Rocky Mountain Journal of Mathematics

A Note on Schur-Convexity of Extended Mean Values

Feng Qi

Full-text: Open access

Article information

Source
Rocky Mountain J. Math. Volume 35, Number 5 (2005), 1787-1793.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
http://projecteuclid.org/euclid.rmjm/1181069663

Digital Object Identifier
doi:10.1216/rmjm/1181069663

Mathematical Reviews number (MathSciNet)
MR2206036

Zentralblatt MATH identifier
1104.26013

Subjects
Primary: 26B25: Convexity, generalizations
Secondary: 26D07: Inequalities involving other types of functions 26D20: Other analytical inequalities

Keywords
Schur-convexity extended mean values arithmetic mean of function logarithmic mean values identric (exponential) mean values inequality

Citation

Qi, Feng. A Note on Schur-Convexity of Extended Mean Values. Rocky Mountain J. Math. 35 (2005), no. 5, 1787--1793. doi:10.1216/rmjm/1181069663. http://projecteuclid.org/euclid.rmjm/1181069663.


Export citation

References

  • N. Elezović and J. Pečarić, A note on Schur-convex functions, Rocky Mountain J. Math. 30 (2000), 853-856.
  • B.-N. Guo, Sh.-Q. Zhang and F. Qi, Elementary proofs of monotonicity for extended mean values of some functions with two parameters, Shùxué de Shíjiàn yù Rènsh\=i (Math. Practice Theory) 29 (1999), 169-174 (in Chinese).
  • E. Leach and M. Sholander, Extended mean values, Amer. Math. Monthly 85 (1978), 84-90.
  • --------, Extended mean values II, J. Math. Anal. Appl. 92 (1983), 207-223.
  • Z. Páles, Inequalities for differences of powers, J. Math. Anal. Appl. 131 (1988), 271-281.
  • J. Pečarić, F. Proschan and Y.L. Tong, Convex functions, partial orderings, and statistical applications, Math. Sci. Engineering, vol. 187, Academic Press, Boston, 1992.
  • J. Pečarić, F. Qi, V. Šimić and S.-L. Xu, Refinements and extensions of an inequality, III, J. Math. Anal. Appl. 227 (1998), 439-448.
  • F. Qi, Generalized abstracted mean values, J. Inequal. Pure Appl. Math. 1 (2000), no. 1, Art. 4. Available at http://jipam.vu.edu.au/article.pip?sid=97. RGMIA Res. Rep. Coll. 2 (1999), no. 5, Art. 4, 633-642. Available at http://rgmia.vu.edu.au/v2n5.html.
  • --------, Generalized weighted mean values with two parameters, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454 (1998), 2723-2732.
  • --------, Logarithmic convexity of extended mean values, Proc. Amer. Math. Soc. 130 (2002), 1787-1796. RGMIA Res. Rep. Coll. 2 (1999), no. 5, Art. 5, 643-652. Available at http://rgmia.vu.edu.au/v2n5.html.
  • --------, On a two-parameter family of nonhomogeneous mean values, Tamkang J. Math. 29 (1998), 155-163.
  • --------, Studies on problems in topology and geometry and on generalized weighted abstracted mean values, Thesis for Doctor of Science degree, Univ. of Science and Tech. of China, Hefei City, Anhui Province, China, 1998 (in Chinese).
  • --------, The extended mean values: Definition, properties, monotonicities, comparison, convexities, generalizations, and applications, Cubo Mat. Educ. 5 (2003), no. 3, 63-90. RGMIA Res. Rep. Coll. 5 (2002), no. 1, Art. 5, 57-80. Available at http://rgmia.vu.edu.au/v5n1.html.
  • F. Qi and Q.-M. Luo, A simple proof of monotonicity for extended mean values, J. Math. Anal. Appl. 224 (1998), 356-359.
  • --------, Refinements and extensions of an inequality, Math. Inform. Quart. 9 (1999), no. 1, 23-25.
  • F. Qi, J.-Q. Mei, D.-F. Xia and S.-L. Xu, New proofs of weighted power mean inequalities and monotonicity for generalized weighted mean values, Math. Inequal. Appl. 3 (2000), 377-383.
  • F. Qi, J. Sándor, S.S. Dragomir and A. Sofo, Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math. 9 (2005), no. 3, 411-420. RGMIA Res. Rep. Coll. 5 (2002), no. 1, Art. 3, 19-27. Available at http://rgmia.vu.edu.au/v5n1.html.
  • F. Qi and S.-L. Xu, The function $(b^x-a^x)/x$: Inequalities and properties, Proc. Amer. Math. Soc. 126 (1998), 3355-3359.
  • F. Qi, S.-L. Xu and L. Debnath, A new proof of monotonicity for extended mean values, Internat. J. Math. Math. Sci. 22 (1999), 415-420.
  • F. Qi and Sh.-Q. Zhang, Note on monotonicity of generalized weighted mean values, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 455 (1999), 3259-3260.
  • K.B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87-92.