Rocky Mountain Journal of Mathematics

Representations of Archimedean Riesz Spaces A Survey

Wolfgang Filter

Full-text: Open access

Article information

Source
Rocky Mountain J. Math. Volume 24, Number 3 (1994), 771-851.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
http://projecteuclid.org/euclid.rmjm/1181072375

Digital Object Identifier
doi:10.1216/rmjm/1181072375

Mathematical Reviews number (MathSciNet)
MR1307578

Zentralblatt MATH identifier
0922.46004

Subjects
Primary: 46A40: Ordered topological linear spaces, vector lattices [See also 06F20, 46B40, 46B42]
Secondary: 06F20: Ordered abelian groups, Riesz groups, ordered linear spaces [See also 46A40] 46B30 46E27: Spaces of measures [See also 28A33, 46Gxx] 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) 28C15: Set functions and measures on topological spaces (regularity of measures, etc.)

Citation

Filter, Wolfgang. Representations of Archimedean Riesz Spaces A Survey. Rocky Mountain J. Math. 24 (1994), no. 3, 771--851. doi:10.1216/rmjm/1181072375. http://projecteuclid.org/euclid.rmjm/1181072375.


Export citation

References

  • Y.A. Abramovich, Remarkable points and $X_(N)$-spaces, in Riesz spaces, positive operators and economics, Studies in Economic Theory 2, Springer-Verlag, New York, 1991, 89-108.
  • Y.A. Abramovich and W. Filter, A remark on the representation of vector lattices as spaces of continuous real-valued functions, Acta Appl. Math. 27 (1992), 23-26.
  • Y.A. Abramovich and A.I. Veksler, Schaefer realization of Banach lattices with a quasi-interior element, in Ordered spaces and operator equations, Sjktjvkar, 1989, 5-8. (Russian)
  • J. Aczél, Lectures on functional equations and their applications, Academic Press, New York, 1966.
  • C.D. Aliprantis and O. Burkinshaw, Locally solid Riesz spaces, Academic Press, New York, 1978.
  • T. Ando, Banachverbände und positive Projektionen, Math. Z. 109 (1969), 121-130.
  • R.N. Ball and A.W. Hager, Epicomplete Archimedean $l$-groups and vector lattices, Trans. Amer. Math. Soc. 322 (1990), 459-478.
  • --------, On the localic Yosida representation of an Archimedean lattice ordered group with weak order unit, J. Pure Appl. Algebra 70 (1991), 17-43.
  • R.N. Ball, A.W. Hager and C.W. Neville, The quasi-$F_\kappa$ cover of a compact Hausdorff space and the $\kappa$-ideal completion of an Archimedean $l$-group, in General topology and applications, LN in Pure and Applied Mathematics 123, Marcel Dekker Inc., New York, 1990, 7-50.
  • H. Bauer, Šilovscher Rand und Dirichletsches Problem, Ann. Inst. Fourier (Grenoble) 11 (1961), 89-136.
  • S.J. Bernau, Unique representation of Archimedean lattice groups and normal Archimedean lattice rings, Proc. London Math. Soc. (3) 15 (1965), 599-631.
  • A. Bigard, K. Keimel and S. Wolfenstein, Groupes et anneaux réticulés, LN in mathematics 608, Springer-Verlag, Berlin, 1977.
  • G. Birkhoff and R.S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ciênc. 28 (1956), 41-69.
  • A. Blass and T. Jech, On the Egoroff property of pointwise convergent sequences of functions, Proc. Amer. Math. Soc. 98 (1986), 524-526.
  • H.F. Bohnenblust, An axiomatic characterization of $L_p$-spaces, Duke Math. J. 6 (1940), 627-640.
  • H.F. Bohnenblust and S. Kakutani, Concrete representation of $(M)$-spaces, Ann. of Math. 42 (1941), 1025-1028.
  • N. Bourbaki, Intégration, Ch. V, Hermann, Paris, 1956.
  • J. Bretagnolle, D. Dacunha-Castelle and J. Krivine, Lois stables et espaces $L_p$, Ann. Inst. H. Poincaré Sect. B 2 (1966), 231-259.
  • L. Brown and H. Nakano, A representation theorem for Archimedean linear lattices, Proc. Amer. Math. Soc. 17 (1966), 835-837.
  • G. Buskes, Extensions of Riesz homomorphisms I, J. Austral. Math. Soc. Ser. A 39 (1985), 107-120.
  • G. Buskes and A. van Rooij, Riesz spaces and the ultrafilter theorem I, Reports of the Dept. of Mathematics, Catholic Univ. Nijmegen (1989).
  • --------, Small Riesz spaces, Math. Proc. Cambridge Philos. Soc. 105 (1989), 523-536.
  • C. Carathéodory, Algebraic theory of measure and integration, Chelsea Publ. Co., New York, 1963.
  • H.H. Chuang and H. Nakano, Simple linear lattices, Comment. Math. Prace Mat. 18 (1974), 141-149.
  • W.J. Claas, Orlicz lattices, Ph. D. thesis, Leiden University (1977).
  • W.J. Claas and A.C. Zaanen, Orlicz lattices, Comment. Math. Prace Mat. tomus specialis I (1978), 77-93.
  • P.F. Conrad, Epi-Archimedean groups, Czechoslovak Math. J. 24 (1974), 1-27.
  • C. Constantinescu, Duality in measure theory, LN in Mathematics 796, Springer-Verlag, Berlin, 1980.
  • C. Constantinescu and K. Weber, Integration theory I, John Wiley and Sons, New York, 1985.
  • F. Cunningham, Jr., $L$-structure in $L$-spaces, Trans. Amer. Math. Soc. 95 (1960), 274-299.
  • F. Dashiell, A. Hager and M. Henriksen, Order-Cauchy completions of rings and vector lattices of continuous functions, Canad. J. Math. 32 (1980), 657-685.
  • E.B. Davies, The Choquet theory and representation of ordered Banach spaces, Illinois J. Math. 13 (1969), 176-187.
  • Z. T. Dikanova, On some properties of a semi-ordered space of continuous functions on a bicompact, Uspekhi Mat. Nauk 14, No. 6 (1959), 165-172. (Russian)
  • --------, Almost regular $K$-spaces and $K^+$-spaces, Sibirsk. Mat. Zh. 6 (1965), 997-1008. (Russian)
  • --------, Conditions for the boundedness of sets in an extended $K$-space, Sibirsk. Mat. Zh. 9 (1968), 804-815. (Russian)
  • J. Dixmier, Sur certains espaces considérés par M.H. Stone, Summa Brasil. Math. 2 (1951), 151-182.
  • G.I. Domracheva, Extended K-spaces, Leningrad Gos. Ped. Inst. Uchen. Zap. 166 (1958), 17-27. (Russian)
  • --------, Generalized partially ordered rings, Uch. Zap. Novgorodsk. Gos. Ped. Inst. 1, No. 1 (1960), 51-60. (Russian)
  • --------, Partially ordered rings, ibidem, 61-69. (Russian)
  • L. Drewnowski, On subseries convergence in some function spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 797-803.
  • L. Drewnowski and W. Orlicz, A note on modular spaces X, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 809-814.
  • N. Dunford and J.T. Schwartz, Linear operators I, Interscience Publ., New York, 1958.
  • E.G. Effros, Structure in simplexes II, J. Funct. Anal. 1 (1967), 379-391.
  • M.A. Ermolin, Concerning the theory of regular operators in K-spaces, Ph.D. thesis, Leningrad. Gos. Ped. Inst. im. A.I. Gercena, 1953. (Russian)
  • W.A. Feldman and J.F. Porter, Banach lattices with locally compact representation spaces, Math. Z. 174 (1980), 233-239.
  • --------, Uniqueness of representation spaces, Math. Z. 179 (1982), 213-217.
  • W. Filter, Dual spaces of $C_\infty(X)$, Rend. Circ. Mat. Palermo (2) 35 (1986), 135-158; Addendum to ``Dual spaces of $C_\infty(X)$", ibidem, 316.
  • --------, A note on Archimedean Riesz spaces and their extended order duals, Libertas Math. 6 (1986), 101-106.
  • --------, On measure representations of Riesz spaces, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 77-94.
  • --------, Atomical and atomfree elements of a Riesz space, Arch. Math. (Basel) 52 (1989), 580-587.
  • --------, Hypercomplete Riesz spaces, Atti Sem. Mat. Fis. Univ. Modena 38 (1990), 227-240.
  • --------, Representations of Riesz spaces as spaces of measures I, II, Czechoslovak Math. J. 42 (1992), 415-432 and 635-648.
  • --------, Riesz spaces of step functions, Ricerche Mat. 34 (1990), 247-257.
  • --------, Hypercompletions of Riesz spaces, Proc. Amer. Math. Soc. 109 (1990), 775-780.
  • --------, Some remarks on localness in Riesz spaces of continuous functions, Ricerche Mat., to appear.
  • W. Filter and K. Weber, Normal measures on Stonian spaces with $\sigma$-compact and paracompact support, Math. Nachr. 136 (1988), 91-98.
  • J. Flachsmeyer, Normal and category measures on topological spaces, Proc. Third Prague Topological Symposium, 1971, Academia, Prague, 1972, 109-116.
  • --------, Underlying Boolean algebras of topological semifields, in Topological structures II , Amsterdam Mathematical Centre Tracts 115, 1979, 91-103.
  • J. Flachsmeyer and S. Lotz, A survey on hyperdiffuse measures I-III, Proc. Conf. Topology and Measure I, 1978, pp. 87-128; II (part 1), 1980, pp. 45-74; II (part 2), 1980, pp. 31-70, Wissensch. Beitr. Ernst-Moritz-Arndt-Univ. Greifswald.
  • I. Fleischer, ``Place functions": Alias continuous functions on the Stone space, Proc. Amer. Math. Soc. 106 (1989), 451-453.
  • --------, Functional representation of vector lattices, Proc. Amer. Math. Soc. 108 (1990), 471-478.
  • D.H. Fremlin, Abstract Köthe spaces II, Proc. Cambridge Philos. Soc. 63 (1967), 951-956.
  • --------, Topological Riesz spaces and measure theory, Cambridge Univ. Press, London, 1974.
  • G. Giertz, Darstellung von Banachverbänden durch Schnitte in Bündeln, Mitt. Math. Sem. Giessen 125 (1977).
  • H. Gordon, Measures defined by abstract $L_p$-spaces, Pacific J. Math. 10 (1960), 557-562.
  • A. Goullet de Rugy, La théorie des cônes biréticulés, Ann. Inst. Fourier (Grenoble) 21, No. 4 (1971), 1-18.
  • --------, La structure idéale des $M$-espaces, J. Math. Pures Appl. 51 (1972), 331-373.
  • --------, Representation of Banach lattices, in Foundations of quantum mechanics and ordered linear spaces, LN in Physics 29, Springer-Verlag, Berlin, 1974, 41-46.
  • W. Hackenbroch, Zur Darstellungstheorie $\sigma$-vollständiger Vektorverbände, Math. Z. 128 (1972), 115-128.
  • --------, Eindeutigkeit des Darstellungsraumes von Vektorverbänden, Math. Z. 135 (1974), 285-288.
  • --------, Über den Freudenthalschen Spektralsatz, Manuscripta Math. 13 (1974), 83-99.
  • --------, Representation of vector lattices by spaces of real functions, in Functional analysis: Surveys and recent results, Mathematics Studies 27, North-Holland Publ. Comp., Amsterdam, 1977, 51-72.
  • A.W. Hager and L.C. Robertson, Representing and ringifying a Riesz space, Sympos. Math. 21 (1977), 411-431.
  • R. Haydon, Injective Banach lattices, Math. Z. 156 (1977), 19-47.
  • M. Henriksen and D.G. Johnson, On the structure of a class of Archimedean lattice-ordered algebras, Fund. Math. 50 (1961-62), 73-94.
  • E. Huber, Über die Darstellung von Vektorverbänden, Ph.D. thesis, Swiss Fed. Inst. Technology, Zurich, 1986.
  • C.B. Huijsmans, Some analogies between commutative rings, Riesz spaces and distributive lattices with smallest element, Nederl. Akad. Wetensch. Proc. Ser. A 77 (1973), 263-279.
  • --------, Riesz spaces for which every ideal is a projection band, Nederl. Akad. Wetensch. Proc. Ser. A 79, (1976), 30-35.
  • A. Ionescu-Tulcea and C. Ionescu-Tulcea, Topics in the theory of lifting, Springer-Verlag, New York, 1969.
  • G. Ya. Ivanova, Maximal ideals in generalized partially ordered rings of continuous functions with multiplicative unit, Siberian Math. J. 12 (1971), 501-508.
  • G. Jameson, Topological $M$-spaces, Math. Z. 103 (1968), 139-150.
  • D.G. Johnson, On a representation theory for a class of Archimedean lattice-ordered rings, Proc. London Math. Soc. (3) 12 (1962), 207-225.
  • D.G. Johnson and J.E. Kist, Complemented ideals and extremally disconnected spaces, Arch. Math. (Basel) 12 (1961), 349-354.
  • --------, Prime ideals in vector lattices, Canad. J. Math. 14 (1962), 517-528.
  • P.T. Johnstone, Stone spaces, Cambridge Univ. Press, New York, 1982.
  • S. Kakutani, Concrete representation of abstract $L$-spaces and the mean ergodic theorem, Ann. of Math. 42 (1941), 523-537.
  • --------, Concrete representation of abstract $M$-spaces, Ann. of Math. 42 (1941), 994-1024.
  • L.V. Kantorovich and G.P. Akilov, Functional analysis, Pergamon Press, Oxford-Elmsford, N.Y., 1982.
  • L.V. Kantorovich, B.Z. Vulikh and A.G. Pinsker, Functional analysis in partially ordered spaces, Moscow, 1950. (Russian)
  • --------, Partially ordered groups and linear partially ordered spaces, Uspekhi Mat. Nauk 6, No. 3 (1951), 31-98. (Russian)
  • S. Kaplan, The bidual of $C(X)$ I, Mathematics Studies 101, North-Holland Publ. Comp., Amsterdam, 1985.
  • I. Kawai, Locally convex lattices, J. Math. Soc. Japan 9 (1957), 281-314.
  • J.E. Kist, Representations of Archimedean function rings, Illinois J. Math. 7 (1963), 269-278.
  • A.V. Koldunov, Strict realization of vector lattices, in Theory of functions and functional analysis, Leningrad. Gos. Ped. Inst., Leningrad, 1975, 67-74. (Russian)
  • --------, $\sigma$-completion and $o$-completion of $C(B)$ in Functional analysis, No. 6: Theory of operators in linear spaces, Ul'janovsk. Gos. Ped. Inst., Ul'yanovsk, 1976, 76-83. (Russian)
  • --------, Countably unattainable points in the maximal ideal space of the Banach algebra $L^\infty$, in Application of functional analysis in approximation theory, Kalinin. Gos. Univ., Kalinin, 1977, 45-54. (Russian)
  • --------, Solution of a well-known problem for the theory of semi-ordered spaces, Soviet Math. (Iz. VUZ) 26, No. 2 (1982), 30-34.
  • --------, Continuous functions on $(M,I)$-absolutes, Soviet Math. (Iz. VUZ) 31, No. 10 (1987), 83-86.
  • P. Kranz and W. Wnuk, On the representation of Orlicz spaces, Nederl. Akad. Wetensch. Proc. Ser. A 84 (1981), 375-383.
  • M.G. Kreĭ n and S.G. Kreĭ n, On an inner characteristic of the set of all continuous functions defined on a bicompact Hausdorff space, Dokl. Akad. Nauk SSSR 27 (1940), 427-430. (Russian)
  • --------, Sur l'espace des fonctions continues définies sur un bicompact de Hausdorff et ses sous-espaces semi-ordonnés, Mat. Sb. 13 (1943), 1-38.
  • R.G. Kuller, Locally convex topological vector lattices and their representations, Michigan Math. J. 5 (1958), 83-90.
  • I. Labuda, Submeasures and locally solid topologies on Riesz spaces, Math. Z. 195 (1987), 179-196.
  • H.E. Lacey and S.J. Bernau, Characterizations and classifications of some classical Banach spaces, Adv. in Math. 12 (1974), 367-401.
  • J. Lindenstrauss and L. Tzafriri, On the complemented subspaces problem, Israel J. Math. 9 (1971), 263-269.
  • --------, Classical Banach spaces II, Springer-Verlag, New York, 1979.
  • Z. Lipecki, Extensions of tight set functions with values in a topological group, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 105-113.
  • H.P. Lotz, Zur Idealstruktur in Banachverbänden, Habilitation thesis, Univ. Tübingen, 1969.
  • S. Lotz, A survey on hyperdiffuse measures IV, Proc. Conf. Topology and Measure III, Wissensch. Beitr. Ernst-Moritz-Arndt-Univ. Greifswald, 1982, 127-163.
  • --------, Hyperdiffuse (normal, residual) Borel extensions of Baire measures, Proc. Conf. Topology and Measure IV (part 1), Wissensch. Beitr. Ernst-Moritz-Arndt-Univ. Greifswald, 1984, 137-142.
  • G. Ya. Lozanovskiĭ, On countably normalized partially ordered rings, Sibirsk. Mat. Zh. 6 (1965), 867-880. (Russian)
  • --------, Banach lattices of Caldéron, Soviet Math. Dokl. 8 (1967), 224-227.
  • --------, Some Banach lattices, Siberian Math. J. 10 (1969), 419-431.
  • --------, The realization of spaces of regular functionals, and certain applications thereof, Soviet Math. Dokl. 10 (1969), 1149-1152.
  • --------, The functions of the elements of a linear lattice, Izv. Vyssh. Uchebn. Zaved. Mat., No.4 (1973), 45-54. (Russian)
  • --------, Normal measures in a product of bicompacta and a certain problem of V.I. Ponomarev, Izv. Vyssh. Uchebn. Zaved. Mat., No. 7 (1975), 114-116. (Russian)
  • --------, Mappings of Banach lattices of measurable functions, Soviet Math. (Izv. VUZ) 22, No. 5 (1978), 61-63.
  • --------, Transformations of ideal Banach spaces by means of concave functions, in Qualitative and approximative methods for the investigation of operator equations, No. 3, Yaroslav. Gos. Univ., Yaroslavl, 1978, 122-148. (Russian).
  • --------, The representation of linear functionals in Marzinkiewicz spaces, Izv. Vyssh. Uchebn. Zaved. Mat., No. 1 (1978), 43-53. (Russian)
  • --------, Discrete functionals in Marcinkiewicz and Orlicz spaces, in Studies in the theory of functions of several variables, No.2, Yaroslav. Gos. Univ., Yaroslavl, 1978, 132-147. (Russian)
  • W.A.J. Luxemburg, Concurrent binary relations and embedding theorems for partially ordered linear spaces, Proceedings of the first international symposium on ordered algebraic structures, Luminy-Marseille 1984, Heldermann-Verlag, Berlin, 1986, 223-229.
  • W.A.J. Luxemburg and J.J. Masterson, An extension of the concept of the order dual of a Riesz space, Canad. J. Math. 19 (1967), 488-498.
  • W.A.J. Luxemburg and L.C. Moore, Jr., Archimedean quotient Riesz spaces, Duke Math. J. 34 (1967), 725-739.
  • W.A.J. Luxemburg and A.C. Zaanen, Riesz spaces I, North-Holland Publ. Comp., Amsterdam, 1971.
  • J.J. Madden, On the Yosida representation of a Riesz space, in General topology and applications, LN in Pure and Applied Mathematics 123, Marcel Dekker Inc., New York, 1990, 183-192.
  • --------, Frames associated with an abelian $l$-group, Trans. Amer. Math. Soc. 331 (1992), 265-279.
  • J.J. Madden and J. Vermeer, Epicomplete Archimedean $l$-groups via a localic Yosida theorem, J. Pure Appl. Algebra 68 (1990), 243-252.
  • F. Maeda and T. Ogasawara, Representation of vector lattices, J. Sci. Hiroshima Univ. Ser. A 12 (1942), 17-35. (Japanese)
  • B.M. Makarov and M. Weber, On the realization of vector lattices I, Math. Nachr. 60 (1974), 281-296. (Russian)
  • --------, Einige Untersuchungen des Raumes der maximalen Ideale eines Vektorverbandes mit Hilfe finiter Elemente I, Math. Nachr. 79 (1977), 115-130.
  • --------, Einige Untersuchungen des Raumes der maximalen Ideale eines Vektorverbandes mit Hilfe finiter Elemente II, Math. Nachr. 80 (1977), 115-125.
  • --------, Über die Realisierung von Vektorverbänden III, Math. Nachr. 86 (1978), 7-14.
  • J.T. Marti, Topological representation of abstract $L_p$-spaces, Math. Ann. 185 (1970), 315-321.
  • J.J. Masterson, A characterization of the Riesz space of measurable functions, Trans. Amer. Math. Soc. 135 (1969), 193-197.
  • R. Matzka, Topologische Riesz'sche Räume und ihre maßtheoretische Darstellung, Ph.D. thesis, Ludwig-Maximilians-Univ. Munich, 1976.
  • R.C. Metzler, Representation of ordered linear spaces, Rocky Mountain J. Math. 5 (1975), 427-443.
  • J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65.
  • R.J. Nagel, Ordnungsstetigkeit in Banachverbänden, Manuscripta Math. 9 (1973), 9-27.
  • --------, A Stone-Weierstrass theorem for Banach lattices, Studia Math. 47 (1973), 75-82.
  • H. Nakano, Über das System aller stetigen Funktionen auf einem topologi-schen Raum, Proc. Imp. Acad. Tokyo 17 (1940-41), 308-310.
  • --------, Über normierte, teilweise geordnete Moduln, Proc. Imp. Acad. Tokyo 17 (1940-41), 311-317.
  • --------, Eine Spektraltheorie, Proc. Phys.-Math. Soc. Japan (3) 23 (1941), 485-511.
  • --------, Über die Charakterisierung des allgemeinen $C$-Raumes II, Proc. Imp. Acad. Tokyo 18 (1942), 280-286.
  • --------, Modulared semi-ordered spaces, Maruzen Co., Tokyo, 1950.
  • --------, Modern spectral theory, Maruzen Co., Tokyo, 1950.
  • K. Nakano and T. Shimogaki, A note on the cut extension of $C$-spaces, Proc. Japan Acad. 38 (1962), 473-477.
  • T. Ogasawara, Remarks on the representation of vector lattices, J. Sci. Hiroshima Univ. Ser. A 12 (1943), 217-234. (Japanese)
  • D. Papert, A representation theory for lattice groups, Proc. London Math. Soc. (3) 12 (1962), 100-120.
  • A.G. Pinsker, On normed $K$-spaces, C.R. (Doklady) Acad. Sci. URSS (N.S.) 33 (1941), 12-14.
  • --------, On the decomposition of $K$-spaces into elementary spaces, C.R. (Doklady) Acad. Sci. URSS (N.S.) 49 (1945), 168-171.
  • On separable $K$-spaces, ibidem, 318-319.
  • On concrete representations of linear semi-ordered spaces, C.R. (Doklady) Acad. Sci. URSS (N.S.) 55 (1947), 379-381.
  • C. Portenier, Espaces de Riesz, espaces de fonctions et espaces de sections, Comment. Math. Helv. 46 (1971), 289-313.
  • N.M. Rice, Multiplication in vector lattices, Canad. J. Math. 20 (1968), 1136-1149.
  • G.Ya. Rotkovich, On the immersion of a partially ordered space into a space with a unit, Sibirsk. Mat. Zh. 6 (1965), 918-923. (Russian)
  • H.H. Schaefer, On the representation of Banach lattices by continuous numerical functions, Math. Z. 125 (1972), 215-232.
  • --------, Banach lattices and positive operators, Springer-Verlag, New York, 1974.
  • Z. Semadeni, Banach spaces of continuous functions I, Polish Scientific Publ., Warsaw, 1971.
  • P. von Siebenthal, $L_p$-Räume, Ph.D. thesis, Swiss Fed. Inst. Technology Zurich, 1986.
  • S.W.P. Steen, Introduction to the theory of operators, 1. Real operators. Modulus, Proc. London Math. Soc. (2) 41 (1936), 361-392.
  • M.H. Stone, A general theory of spectra I, Proc. Nat. Acad. Sci. U.S.A., 26 (1940), 280-283.
  • Boundedness properties in function lattices, Canad. J. Math. 1 (1949), 176-186.
  • E. Thoma, Darstellung von vollständigen Vektorverbänden durch vollstän-dige Funktionenverbände, Arch. Math. (Basel) 7 (1956), 11-22.
  • T. Traynor, Lifting: the connection between functional representations of vector lattices, Real Anal. Exchange 15 (1989-90), 47-48.
  • L. Tzafriri, An isomorphic characterization of $L_p$ and $c_0$-spaces II, Michigan Math. J. 18 (1971), 21-31.
  • A.I. Veksler, Realizations of Archimedean $K$-lineals, Sibirsk. Mat. Zh. 3 (1962), 7-16. (Russian)
  • --------, The operations of partial multiplication in vector lattices, Soviet Math. Dokl. 5 (1964), 1290-1294.
  • --------, The operations of partial multiplication in vector lattices, Dokl. Akad. Nauk SSSR 158 (1964), 759-762. (Russian)
  • --------, Archimedean principle in homomorphic images of $l$-groups and of vector lattices, Izv. Vyssh. Uchebn. Zaved. Mat., No. 5 (1966), 33-38. (Russian)
  • --------, The concept of a linear lattice which is normal in itself, and certain applications of this concept to the theory of linear and linear normed lattices, Izv. Vyssh. Uchebn. Zaved. Mat., No. 4 (1966), 13-22. (Russian)
  • --------, Realizable partial multiplications in linear lattices, Math. USSR-Izv. 1 (1969), 1153-1176.
  • --------, Localness of functional vector lattices, Siberian Math. J. 12 (1971), 39-46.
  • --------, On Banach and Dedekind completeness of spaces of continuous functions, vector lattices and maximal rings of quotients, Soviet Math. Dokl. 12 (1971), 15-18.
  • --------, Conditions for the Banach and Dedekind completeness of certain spaces of continuous functions, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 20 (1974), 15-25. (Russian)
  • --------, Maximal nowhere dense sets in topological spaces, Soviet Math. (Iz. VUZ) 19, No. 5 (1976), 6-11.
  • --------, The Kreĭ n-Kakutani theorem and realization characteristics of $K_\sigma$-spaces, in Functional analysis, No. 9: Harmonic analysis on groups, Ul'janovsk. Gos. Ped. Inst., Ul'yanovsk, 1977, 8-16. (Russian)
  • --------, Normal measures on compact spaces and order continuous functionals on vector lattices, Proc. Conf. Topology and Measure I, Wissensch. Beitr. Ernst-Moritz-Arndt-Univ. Greifswald, 1978, 383-391.
  • --------, Functional representation of the order completion of a vector lattice of continuous functions, Sibirsk. Mat. Zh. 26, No. 6 (1985), 159-162. (Russian)
  • --------, On a problem of A.G. Pinsker, Optimizatsiya 37 (1986), 13-16. (Russian)
  • --------, Integral representation of extended functionals and topological properties of some subsets of supports of representing measures, in Operatory i ih prilozheniya, Leningrad. Gos. Ped. Inst. im. A.I. Gercena, Leningrad, 1988, pp. 14-19. (Russian)
  • --------, The integral representability of extended functionals on vector lattices and cones, in Functional analysis, optimization and mathematical economics, Oxford Univ. Press, Oxford, 1990, 120-132.
  • A.I. Veksler and V.A. Geiler, Order and disjoint completeness of linear partially ordered spaces, Siberian Math. J. 13 (1972), 30-35.
  • A.I. Veksler and G.Ya. Rotkovich, A property of irreducible images of extremally disconnected hyperstonian compacta and its application to the theory of partially ordered spaces, Siberian Math. J. 12 (1971), 196-199.
  • --------, Partial multiplications in countably complete vector lattices, in Sovremannyj analiz i geometriya, Leningrad. Gos. Ped. Inst. im. A.I. Gercena, Leningrad, 1972, 12-13. (Russian)
  • A.I. Veksler, V.K. Zaharov and A.V. Koldunov, Spaces of continuous extended functions, Soviet Math. Dokl. 23 (1981), 167-172.
  • V.K. Vietsch, Abstract kernel operators and compact operators, Ph\.D. thesis, Leiden Univ., 1979.
  • D.A. Vladimirov, On the completeness of a partially ordered space, Amer. Math. Soc. Transl. (2) 30 (1963), 351-358.
  • B.Z. Vulikh, Une définition du produit dans les espaces semi-ordonnés linéaires, Dokl. Akad. Nauk SSSR 26 (1940), 850-854.
  • --------, Sur les propriétés du produit dans les espaces semi-ordonnés linéaires, Dokl. Akad. Nauk SSSR 26 (1940), 855-859.
  • --------, Concrete representations of linear partially ordered spaces, Dokl. Akad. Nauk SSSR 58 (1947), 733-736. (Russian)
  • --------, The product in linear partially ordered spaces and its application to the theory of operations I, Mat. Sb. 22 (1948), 27-78. (Russian)
  • --------, The product in linear partially ordered spaces and its application to the theory of operations II, Mat. Sb. 22 (1948), 267-317. (Russian)
  • --------, On the concrete representation of partially ordered lineals, Dokl. Akad. Nauk SSSR 78 (1951), 189-192. (Russian)
  • --------, Some questions of the theory of linear partially ordered sets, Izvestiya Akad. Nauk SSSR, Ser. Mat. 17 (1953), 365-388. (Russian)
  • --------, Generalized partially ordered rings, Mat. Sb. 33 (1953), 343-358. (Russian)
  • --------, Characteristic properties of the product in linear partially ordered spaces, Leningrad. Gos. Ped. Inst. Uchen. Zap. 89 (1953), 3-8. (Russian)
  • --------, On the property of intrinsic normality of generalized semi-ordered rings, Leningrad. Gos. Ped. Inst. Uchen. Zap. 166 (1958), 3-15. (Russian)
  • --------, Introduction to the theory of partially ordered spaces, Wolters-Noordhoff Sci. Publ., Groningen, 1967.
  • B.Z. Vulikh and G.Ya. Lozanovskiĭ, On the representation of completely linear and regular functionals in partially ordered spaces, Math. USSR-Sb. 13 (1971), 323-343.
  • M. Weber, Über eine Klasse von K-Linealen und ihre Realisierung, Wiss. Z. Tech. Univ. Karl-Marx-Stadt 13, No. 1 (1971), 159-171.
  • --------, Über die Realisierung von Vektorverbänden II, Math. Nachr. 65 (1975), 165-177.
  • --------, On the realization of vector lattices on locally compact topological spaces, in Proc. Conf. Topology and Measure I, Wissensch. Beitr. Ernst-Moritz-Arndt-Univ. Greifswald, 1978, 393-401.
  • --------, Some properties of the realization space of vector lattices, Proc. Conf. Topology and Measure II (part 1), Wissensch. Beitr. Ernst-Moritz-Arndt-Univ. Greifswald, 1980, 169-172.
  • A.W. Wickstead, The structure space of a Banach lattice, J. Math. Pures Appl. 56 (1977), 39-54.
  • --------, Representation and duality of multiplication operators on Archimed-ean Riesz spaces, Compositio Math. 35 (1977), 225-238.
  • --------, Representations of Archimedean Riesz spaces by continuous functions, Acta Appl. Math. 27 (1992), 123-133.
  • M. Wolff, Darstellung von Banach-Verbänden und Sätze vom Korovkin-Typ, Math. Ann. 200 (1973), 47-67.
  • --------, A Radon-Nikodým theorem for operators with an application to spectral theory, in Foundations of quantum mechanics and ordered linear spaces, LN in Physics 29, Springer-Verlag, Berlin, 1974, 345-355.
  • --------, On the theory of approximation by positive operators in vector lattices, in Functional analysis: Surveys and recent results, Mathematics Studies 27, North-Holland Publ. Comp., Amsterdam, 1977, 73-87.
  • W. Wnuk, On a representation theorem for convex Orlicz lattices, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 131-136.
  • --------, Representations of Orlicz lattices, Diss. Math. 235 (1984).
  • K. Yosida, On the representation of the vector lattice, Proc. Imp. Acad. Tokyo 18 (1941-42), 339-342.
  • A.C. Zaanen, Riesz spaces II, North-Holland Publ. Comp., Amsterdam, 1983.
  • V.K. Zaharov, Functional characterization of absolute and Dedekind completion, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29, No. 5-6 (1981), 293-297.
  • --------, Functional characterization of the absolute, vector lattices of functions with the Baire property and of quasinormal functions and modules of particular continuous functions, Trans. Moscow Math. Soc., Issue 1 (1984), 69\emdash/105.
  • --------, On functions connected with sequential absolute, Cantor completion and classical ring of quotients, Period. Math. Hungar. 19 (2) (1988), 113-133.
  • V.K. Zaharov and A.V. Koldunov, The sequential absolute and its characterizations, Soviet Math. Dokl. 22 (1980), 70-74.