Rocky Mountain Journal of Mathematics

Configurations of Cycles and the Appolonius Problem

Borut Jurčič Zlobec and Neža Mramor Kosta

Full-text: Open access

Article information

Source
Rocky Mountain J. Math. Volume 31, Number 2 (2001), 725-744.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
http://projecteuclid.org/euclid.rmjm/1181070224

Digital Object Identifier
doi:10.1216/rmjm/1020171586

Mathematical Reviews number (MathSciNet)
MR1840965

Citation

Zlobec, Borut Jurčič; Kosta, Neža Mramor. Configurations of Cycles and the Appolonius Problem. Rocky Mountain J. Math. 31 (2001), no. 2, 725--744. doi:10.1216/rmjm/1020171586. http://projecteuclid.org/euclid.rmjm/1181070224.


Export citation

References

  • H. Behnke, Geometry, fundamentals of mathematics, Vol. 2, MIT Press, Cambridge, MA, 1974.
  • T.E. Cecil, Lie sphere geometry with applications to minimal sub-manifolds, Springer, Berlin, 1992.
  • J.P. Fillmore and A. Springer, Planar sections of the quadric of Lie cycles and their Euclidean interpretations, Geom. Dedicata 55 (1995), 175-193.
  • D. Pedoe, Geometry, Dover Publications, New York, 1988.
  • J.F. Rigby, The geometry of cycles and generalized Laguerre inversion, in The geometric vein, The Coxeter Festschrift (C. Davis, B. Grünbaum and F.A. Sherk, eds.), Springer, New York, 1981, 355-378.
  • I.M. Yaglom, On the circular transformations of Möbius, Laguerre and Lie, in The geometric vein, The Coxeter Festschrift (C. Davis, B. Grünbaum and F.A. Sherk, eds.), Springer, New York, 1981.