Rocky Mountain Journal of Mathematics

Orbifold Spectral Theory

Carla Farsi

Full-text: Open access

Article information

Rocky Mountain J. Math. Volume 31, Number 1 (2001), 215-235.

First available in Project Euclid: 5 June 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Farsi, Carla. Orbifold Spectral Theory. Rocky Mountain J. Math. 31 (2001), no. 1, 215--235. doi:10.1216/rmjm/1008959678.

Export citation


  • T. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grund-lehren Math. Wiss. 252, Springer-Verlag, Berlin, 1982.
  • N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators, Grundlehren Math. Wiss. 181, Springer-Verlag, Berlin, 1991.
  • I. Chavel, Eigenvalues in Riemannian geometry, Pure Appl. Math., Academic Press, Florida, 1984.
  • S-Y. Cheng and P. Li, Heat kernel estimates and lower bounds of eigenvalues, Comment. Math. Helv. 56 (1981), 327-338.
  • Y-J. Chiang, Harmonic maps of $V$-manifolds, Ann. Global Anal. Geom. 8 (1990), 315-344.
  • H. Donnelly, Asymptotic expansions for the compact quotients of proper discontinuous group actions, Illinois J. Math. 23 (1979), 485-496.
  • C. Farsi, $K$-theoretical index theorems for orbifolds, Quart. J. Math. Oxford Ser. (2) 43 (1992), 183-200.
  • P.B. Gilkey, The index theorem and the heat equation, Math. Lecture Ser. 4, Publish or Perish, Boston, 1974.
  • E. Hebey, Sobolev spaces on manifolds, Lecture Notes in Math. 1635, Springer-Verlag, Berlin, 1996.
  • T. Kawasaki, The signature theorem for $V$-manifolds, Topology 17 (1978), 75-83.
  • P. Li, On the Sobolev constant and the $p$-spectrum of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. (4) 13 (1980), 451-469.
  • Y. Nakagawa, An isometric inequality for orbifolds, Osaka J. Math. 30 1993), 733-739.
  • R.T. Seeley, Complex powers of an elliptic operator, Proc. Amer. Math. Soc. Symp. Pure Math. 10 (1967), 288-307.