Statistical Science

Introduction to the Bootstrap World

Dennis D. Boos

Full-text: Open access

Abstract

The bootstrap has made a fundamental impact on how we carry out statistical inference in problems without analytic solutions. This fact is illustrated with examples and comments that emphasize the parametric bootstrap and hypothesis testing.

Article information

Source
Statist. Sci. Volume 18, Issue 2 (2003), 168-174.

Dates
First available in Project Euclid: 19 September 2003

Permanent link to this document
http://projecteuclid.org/euclid.ss/1063994971

Digital Object Identifier
doi:10.1214/ss/1063994971

Mathematical Reviews number (MathSciNet)
MR2019786

Citation

Boos, Dennis D. Introduction to the Bootstrap World. Statist. Sci. 18 (2003), no. 2, 168--174. doi:10.1214/ss/1063994971. http://projecteuclid.org/euclid.ss/1063994971.


Export citation

References

  • Barnard, G. A. (1963). Discussion of ``Spectral Analysis of Point Processes,'' by M. S. Bartlett. J. Roy. Statist. Soc. Ser. B 25 294.
  • Beran, R. J. (1986). Simulated power functions. Ann. Statist. 14 151--173.
  • Beran, R. J. (1988). Prepivoting test statistics: A bootstrap view of asymptotic refinements. J. Amer. Statist. Assoc. 83 687--697.
  • Beran, R. and Srivastava, M. S. (1985). Bootstrap tests and confidence regions for functions of a covariance matrix. Ann. Statist. 13 95--115.
  • Boos, D. D. and Brownie, C. (1989). Bootstrap methods for testing homogeneity of variances. Technometrics 31 69--82.
  • Boos, D. D., Janssen, P. and Veraverbeke, N. (1989). Resampling from centered data in the two-sample problem. J. Statist. Plann. Inference 21 327--345.
  • Boos, D. D. and Zhang, J. (2000). Monte Carlo evaluation of resampling-based hypothesis tests. J. Amer. Statist. Assoc. 95 486--492.
  • Chen, J. J., Kodell, R. L. and Gaylor, D. W. (1996). Risk assessment for non-quantal toxic effects. In Toxicology and Risk Assessment: Principles, Methods, and Applications (A. M. Fan and L. W. Chang, eds.) 503--513. Dekker, New York.
  • Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge Univ. Press.
  • Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist. 7 1--26.
  • Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman and Hall, New York.
  • Fisher, R. A. (1934). Statistical Methods for Research Workers, 5th ed. Oliver and Boyd, Edinburgh.
  • Hall, P. (1986a). On the number of bootstrap simulations required to construct a confidence interval. Ann. Statist. 14 1453--1462.
  • Hall, P. (1986b). On the bootstrap and confidence intervals. Ann. Statist. 14 1431--1452.
  • Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New York.
  • Hoeffding, W. (1952). The large-sample power of tests based on permutations of observations. Ann. Math. Statist. 23 169--192.
  • Presnell, B. and Boos, D. B. (2002). The in-and-out-of-sample (IOS) likelihood ratio test for model misspecification. Mimeo Series 2536, Institute of Statistics, North Carolina State University, Raleigh.
  • Quesenberry, C. P. (1976). On testing normality using several samples: An analysis of peanut aflatoxin data. Biometrics 32 753--759.
  • Razzaghi, M. and Kodell, R. L. (2000). Risk assessment for quantitative responses using a mixture model. Biometrics 56 519--527.
  • Robins, J., van der Vaart, A. and Ventura, V. (2000). Asymptotic distribution of $p$ values in composite null models. J. Amer. Statist. Assoc. 95 1143--1156.
  • Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.
  • Stephens, M. A. (1977). Goodness of fit for the extreme value distributions. Biometrika 64 583--588.