Rocky Mountain Journal of Mathematics

On a general theory of factorization in integral domains

D.D. Anderson and Andrea M. Frazier

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Rocky Mountain J. Math. Volume 41, Number 3 (2011), 663-705.

Dates
First available in Project Euclid: 22 July 2011

Permanent link to this document
http://projecteuclid.org/euclid.rmjm/1311340902

Digital Object Identifier
doi:10.1216/RMJ-2011-41-3-663

Zentralblatt MATH identifier
05934864

Mathematical Reviews number (MathSciNet)
MR2824874

Subjects
Primary: 13A05: Divisibility; factorizations [See also 13F15] 13G05: Integral domains 13F15: Rings defined by factorization properties (e.g., atomic, factorial, half- factorial) [See also 13A05, 14M05] 13E99: None of the above, but in this section

Keywords
Factorization $\tau$-factorization comaximal factorization

Citation

Anderson, D.D.; Frazier, Andrea M. On a general theory of factorization in integral domains. Rocky Mountain Journal of Mathematics 41 (2011), no. 3, 663--705. doi:10.1216/RMJ-2011-41-3-663. http://projecteuclid.org/euclid.rmjm/1311340902.


Export citation

References

  • D.D. Anderson, ed., Factorization in integral domains, Lecture Notes Pure Appl. Math. 189, Marcel Dekker, Inc., New York, 1996.
  • –––, Extensions of unique factorization: A survey, in Advances in commutative ring theory, Fez, 1997, 31-53; Lecture Notes Pure Appl. Math. 205, Marcel Dekker, Inc., New York, 1999.
  • –––, GCD domains, Gauss' lemma and content of polynomials, in Non-Noetherian commutative rings, S. Chapman and S. Glaz, eds., 1-31; Math. Appl. 520, Kluwer Academic Publishers, Dordrecht, 2000.
  • –––, Non-atomic factorization in integral domains, in Arithmetical properties of commutative rings and monoids, S. Chapman, ed., 1-21; Lect. Notes Pure Appl. Math. 241, CRC Press, Boca Raton, 2005.
  • D.D. Anderson and D.F. Anderson, Elasticity of factorizations in integral domains, J. Pure Appl. Algebra 80 (1992), 217-233.
  • D.D. Anderson, D.F. Anderson and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1990), 1-19.
  • D.D. Anderson, D.F. Anderson and M. Zafrullah, Factorization in integral domains, II, J. Algebra 182 (1992), 78-93.
  • –––, A generalization of unique factorization, Boll. Un. Mat. Ital. 9 (1995), 401-413.
  • D.D. Anderson and S. Cook, Two-star operations and their induced lattices, Comm. Algebra 28 (2000), 2461-2475.
  • D.D. Anderson and L.A. Mahaney, On primary factorizations, J. Pure Appl. Algebra 54 (1988), 141-154.
  • D.D. Anderson, J.L. Mott and M. Zafrullah, Finite character representations of integral domains, Boll. Un. Mat. Ital. 6 (1992), 613-630.
  • –––, Unique factorization in non-atomic integral domains, Boll. Un. Mat. Ital. Artic Ric. Mat. 2 (1999), 341-352.
  • D.D. Anderson and B. Mullins, Finite factorization domains, Proc. Amer. Math. Soc. 124 (1996), 389-396.
  • D.D. Anderson and S. Valdez-Leon, Factorization in commutative rings with zero divisors, Rocky Mountain J. Math. 26 (1996), 439-480.
  • –––, Factorization in commutative rings with zero divisors, II, in Factorization in integral domains, D.D. Anderson, ed., 197-219; Lect. Notes Pure Appl. Math. 205, Marcel Dekker, Inc., New York, 1996.
  • D.D. Anderson and M. Zafrullah, On $t$-invertibility III, Comm. Algebra 21 (1993), 1189-1201.
  • –––, Independent locally finite intersections of localizations, Houston J. Math. 25 (1999), 433-452.
  • –––, The Schreier property and Gauss' lemma, Boll. Un. Mat. Ital. 10-B (2007), 43-62.
  • D.F. Anderson, Elasticity of factorizations in integral domains: A survey, in Factorization in integral domains, D.D. Anderson, ed., 1-29; Lect. Notes Pure Appl. Math. 205, Marcel Dekker, Inc., New York, 1996.
  • –––, The class group and local class group of an integral domain, in Non-Noetherian commutative rings, S. Chapman and S. Glaz, eds., 33-55; Math. Appl. 520, Kluwer Academic Publishers, Dordrecht, 2000.
  • L. Carlitz, A characterization of algebraic number fields with class number less than three, Proc. Amer. Math. Soc. 11 (1960), 391-392.
  • S. Chapman, ed., Arithmetical properties of commutative rings and monoids, Lect. Notes Pure Appl. Math. 241, CRC Press, Boca Raton, 2005.
  • S. Chapman and J. Coykendall, Half-factorial domains, A survey, in Non-Noetherian commutative rings, S. Chapman and S. Glaz, eds., 97-115; Math. Appl. 520, Kluwer Academic Publishers, Dordrecht, 2000.
  • S. Chapman and S. Glaz, eds., Non-Noetherian commutative ring theory, Math. Appl. 520, Kluwer Academic Publishers, Dordrecht, 2000.
  • P.M. Cohn, Bézout rings and their subrings, Math. Proc. Cambridge Philos. Soc. 64 (1968), 251-264.
  • A.M. Frazier, Generalized factorizations in integral domains, Dissertation, The University of Iowa, Iowa City, IA, May, 2006.
  • A.M. Frazier and S. Hamon, $\tau$-factoring integers modulo $n$, preprint.
  • A. Geroldinger and F. Halter-Koch, Non-Unique factorizations: Algebraic, combinatorial and analytic theory, Pure Appl. Math. 278, Taylor and Francis, CRC Press, Boca Raton, 2006.
  • R. Gilmer, Multiplicative ideal theory, Queen's Papers in Pure Appl. Math. 90, Queen's University, Kingston, Ontario, 1992.
  • R. Gilmer and W. Heinzer, Principal ideal rings and a condition of Kummer, J. Algebra 83 (1983), 285-292.
  • A. Grams, Atomic domains and the ascending chain condition on principal ideals, Math. Proc. Cambridge Philos. Soc. 75 (1974), 321-329.
  • A. Grams and H. Warner, Irreducible divisors in domains of finite character, Duke Math. J. 42 (1975), 271-284.
  • F. Halter-Koch, Ideal systems, An introduction to ideal theory, Marcel Dekker, Inc., New York, 1998.
  • B.G. Kang, On the converse of a well-known fact about Krull domains, J. Algebra 124 (1989), 284-299.
  • S. McAdam and D.E. Rush, Schreier rings, Bull. London Math. Soc. 10 (1978), 77-80.
  • S. McAdam and R.G. Swan, Unique comaximal factorization, J. Algebra 276 (2004), 180-192.
  • M. Zafrullah, Semirigid GCD domains, Manuscr. Math. 17 (1975), 55-66.
  • –––, Rigid elements in GCD domains, J. Natur. Sci. Math. 17 (1977), 7-14.
  • –––, Unique representation domains, J. Natur. Sci. Math. 18 (1978), 19-29.
  • –––, Putting $t$-invertibility to use, in Non-Noetherian commutative rings, S. Chapman and S. Glaz, eds., 429-457; Math. Appl. 520, Kluwer Academic Publishers, Dordrecht, 2000.
  • A. Zaks, Half-factorial domains, Bull. Amer. Math. Soc. 82 (1976), 721-724.
  • –––, Half-factorial domains, Israel J. Math. 37 (1980), 281-302.