky, P.N., Handcock, M.S., Raftery, A.E., and Hoff, P.D. Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Social Networks, 31: 204–213, 2009.
  • [132] Albert, P.S. and Shen, J. Modelling longitudinal semicontinuous emesis volume data with serial correlation in an acupuncture clinical trial. Journal of the Royal Statistical Society, Series C (Applied Statistics), 54: 707–720, 2005.
  • [133] Tooze, J.A., Grunwald, G.K., and Jones, R.H. Analysis of repeated measures data with clumping at zero. Stat. Methods. Med. Res., 11: 341–355, 2002.
  • [134] Simpson, S.L., Edwards, L.J., Muller, K.E., Sen, P.K., and Styner, M.A. A linear exponent AR(1) family of correlation structures. Statistics in Medicine, 29: 1825–1838, 2010.
  • [135] Simpson, S.L. An adjusted likelihood ratio test for separability in unbalanced multivariate repeated measures data. Statistical Methodology, 7: 511–519, 2010.
  • [136] Handcock, M.S., Raftery, A.E., and Tantrum, J. Model-based clustering for social networks. Journal of the Royal Statistical Society A, 170: 301–354, 2007.
  • [137] Hoff, P.D., Raftery, A.E., and Handcock, M.S. Latent space approaches to social network analysis. Journal of the American Statistical Association, 97: 1090–1098, 2002.
  • [138] Moreno, S., Kirshner, S., Neville, J., and Vishwanathan, S.V.N. Tied Kronecker product graph models to capture variance in network populations. In: Proc. 48th Annual Allerton Conf. on Communication, Control, and Computing, 1137–1144, 2010.
  • [139] Fournel, A.P., Reynaud, E., Brammer, M.J., Simmons, A., and Ginestet, C.E. Group analysis of self-organizing maps based on functional MRI using restricted frechet means. arXiv:1205.6158v2 [stat.AP], 2012.
  • [140] Snijders, T.A.B., van de Bunt, G.G., and Steglich, C.E.G. Introduction to stochastic actor-based models for network dynamics. Social Networks, 32: 44–60, 2009.
  • [141] Snijders, T.A.B., Koskinen, J., and Schweinberger, M. Maximum likelihood estimation for social dynamics. The Annals of Applied Statistics, 4: 567–588, 2010.
  • [142] Hanneke, S., Fu, W., and Xing, E.P. Discrete temporal models of social networks. The Electronic Journal of Statistics, 4: 585–605, 2010.
  • [143] Westveld, A.H. and Hoff, P.D. A mixed effects model for longitudinal relational and network data, with applications to international trade and conflict. The Annals of Applied Statistics, 5: 843–872, 2011.
  • [144] Desmarais, B.A. and Cranmer, S.J. Statistical mechanics of networks: estimation and uncertainty. Physica A, 391: 1865–1876, 2012.
  • [145] Galecki, A.T. General class of correlation structures for two or more repeated factors in longitudinal data analysis. Communications in Statistics-Theory and Methods, 23: 3105–3119, 1994.
  • [146] Naik, D.N. and Rao, S.S. Analysis of multivariate repeated measures data with a Kronecker product structured correlation matrix. Journal of Applied Statistics, 28: 91–105, 2001.
  • [147] Simpson, S.L., Edwards, L.J., Styner, M.A., and Muller, K.E. Kronecker product linear exponent AR(1) correlation structures and separability tests for multivariate repeated measures. arXiv:1010.4471v2 [stat.AP], 2012.
  • [148] Fonseca, T.C.O. and Steel, M.F.J. A general class of nonseparable space-time covariance models. Environmetrics, 22: 224–242, 2011.