Rocky Mountain Journal of Mathematics

A Short Proof of a Characterization of Inner Functions in Terms of the Composition Operators They Induce

Valentin Matache

Full-text: Open access

Article information

Source
Rocky Mountain J. Math. Volume 35, Number 5 (2005), 1723-1726.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
http://projecteuclid.org/euclid.rmjm/1181069659

Digital Object Identifier
doi:10.1216/rmjm/1181069659

Mathematical Reviews number (MathSciNet)
MR2206032

Zentralblatt MATH identifier
1105.47022

Citation

Matache, Valentin. A Short Proof of a Characterization of Inner Functions in Terms of the Composition Operators They Induce. Rocky Mountain J. Math. 35 (2005), no. 5, 1723--1726. doi:10.1216/rmjm/1181069659. http://projecteuclid.org/euclid.rmjm/1181069659.


Export citation

References

  • J.A. Cima and A. Matheson, Essential norms of composition operators and Aleksandrov measures, Pacific J. Math. 179 (1997), 59-64.
  • W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966.
  • D. Sarason, Composition operators as integral operators, in Analysis and partial differential equations, Marcel Dekker, New York, 1990.
  • --------, Sub-Hardy Hilbert spaces in the unit disk, Univ. of Arkansas Lecture Notes in Math. Sci., vol. 10, John Wiley & Sons, Inc., New York, 1994.
  • J.E. Shapiro, Aleksandrov measures used in essential norm inequalities for composition operators, J. Operator Theory 40 (1998), 133-146.
  • J.H. Shapiro, The essential norm of a composition operator, Ann. of Math. 125 (1987), 375-404.
  • --------, What do composition operators know about inner functions?, Monatsh. Math. 130 (2000), 57-70.