Statistical Science

A Conversation with Donald B. Rubin

Fan Li and Fabrizia Mealli

Full-text: Open access

Abstract

Donald Bruce Rubin is John L. Loeb Professor of Statistics at Harvard University. He has made fundamental contributions to statistical methods for missing data, causal inference, survey sampling, Bayesian inference, computing and applications to a wide range of disciplines, including psychology, education, policy, law, economics, epidemiology, public health and other social and biomedical sciences.

Article information

Source
Statist. Sci. Volume 29, Number 3 (2014), 439-457.

Dates
First available in Project Euclid: 23 September 2014

Permanent link to this document
http://projecteuclid.org/euclid.ss/1411437523

Digital Object Identifier
doi:10.1214/14-STS489

Mathematical Reviews number (MathSciNet)
MR3264555

Zentralblatt MATH identifier
1331.62022

Citation

Li, Fan; Mealli, Fabrizia. A Conversation with Donald B. Rubin. Statist. Sci. 29 (2014), no. 3, 439--457. doi:10.1214/14-STS489. http://projecteuclid.org/euclid.ss/1411437523.


Export citation

References

  • Angrist, J., Imbens, G. W. and Rubin, D. B. (1996). Identification of causal effects using instrumental variables (with discussion and rejoinder). J. Amer. Statist. Assoc. 91 444–472.
  • Box, G. E. P. (1980). Sampling and Bayes’ inference in scientific modelling and robustness. J. Roy. Statist. Soc. Ser. A 143 383–430.
  • Brillinger, D. R., Jones, L. V. and Tukey, J. W. (1978). The management of weather resources. In The Role of Statistics in Weather Resources Management II. Report of the Statistical Task Force to the Weather Modification Advisory Board. US Government Printing Office, Washington, DC.
  • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol. 39 1–38.
  • Frangakis, C. E. and Rubin, D. B. (2002). Principal stratification in causal inference. Biometrics 58 21–29.
  • Frumento, P., Mealli, F., Pacini, B. and Rubin, D. B. (2012). Evaluating the effect of training on wages in the presence of noncompliance, nonemployment, and missing outcome data. J. Amer. Statist. Assoc. 107 450–466.
  • Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statist. Sci. 7 457–472.
  • Gelman, A., Meng, X. L. and Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statist. Sinica 6 733–760.
  • Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (1995). Bayesian Data Analysis. Chapman & Hall, London.
  • Gelman, A., Carlin, J., Stern, H. and Rubin, D. B. (2003). Bayesian Data Analysis, 2nd ed. CRC Press, New York.
  • Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A. and Rubin, D. B. (2014). Bayesian Data Analysis, 3rd ed. CRC Press, New York.
  • Glynn, R., Laird, N. M. and Rubin, D. B. (1986). Selection modelling versus mixture modelling with nonignorable nonresponse. In Drawing Inferences from Self-Selected Samples (H. Wainer, ed.) 119–146. Springer, New York.
  • Hartley, H. O. (1956). A plan for programming analysis of variance for general purpose computers. Biometrics 12 110–122.
  • Hartley, H. O. and Hocking, R. R. (1971). The analysis of incomplete data. Biometrics 27 783–823.
  • Holland, P. W. (1986). Statistics and causal inference. J. Amer. Statist. Assoc. 81 945–970.
  • Imbens, G. W. and Angrist, J. (1994). Identification and estimation of local average treatment effects. Econometrica 62 467–475.
  • Imbens, G. W. and Rubin, D. B. (1997). Bayesian inference for causal effects in randomized experiments with noncompliance. Ann. Statist. 25 305–327.
  • Imbens, G. W. and Rubin, D. B. (2015). Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge Univ. Press, New York.
  • Li, F., Baccini, M., Mealli, F., Zell, E. R., Frangakis, C. E. and Rubin, D. B. (2014). Multiple imputation by ordered monotone blocks with application to the anthrax vaccine research program. J. Comput. Graph. Statist. 23 877–892.
  • Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. Wiley, New York.
  • Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd ed. Wiley, Hoboken, NJ.
  • Mattei, A., Li, F. and Mealli, F. (2013). Exploiting multiple outcomes in Bayesian principal stratification analysis with application to the evaluation of a job training program. Ann. Appl. Stat. 7 2336–2360.
  • Mealli, F. and Pacini, B. (2013). Using secondary outcomes to sharpen inference in randomized experiments with noncompliance. J. Amer. Statist. Assoc. 108 1120–1131.
  • Meng, X.-L. (1994). Posterior predictive $p$-values. Ann. Statist. 22 1142–1160.
  • Neyman, J. (1990). On the application of probability theory to agricultural experiments. Essay on principles. Section 9. Statist. Sci. 5 465–472. Translated from the Polish and edited by D. M. Da̧browska and T. P. Speed.
  • Neyman, J. (1934). On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection. J. Roy. Statist. Soc. 97 558–625.
  • Rosenbaum, P. R. and Rubin, D. B. (1983a). The central role of the propensity score in observational studies for causal effects. Biometrika 70 41–55.
  • Rosenbaum, P. R. and Rubin, D. B. (1983b). Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J. R. Stat. Soc. Ser. B Stat. Methodol. 45 212–218.
  • Rosenbaum, P. R. and Rubin, D. B. (1984a). Reducing bias in observational studies using subclassification on the propensity score. J. Amer. Statist. Assoc. 79 516–524.
  • Rosenbaum, P. R. and Rubin, D. B. (1984b). Sensitivity of Bayes inference with data-dependent stopping rules. Amer. Statist. 38 106–109.
  • Rubin, D. B. (1972). A non-iterative algorithm for least squares estimation of missing values in any analysis of variance design. J. R. Stat. Soc. Ser. C. Appl. Stat. 21 136–141.
  • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educational Psychology 66 688–701.
  • Rubin, D. B. (1976). Inference and missing data. Biometrika 63 581–592.
  • Rubin, D. B. (1977). Assignment to treatment group on the basis of a covariate. J. Educational Statistics 2 1–26.
  • Rubin, D. B. (1978a). Bayesian inference for causal effects: The role of randomization. Ann. Statist. 6 34–58.
  • Rubin, D. B. (1978b). Multiple imputations in sample surveys—A phenomenological Bayesian approach to nonresponse (with discussion and reply). In The Proceedings of the Survey Research Methods Section of the American Statistical Association 20–34. Also in Imputation and Editing of Faulty or Missing Survey Data. U.S. Dept. Commerce, Bureau of the Census, Washington, DC.
  • Rubin, D. B. (1981). The Bayesian bootstrap. Ann. Statist. 9 130–134.
  • Rubin, D. B. (1983). A case study of the robustness of Bayesian methods of inference: Estimating the total in a finite population using transformations to normality. In Scientific Inference, Data Analysis, and Robustness (Madison, Wis., 1981). Publ. Math. Res. Center Univ. Wisconsin 48 213–244. Academic Press, Orlando, FL.
  • Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Statist. 12 1151–1172.
  • Rubin, D. B. (1987a). Multiple Imputation for Nonresponse in Surveys. Wiley, New York.
  • Rubin, D. B. (1987b). A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: The SIR algorithm. Discussion of “The calculation of posterior distributions by data augmentation” by M. Tanner and W. H. Wong. J. Amer. Statist. Assoc. 82 543–546.
  • Rubin, D. B. (1990a). Formal modes of statistical inference for causal effects. J. Statist. Plann. Inference 25 279–292.
  • Rubin, D. B. (1990b). Comment on “Neyman (1923) and causal inference in experiments and observational studies.” Statist. Sci. 5 472–480.
  • Rubin, D. B. (1994). Comment on “Missing data, imputation, and the bootstrap” by Bradley Efron. J. Amer. Statist. Assoc. 89 475–478.
  • Rubin, D. B. (1995). Bayes, Neyman, and calibration. Discussion of Berk, Western and Weiss. Sociological Methodology 25 473–479.
  • Rubin, D. B. (1996). Multiple imputation after 18+ years (with discussion and rejoinder). J. Amer. Statist. Assoc. 91 473–517.
  • Rubin, D. B. (2002). The ethics of consulting for the tobacco industry. Special issue on “Ethics, statistics and statisticians”. Stat. Methods Med. Res. 11 373–380.
  • Rubin, D. B. (2010). Reflections stimulated by the comments of Shadish (2010) and West and Thoemmes (2010). Psychol. Methods 15 38–46.
  • Rubin, D. B. (2014a). Converting rejections into positive stimuli. In Past, Present, and Future of Statistical Science (X. Lin et al., eds.) 593–603. CRC Press, New York.
  • Rubin, D. B. (2014b). The importance of mentors. In Past, Present, and Future of Statistical Science (X. Lin et al., eds.) 605–613. CRC Press, New York.