Open Access
1995/1996 Remarks on functions preserving convergence of infinite series
Ján Borsík, Jaroslav Červeňanský, Tibor Šalát
Author Affiliations +
Real Anal. Exchange 21(2): 725-731 (1995/1996).

Abstract

A function \(f:\: \mathbb{R}\to\mathbb{R}\) preserves absolute convergence of series if for each absolutely convergent series \(\sum_{n=1}^{\infty} a_n\) its \(f\)-transform \(\sum_{n=1}^{\infty} f(a_n)\) is absolutely convergent. In this note, we shall study functions that preserve absolute convergence of series.

Citation

Download Citation

Ján Borsík. Jaroslav Červeňanský. Tibor Šalát. "Remarks on functions preserving convergence of infinite series." Real Anal. Exchange 21 (2) 725 - 731, 1995/1996.

Information

Published: 1995/1996
First available in Project Euclid: 14 June 2012

zbMATH: 0879.26040
MathSciNet: MR1407285

Subjects:
Primary: 26A99

Keywords: Baire category , preserving convergence of infinite series

Rights: Copyright © 1995 Michigan State University Press

Vol.21 • No. 2 • 1995/1996
Back to Top