Statistical Science

Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data

Joseph D. Y. Kang and Joseph L. Schafer

Full-text: Open access

Abstract

When outcomes are missing for reasons beyond an investigator’s control, there are two different ways to adjust a parameter estimate for covariates that may be related both to the outcome and to missingness. One approach is to model the relationships between the covariates and the outcome and use those relationships to predict the missing values. Another is to model the probabilities of missingness given the covariates and incorporate them into a weighted or stratified estimate. Doubly robust (DR) procedures apply both types of model simultaneously and produce a consistent estimate of the parameter if either of the two models has been correctly specified. In this article, we show that DR estimates can be constructed in many ways. We compare the performance of various DR and non-DR estimates of a population mean in a simulated example where both models are incorrect but neither is grossly misspecified. Methods that use inverse-probabilities as weights, whether they are DR or not, are sensitive to misspecification of the propensity model when some estimated propensities are small. Many DR methods perform better than simple inverse-probability weighting. None of the DR methods we tried, however, improved upon the performance of simple regression-based prediction of the missing values. This study does not represent every missing-data problem that will arise in practice. But it does demonstrate that, in at least some settings, two wrong models are not better than one.

Article information

Source
Statist. Sci. Volume 22, Number 4 (2007), 523-539.

Dates
First available in Project Euclid: 7 April 2008

Permanent link to this document
http://projecteuclid.org/euclid.ss/1207580167

Digital Object Identifier
doi:10.1214/07-STS227

Mathematical Reviews number (MathSciNet)
MR2420458

Keywords
Causal inference missing data propensity score model-assisted survey estimation weighted estimating equations

Citation

Kang, Joseph D. Y.; Schafer, Joseph L. Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data. Statist. Sci. 22 (2007), no. 4, 523--539. doi:10.1214/07-STS227. http://projecteuclid.org/euclid.ss/1207580167.


Export citation

References

  • Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. 88 669–679.
  • Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. Biometrics 61 962–972.
  • Binder, D. A. (1983). On the variances of asymptotically normal estimators from complex surveys. Internat. Statist. Rev. 51 279–292.
  • Carpenter, J., Kenward, M. and Vansteelandt, S. (2006). A comparison of multiple imputation and inverse probability weighting for analyses with missing data. J. Roy. Statist. Soc. Ser. A 169 571–584.
  • Cassel, C. M., Särndal, C. E. and Wretman, J. H. (1976). Some results on generalized difference estimation and generalized regression estimation for finite populations. Biometrika 63 615–620.
  • Cassel, C. M., Särndal, C. E. and Wretman, J. H. (1977). Foundations of Inference in Survey Sampling. Wiley, New York.
  • Cassel, C. M., Särndal, C. E. and Wretman, J. H. (1983). Some uses of statistical models in connection with the nonresponse problem. In Incomplete Data in Sample Surveys III. Symposium on Incomplete Data, Proceedings (W. G. Madow and I. Olkin, eds.). Academic Press, New York.
  • Cochran, W. G. (1968). The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics 24 205–213.
  • D’Agostino, R. B. Jr. (1998). Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Statistics in Medicine 17 2265–2281.
  • Davidian, M., Tsiatis, A. A. and Leon, S. (2005). Semiparametric estimation of treatment effect in a pretest–posttest study without missing data. Statist. Sci. 20 261–301.
  • Gelman, A. and Meng, X. L., eds. (2004). Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives. Wiley, New York.
  • Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004). Bayesian Data Analysis. Chapman and Hall, London.
  • Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57 1317–1339.
  • Hammersley, J. M. and Handscomb, D. C. (1964). Monte Carlo Methods. Methuen, London.
  • Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall, London.
  • Hinkley, D. (1985). Transformation diagnostics for linear models. Biometrika 72 487–496.
  • Hirano, K. and Imbens, G. (2001). Estimation of causal effects using propensity score weighting: An application to data on right heart catherization. Health Services and Outcome Research Methodology 2 259–278.
  • Holland, P. W. (1986). Statistics and causal inference. J. Amer. Statist. Assoc. 81 945–970.
  • Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. J. Amer. Statist. Assoc. 47 663–685.
  • Little, R. J. A. and An, H. (2004). Robust likelihood-based analysis of multivariate data with missing values. Statist. Sinica 14 949–968.
  • Little, R. J. A. (1986). Survey nonresponse adjustments for estimates of means. Internat. Statist. Rev. 54 139–157.
  • Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. Wiley, New York.
  • Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd ed. Wiley, New York.
  • Liu, C. (2004). Robit regression: A simple robust alternative to logistic and probit regression. In Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives (A. Gelman and X. L. Meng, eds.) 227–238. Wiley, New York.
  • Lunceford, J. K. and Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study. Statistics in Medicine 23 2937–2960.
  • McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. Chapman and Hall, London.
  • Neyman, J. (1923). On the application of probability theory to agricultural experiments: Essays on principles, Section 9. Translated from the Polish and edited by D. M. Dabrowska and T. P. Speed. Statist. Sci. 5 (1990) 465–480.
  • Oh, H. L. and Scheuren, F. S. (1983). Weighting adjustments for unit nonresponse. In Incomplete Data in Sample Surveys II. Theory and Annotated Bibliography (W. G. Madow, I. Olkin and D. B. Rubin, eds.) 143–184. Academic Press, New York.
  • Pregibon, D. (1982). Resistant fits for some commonly used logistic models with medical applications. Biometrics 38 485–498.
  • Robins, J. M. and Rotnitzky, A. (1995). Semiparametric efficiency in multivariate regression models with missing data. J. Amer. Statist. Assoc. 90 122–129.
  • Robins, J. M. and Rotnitzky, A. (2001). Comment on “Inference for semiparametric models: some questions and an answer,” by P. J. Bickel and J. Kwon. Statist. Sinica 11 920–936.
  • Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. J. Amer. Statist. Assoc. 89 846–866.
  • Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Amer. Statist. Assoc. 90 106–121.
  • Rotnitzky, A., Robins, J. M. and Scharfstein, D. O. (1998). Semiparametric regression for repeated outcomes with ignorable nonresponse. J. Amer. Statist. Assoc. 93 1321–1339.
  • Rosenbaum, P. R. (2002). Observational Studies, 2nd ed. Springer, New York.
  • Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70 41–55.
  • Rosenbaum, P. R. and Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. American Statistician 39 33–38.
  • Rubin, D. B. (1974a). Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educational Psychology 66 688–701.
  • Rubin, D. B. (1974b). Characterizing the estimation of parameters in incomplete data problems. J. Amer. Statist. Assoc. 69 467–474.
  • Rubin, D. B. (1976). Inference and missing data. Biometrika 63 581–592.
  • Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. Ann. Statist. 6 34–58.
  • Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York.
  • Rubin, D. B. (2005). Causal inference using potential outcomes: design, modeling, decisions. J. Amer. Statist. Assoc. 100 322–331.
  • Särndal, C.-E., Swensson, B. and Wretman, J. (1989). The weighted residual technique for estimating the variance of the general regression estimator of a finite population total. Biometrika 76 527–537.
  • Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling. Springer, New York.
  • Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. Chapman and Hall, London.
  • Schafer, J. L. and Kang, J. D. Y. (2005). Discussion of “Semiparametric estimation of treatment effect in a pretest–postest study with missing data” by M. Davidian et al. Statist. Sci. 20 292–295.
  • Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models. J. Amer. Statist. Assoc. 94 1096–1120 (with rejoinder 1135–1146).
  • van der Laan, M. J. and Robins, J. M. (2003). Unified Methods for Censored Longitudinal Data and Causality. Springer, New York.
  • Vartivarian, S. and Little, R. J. A. (2002). On the formation of weighting adjustment cells for unit nonresponse. Proceedings of the Survey Research Methods Section, American Statistical Association. Amer. Statist. Assoc., Alexandria, VA.
  • Winship, C. and Sobel, M. E. (2004). Causal inference in sociological studies. In Handbook of Data Analysis (M. Hardy, ed.) 481–503. Thousand Oaks, Sage, CA.