Statistical Science

Remembering Oscar Kempthorne (1919–2000)

Klaus Hinkelmann

Full-text: Open access

Abstract

On November 15, 2000 the statistics community was saddened by the death of one of its most prominent members and leaders, Oscar Kempthorne, who had given over 50 years of his life to statistical science as an educator and researcher. Obituaries and other accounts detailing aspects of and achievements during his personal and professional life have appeared elsewhere (IMS Bulletin 30 (2), 2001; Bancroft, 1984; David, 1984). The purpose of this paper is different: it is to highlight his major contributions to statistical science, and to indicate how these ideas are still guiding statistical thinking today.

Oscar Kempthorne contributedlargely to three major areas: to experimental design, to genetic statistics, and to the philosophy and foundations of statistics. These seem to be rather distinct areas, but his research shows a common thread in the form of his concern for acquiring scientifically sound data and interpreting such data. In this context he considered the analysis of variance as one of the most powerful statistical techniques, and it is therefore not surprising that much of his research, certainly in experimental design and genetic statistics, centers around this technique. This work established him very early on as one of the leading statisticians of our time.

Article information

Source
Statist. Sci. Volume 16, Issue 2 (2001), 169-183.

Dates
First available in Project Euclid: 24 December 2001

Permanent link to this document
http://projecteuclid.org/euclid.ss/1009213289

Digital Object Identifier
doi:10.1214/ss/1009213289

Mathematical Reviews number (MathSciNet)
MR1861071

Zentralblatt MATH identifier
1059.01533

Keywords
Experimental design; ; ; ; randomization genetic statistics population genetics inference

Citation

Hinkelmann, Klaus. Remembering Oscar Kempthorne (1919–2000). Statist. Sci. 16 (2001), no. 2, 169--183. doi:10.1214/ss/1009213289. http://projecteuclid.org/euclid.ss/1009213289.


Export citation

References

  • Addelman, S. and Kempthorne, O. (1961). Some main-effect plans andorthogonal arrays of strength two. Ann. Math. Statist. 32 1167-1176.
  • Bailey, R. A. (1991). Strata for randomized experiments. J. Roy. Statist. Soc. Ser. B 53 27-78.
  • Bancroft, T. A. (1984). The years 1950-1972. In Experimental Design, Statistical Models, and Genetic Statistics-Essays in Honor of Oscar Kempthorne (K. Hinkelmann, ed.) 3-7. Dekker, New York.
  • Berkson, J. (1978). In dispraise of the exact test. J. Statist. Plann. Inference 2 27-42.
  • Burt, C. and Howard, M. (1956). The multifactorial theory of inheritance andits application to intelligence. British J. Statist. Psychology 9 95-131.
  • Calinski, T. and Kageyama, S. (2000). Block Designs: A Randomization Approach. 1: Analysis. Springer, New York.
  • Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: a review. Statist. Sci. 10 273-304.
  • Charlesworth, B. (1994). Evolution in Age-Structured Populations, 2nd ed. Cambridge Univ. Press.
  • David, H. A. (1984). The years 1972-1984. In Experimental Design, Statistical Models, and Genetic Statistics-Essays in Honor of Oscar Kempthorne (K. Hinkelmann, ed.) 9-13. Dekker, New York.
  • David, H. A. (1995). First (?) occurrence of common terms in mathematical statistics. Amer. Statist. 49 121-133. Devlin, B., Fienberg, S. E., Resnick, D. P. and Roeder, K. (eds.)
  • (1997). Intelligence, Genes, and Success: Scientists Respond to The Bell Curve. Springer, New York.
  • Easterling, R. G. (1976). Goodness of fit and parameter estimation. Technometrics 18 1-9.
  • Emigh, T. H. (1977). Partition of the phenotypic variance under unknown dependent association of genotypes and environments. Biometrics 33 505-514.
  • Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Trans. Roy. Soc. Edinb. 52 399-433.
  • Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Clarendon, Oxford.
  • Fisher, R. A. (1935). The Design of Experiments. Oliver andBoyd, Edinburgh.
  • Fisher, R. A. (1956). Statistical Methods and Scientific Inference. Oliver and Boyd, Edinburgh.
  • Folks, J. L. (1995). A conversation with Oscar Kempthorne. Statist. Sci. 10 321-336.
  • Fontdevila, A. (1995). Genetics andecology of natural populations. In Genetics of Natural Populations (L. Levine, ed.) 198-221. Columbia Univ. Press.
  • Galton, F. (1869). Hereditary Genius: An Inquiry into Its Laws and Consequences. Macmillan, London.
  • Good, I. J. (1956). Which comes first, probability or statistics? J. Inst. Actuaries 82 249-255 [reprintedin Good Thinking by I. J. Good(1983) 59-62].
  • Grignola, F. and Hoeschele, I. (1997). Mapping linkedquantitative trait loci via residual maximum likelihood. Genet. Sel. Evol. 29 529-544.
  • Guo, S. (1995). Proportion of genome shared identical by descent by relatives: concept, computation, andapplications. Amer. J. Human Genetics 56 1468-1476.
  • Harville, D. A. (1975). Experimental randomization: Who needs it? Amer. Statist. 29 27-31.
  • Herrnstein, R. J. and Murray, C. (1994). The Bell Curve: Intelligence and Class Structure in American Life. Free Press, New York. Hinkelmann, K. (1963a). Design andanalysis of multi-way genetic cross experiments. Ph.D. dissertation, Iowa State Univ. Hinkelmann, K. (1963b). A commonly occurring incomplete multiple classification model. Biometrics 19 105-117.
  • Hinkelmann, K. (1997). The Kempthorne-parametrization for asymmetrical factorials. Technical Report 97-7, Virginia Polytechnic Inst. andState Univ.
  • Hinkelmann, K. (2000). Statistics as a science, art, andpower-a personal account. Technical Report 00-2, Virginia Polytechnic Inst. andState Univ.
  • Hinkelmann, K. and Alcorn, J. S. (1998). Randomization analysis of replicatedcomplete block designs. J. Comb. Info. Systems Science 23 317-332.
  • Hinkelmann, K. and Kempthorne, O. (1963). Two classes of group divisible partial diallel crosses. Biometrika 50 281-291.
  • Hinkelmann, K. and Kempthorne, O. (1994). Design and Analysis of Experiments. 1: Introduction to Experimental Design. Wiley, New York.
  • Hinkelmann, K. and Stern, K. (1960). Kreuzungspl¨ane zur Selektionsz ¨uchtung bei Waldb¨aumen. Silv. Genet. 9 121-133.
  • Jensen, A. (1969). How much can we boost IQ andscholastic achievement? Harvard Educ. Rev. 39 1-123.
  • Kempthorne, O. (1947). A simple approach to confounding and fractional replication in factorial experiments. Biometrika 34 255-272.
  • Kempthorne, O. (1952). Design and Analysis of Experiments. Wiley, New York.
  • Kempthorne, O. (1953). A class of experimental designs using blocks of two plots. Ann. Math. Statist. 24 76-84. Kempthorne, O. (1955a). The randomization theory of experimental inference. J. Amer. Statist. Assoc. 50 946-967. Kempthorne, O. (1955b). The correlations between relatives in random mating populations. Cold Spring Harbor Symposia on Quantitative Biology 22 60-78.
  • Kempthorne, O. (1957). An Introduction to Genetic Statistics. Wiley, New York.
  • Kempthorne, O. (1966). Some aspects of experimental inference. J. Amer. Statist. Assoc. 61 11-34.
  • Kempthorne, O. (1972). Theories of inference anddata analysis. In Statistical Papers in Honor of George W. Snedecor (T. A. Bancroft, ed.) 167-191. Iowa State Univ. Press, Ames.
  • Kempthorne, O. (1975). Inference from experiments andrandomization. In A Survey of Statistical Design and Linear Models (J. N. Srivastava, ed.) 303-331. North-Holland, Amsterdam. Kempthorne, O. (1976a). Of what use are tests of significance andtests of hypothesis? Comm. Statist. Theory Methods 5 763-777. Kempthorne, O. (1976b). Discussion of "On rereading R. A. Fisher." Ann. Statist. 4 495-497.
  • Kempthorne, O. (1977). Why randomize? J. Statist. Plann. Inference 1 1-25.
  • Kempthorne, O. (1978). Logical, epistemological andstatistical aspects of nature-nurture data interpretation. Biometrics 34 1-23.
  • Kempthorne, O. (1979). In dispraise of the exact test: reactions. J. Statist. Plann. Inference 3 199-213. Kempthorne, O. (1984a). Statistical methods and science. In W. G. Cochran's Impact on Statistics (P. S. R. S. Rao and J. Sedransk, eds.) 287-308. Wiley, New York. Kempthorne, O. (1984b). Science, statistics, andphilosophy. Unpublishednotes of colloquium presentedat Virginia Polytechnic Institute andState Univ. Kempthorne, O. (1984c). Revisiting the past andanticipating the future. In Statistics: An Appraisal (H. A. Davidand H. T. David, eds.) 31-52. Iowa State Univ. Press, Ames.
  • Kempthorne, O. (1990). How does one apply statistical analysis to our understanding of the development of human relationships? Behav. Brain Sciences 13 138-139.
  • Kempthorne, O. and Curnow, R. N. (1961). The partial diallel cross. Biometrics 17 229-250.
  • Kempthorne, O. and Folks, J. L. (1971). Probability, Statistics, and Data Analysis. Iowa State Univ. Press, Ames.
  • Kempthorne, O. and Pollak, E. (1970). Concepts of fitness in Mendelian populations. Genetics 64 125-145.
  • Kimura, M. (1958). On the change of population fitness by natural selection. Heredity 12 145-167. Kincheloe, J. L., Steinberg, S. R. and Gresson A. D., III. (eds.)
  • (1996). Measured Lies: The Bell Curve Examined. St. Martins Press, New York.
  • Lindley, D. V. and Novick, M. R. (1981). The role of exchangeability in inference. Ann. Statist. 9 45-58.
  • Mal´ecot, G. (1948). Les math´ematiques de l'h´er´edit´e. Masson et Cie., Paris.
  • Matzinger, D. F. and Kempthorne, O. (1956). The modified diallel table with partial inbreeding and interactions with environment. Genetics 41 822-833.
  • Nagylaki, T. (1992). An Introduction to Theoretical Population Genetics. Springer, Berlin. Nelder, J. A. (1965a). The analysis of randomized experiments with orthogonal block structure. I. Block structure andthe null analysis of variance. Proc. Roy. Soc. London Ser. A 283 147-162. Nelder, J. A. (1965b). The analysis of randomized experiments with orthogonal block structure. II. Treatment structure and the general analysis of variance. Proc. Roy. Soc. London Ser. A 283 163-178.
  • Neyman, J. and Pearson, E. S. (1928). On the use andinterpretation of certain test criteria for purposes of statistical inference. Biometrika 20 A 175-240, 263-294.
  • Pollak, E. and Kempthorne, O. (1970). Malthusian parameters in genetic populations. I. Haploidandselfing models. Theoret. Population Biol. 1 315-345.
  • Pollak, E. and Kempthorne, O. (1971). Malthusian parameters in genetic populations. II. Random mating populations in infinite habitats. Theoret Population Biol. 2 357-390.
  • Savage, L. J. (1976). On rereading R. A. Fisher (with discussion). Ann. Statist. 4 441-500.
  • Smith, J. M. (1998). Evolutionary Genetics, 2nded. OxfordUniv. Press.
  • van Aarde, I. M. R. (1975). The covariance of relatives derived from a random mating population. Theoret Population Biol. 8 166-183.
  • Wald, A. (1939). Contribution to the theory of statistical estimation andtesting hypotheses. Ann. Math. Statist. 10 299-326. Wang, T., Fernando, R. L., van der Beek, S. and van Arendonk,
  • J. A. M. (1995). Covariance between relatives for a marked quantitative trait locus. Genet. Sel. Evol. 27 251-275.
  • White, R. F. (1975). Randomization and the analysis of variance. Biometrics 31 555-571.
  • Wilk, M. B. (1955). The randomization analysis of a general randomized block design. Biometrika 42 70-79.
  • Wilk, M. B. and Kempthorne, O. (1955). Fixed, mixed, and random models. J. Amer. Statist. Assoc. 50 1144-1167.
  • Wu, C. F. J. and Hamada, M. (2000). Experiments-Planning, Analysis, and Parameter Design Optimization. Wiley, New York.
  • Yates, F. (1935). Complex experiments. J. Roy. Statist. Soc. Suppl. 2 181-247.
  • Yates, F. (1939). The comparative advantages of systematic and randomized arrangements in the design of agricultural and biological experiments. Biometrika 30 440-466.
  • Zyskind, G. (1962). On structure, relation, andexpectation of mean squares. Sankhy ¯a A 24 115-148.
  • Zyskind, G. (1963). Some consequences of randomization in a generalization of the balancedincomplete block design. Ann. Math. Statist. 34 1569-1581.
  • Design and Analysis of Experiments. Kempthorne. O. (1952). Wiley, New York. Statistics and Mathematics in Biology. Kempthorne, O.,
  • Bancroft, T. A., Gowen, J. W. and Lush, J. L. (eds.). (1954). Iowa State College Press, Ames.
  • An Introduction to Genetic Statistics. Kempthorne, O. (1957). Wiley, New York.
  • Biometrical Genetics. Kempthorne, O. (ed.). (1960). Pergamon Press, New York. Probability, Statistics, and Data Analysis. Kempthorne, O. and
  • Folks, J. L. (1971). Iowa State Univ. Press, Ames. Proceedings of the International Conference on Quantitative Genetics. Pollak, E., Kempthorne, O. and Bailey, T. B., Jr.
  • (eds.). (1977). Iowa State Univ. Press, Ames. Design and Analysis of Experiments. 1: Introduction to Experi
  • mental Design. Hinkelmann, K. and Kempthorne, O. (1994). Wiley, New York.
  • iments (with Wilk, M. B.). (1956). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (WADC 55-244). Treatments errors in comparative experiments (with Zyskind,
  • G.). (1960). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (WADC 59-19). Some properties of steepest ascent andrelatedprocedures for finding optimum conditions (with Buehler, R. J. and Shah,
  • B. V.). (1961). Technical Report 1, ONR (NR-042-207). Some further properties of the methodof parallel tangents and conjugate gradients (with Buehler, R. J. and Shah, B. V.).
  • (1961). Technical Report 3, ONR (NR-042-207).
  • Orthogonal main-effect plans (with Addelman, S.). (1961). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL-79). Analysis of variance procedures (with Zyskind, G., Addelman, S.,
  • Throckmorton, T. N. and White, R. F.). (1961). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL-149). Components of variance for theoretical models of quantitative
  • gene action (with Hill, W. G. and Hinkelmann, K.). (1963). NSF Grant 19218. Some aspects of constrainedrandomization (with Sutter, G.
  • J. and Zyskind, G.). (1963). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL 63-18). The compounding of gradient error in the method of parallel tan
  • gents (with Doerfler, T. E.). (1963). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL 63-144). Research on analysis of variance andrelatedtopics (with Zyskind, G., White, R. F., Dayhoff, E. E. and
  • Doerfler, T. E.). (1964). Aerospace Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL 64-193). Research on analysis of variance anddata interpretation (with Zyskind, G., Basson, R. P., Martin, F. B., Doerfler, T. E.
  • and Carney, E. J.). (1966). Aerospace Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL
  • 66-0240). Linear models and analysis of variance research procedures (with Zyskind, G., Martin, F. B., Carney, E. J. and West, E. N.).
  • (1968). Aerospace Research Lab., U.S. Air Force, Wright
  • Patterson Air Force Base, Ohio (ARL 68-0119). Parallel tangents andsteepest descent optimization algorithmA computer implementation with applications to partially
  • linear models (with Papaioannou, T.). (1970). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force
  • Base, Ohio (ARL 70-0117). On statistical information theory andrelate measures of informa
  • tion (with Papaioannou, T.) (1971). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio
  • (ARL 71-0059). Linear models, statistical information and statistical inference (with Zyskind, G., Mexas, A., Papaioannou, T and
  • Seely, J.). (1971). Aeronautical Research Lab., U.S. Air
  • Force, Wright-Patterson Air Force Base, Ohio (ARL 71-0076). The behaviour of some significance tests under experimental
  • randomization (with Doerfler, T. E.). (1971). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL 71-156).
  • LI, C. C.: Path Analysis-A Primer. J. Heredity 68 (1977) 270-271. Roughgarden, J.: Theory of Population Genetics and Evolutionary Ecology: An Introduction. Nature 288 (1980) 628-628. Thompson, J. N., Jr. and Thoday, J. M. (eds.): Quantitative Genetic Variation. Social Biology 27 (1980) 241-246. Edgington, E. S. (ed.): Randomization Tests. Biometrics 38 (1982) 864-867. Fienberg, S. E. and Hinkley, D. V. (eds.): R. A. FisherAn Appreciation. J. Amer. Statist. Assoc. 78 (1983) 482-490. Koopmans, L. H.: An Introduction to Contemporary Statistics. J. Amer. Statist. Assoc. 79 (1984) 228-229 (with Stephenson, W. R.). Koopmans, L. H.: An Introduction to Contemporary Statistics, 2nded. J. Amer. Statist. Assoc. 84 (1989) 836-837 (with Stephenson, W. R.). Searle, S. R.: Linear Models for Unbalanced Data. Amer. Scientist 77 (1989) 404-405.