Rocky Mountain Journal of Mathematics

The Blow-Up Profile for a Fast Diffusion Equation with a Nonlinear Boundary Condition

Raúl Ferreira, Arturo de Pablo, Fernando Quirós, and Julio D. Rossi

Full-text: Open access

Article information

Rocky Mountain J. Math. Volume 33, Number 1 (2003), 123-146.

First available in Project Euclid: 5 June 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35B40: Asymptotic behavior of solutions
Secondary: 35B35: Stability 35K65: Degenerate parabolic equations

Blow-up asymptotic behavior fast diffusion equation nonlinear boundary conditions


Ferreira, Raúl; Pablo, Arturo de; Quirós, Fernando; Rossi, Julio D. The Blow-Up Profile for a Fast Diffusion Equation with a Nonlinear Boundary Condition. Rocky Mountain J. Math. 33 (2003), no. 1, 123--146. doi:10.1216/rmjm/1181069989.

Export citation


  • D.G. Aronson, M.G. Crandall and L.A. Peletier, Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal. 6 (1982), 1001-1022.
  • G.I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous medium, Prikl. Mat. Mekh. 16 (1952), 67-78. (Russian)
  • --------, Scaling, self-similarity and intermediate asymptotics, Cambridge Univ. Press, Cambridge, UK, 1996.
  • E. Chasseigne and J.L. Vázquez, Theory of extended solutions for fast diffusion equations in optimal classes of data. Radiation from singularities, Arch. Rat. Mech. Anal. (2002), to appear.
  • M. Chlebík and M. Fila, On the blow-up rate for the heat equation with a nonlinear boundary condition, Math. Methods Appl. Sci. 23 (2000), 1323-1330.
  • --------, Some recent results on the blow-up on the boundary for the heat equation, Banach Center Publ., Vol. 52, Polish Academy of Science, Inst. of Math., Warsaw, 2000, pp. 61-71.
  • K. Deng and H. Levine, The role of critical exponents in blow-up theorems: The sequel, J. Math. Anal. Appl. 243 (2000), 85-126.
  • M. Fila and J. Filo, Blow-up on the boundary: A survey, in Singularities and differential equations (S. Janeczko et al., eds.), Banach Center Publ., Vol. 33, Polish Academy of Science, Inst. of Math., Warsaw, 1996, pp. 67-78.
  • M. Fila and P. Quittner, The blowup rate for the heat equation with a nonlinear boundary condition, Math. Methods Appl. Sci. 14 (1991), 197-205.
  • J. Filo, Diffusivity versus absorption through the boundary, J. Differential Equations 99 (1992), 281-305.
  • V.A. Galaktionov, On asymptotic self-similar behaviour for a quasilinear heat equation. Single point blow-up, SIAM J. Math. Anal. 26 (1995), 675-693.
  • V.A. Galaktionov and H.A. Levine, On critical Fujita exponents for heat equations with nonlinear flux boundary conditions on the boundary, Israel J. Math. 94 (1996), 125-146.
  • B.H. Gilding and L.A. Peletier, On a class of similarity solutions of the porous media equation, J. Math. Anal. Appl. 55 (1976), 351-364.
  • M.A. Herrero and M. Pierre, The Cauchy problem for $u_t=\D u^m$ when $0<m<1$, Trans. Amer. Math. Soc. 291 (1985), 145-158.
  • B. Hu, Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition, Differential Integral Equations 9 (1996), 891-901.
  • B. Hu and H.M. Yin, The profile near blow-up time for solutions of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc. 346 (1994), 117-135.
  • J. Hulshof, Similarity solutions of the porous medium equation with sign changes, J. Math. Anal. Appl. 157 (1991), 75-111.
  • C.W. Jones, On reducible nonlinear differential equations occurring in mechanics, Proc. Roy. Soc. London Ser. A 217 (1953), 327-343.
  • H.A. Levine, The role of critical exponents in blow up theorems, SIAM Rev. 32 (1990), 262-288.
  • --------, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$, Arch. Rat. Mech. Anal. 51 (1973), 371-386.
  • G.M. Lieberman, Second order parabolic differential equations, World Scientific Publ., River Edge, NJ, 1996.
  • F.J. Mancebo and J.M. Vega, A model of porous catalyst accounting for incipiently non-isothermal effects, J. Differential Equations 151 (1999), 79-110.
  • A. de Pablo, F. Quirós and J.D. Rossi, Asymptotic simplification for a reaction-diffusion problem with a nonlinear boundary condition, IMA J. Appl. Math. 67 (2002), 69-98.
  • F. Quirós and J.D. Rossi, Blow-up sets and Fujita type curves for a degenerate parabolic system with nonlinear boundary conditions, Indiana Univ. Math. J. 50 (2001), 629-654.
  • F. Quirós and J.L. Vázquez, Asymptotic behaviour of the porous media equation in an exterior domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 183-227.
  • A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyunov and A.P. Mikhailov, Blow-up in problems for quasilinear parabolic equations, Nauka, Moscow, 1987 (Russian). English transl., Walter de Gruyter, Berlin, 1995.
  • T.I. Zelenyak, Stabilization of solution of boundary value problems for a second order parabolic equation with one space variable, Differ. Uravn. 4 (1986), 34-45 (Russian). English transl., Differential Equations 4 (1986), 17-22.