Abstract
A function \(f:\: \mathbb{R}\to\mathbb{R}\) preserves absolute convergence of series if for each absolutely convergent series \(\sum_{n=1}^{\infty} a_n\) its \(f\)-transform \(\sum_{n=1}^{\infty} f(a_n)\) is absolutely convergent. In this note, we shall study functions that preserve absolute convergence of series.
Citation
Ján Borsík. Jaroslav Červeňanský. Tibor Šalát. "Remarks on functions preserving convergence of infinite series." Real Anal. Exchange 21 (2) 725 - 731, 1995/1996.
Information